Cultural Resources Survey of the RDA Mine Tract

Williamsburg County, South Carolina

June 2017
15 June 2017

Larry James
Brockington and Associates
498 Wando Park Blvd, Ste 700
Mount Pleasant, SC 29464

Re: CRS of RDA Mine Tract
Williamsburg County, South Carolina
SHPO Project No. 17-AD0014

Dear Mr. James:

Our office has received the documentation dated June 6, 2017 that you submitted as due diligence for the project referenced above, including the description of and plans for avoidance of site 38WG0185. This letter is for preliminary, informational purposes only and does not constitute consultation or agency coordination with our office as defined in 36 CFR 800: "Protection of Historic Properties" or by any state regulatory process. The recommendation stated below could change once the responsible federal and/or state agency initiates consultation with our office.

The updated plans call for preservation in place of site 38WG0185, which is eligible for the National Register of Historic Places, through preservation in place, a 50-foot buffer around the site, and perimeter fencing during mining activities within 1000 feet of the site. Our office agrees that these measures are sufficient to protect the site.

If the project were to require state permits or federal permits, licenses, funds, loans, grants, or assistance for development, we would recommend to the federal or state agency or agencies that the project will have no adverse effect on cultural resources.

We do request, however, that our office be notified immediately if archaeological materials or human skeletal remains are encountered prior to or during construction on the project site. Archaeological materials consist of any items, fifty years old or older, which were made or used by man. These items include, but are not limited to, stone projectile points (arrowheads), ceramic sherds, brick scatters, worked wood, bone and stone, along with metal and glass objects.

If you have any questions, please contact me at (803) 896-6184 or at adaggett@scdah.sc.gov.

Sincerely,

Adrienne Daggett, PhD.
Transportation Review Coordinator
South Carolina State Historic Preservation Office
Cultural Resources Survey of the RDA Mine Tract

Williamsburg County, South Carolina

Draft Report

June 2017

Prepared for:
RDA, LLC
Newton Grove, NC

Prepared by:

Larry James, RPA
Principal Investigator

and

Charles F. Philips, MA
Historian

Brockington and Associates, Inc.
Atlanta • Charleston • Elizabethtown • Jackson • Nashville • Savannah
Abstract

Brockington and Associates, Inc. (Brockington) conducted an intensive cultural resources survey of the RDA Mine Site in Williamsburg County, South Carolina. The RDA Mine Tract contains 803 acres of undeveloped lands that include stands of mature and recently harvested planted pine forest and hardwood swamps. The project tract is located east of the town of Andrews and north of Seaboard Road (S-45-6). The survey was conducted on behalf of the owner in compliance with South Carolina Department of Health and Environmental Control (SCDHEC) mining regulations and following SHPO guidelines for cultural resources surveys in advance of a permit application to mine limestone on the property. During the archaeological survey, we spaced pedestrian transects 30 meters (m) apart, excavating shovel tests every 30 m across areas that have a high potential to contain cultural resources. Low potential areas were surveyed using the 30-m transects and shovel tests spaced at 60-m intervals. No shovel tests were excavated in wetlands. Investigators identified one new archaeological site (38WG185), and two isolated artifact finds (Isolates 1 and 2). Site 38WG185 consists of a surface and subsurface scatter of ceramic and lithic artifacts that is interpreted as a seasonal resource extraction camp associated with the Deptford Culture during the Early/Middle Woodland Period. We recommend 38WG185 eligible for the NRHP under Criterion D. Current plans call for this resource to be preserved in place. The treatment of archaeological site 38WG185 will be through a preservation-in-place plan that will include a 50-foot buffer around the site, and perimeter fencing during mining activities within 1,000 feet of the site. The green-spaced area around Site 38WG185 will provide protection from any land-altering activities. These measures will have No Adverse Effect on 38WG185. We recommend Isolates 1 and 2 not eligible for the NRHP. There are no standing structures on the property.
Table of Contents

Abstract ... iii

List of Figures .. vi

List of Tables .. vii

1.0 Introduction ... 1

2.0 Methods of Investigation ... 5
 2.1 Project Objectives .. 5
 2.2 Archival Research .. 5
 2.3 Field Investigations ... 5
 2.3.1 Survey Investigations ...5
 2.4 Laboratory Analysis and Curation ... 6
 2.5 NRHP Assessment of Cultural Resources ... 6

3.0 Environmental and Cultural Setting ... 11
 3.1 Introduction ... 11
 3.2 Environmental Setting ... 11
 3.2.1 Holocene Changes in the Environment .. 11
 3.3 Cultural Setting .. 13
 3.3.1 The Pre-Contact Era ...13
 3.3.2 The Contact Era .. 17
 3.3.3 The Post-Contact Era ... 18
 3.4 Brief History of the RDA Mine Tract ... 19

4.0 Results of the Survey .. 23
 4.1 Site 38WG185 .. 23
 4.2 Isolated Artifact Finds .. 31

5.0 Project Summary .. 33

References Cited ... 35

Appendix A - Artifact Catalog

Appendix B - SHPO Correspondence
List of Figures

Figure 1.1 Location of the RDA Mine Tract and all identified cultural resources within a .5-mile radius (US Geological Survey [USGS] 1973 Trio, South Carolina quadrangle).2

Figure 1.2 Location of the surveyed RDA Mine Tract and all identified cultural resources on recent aerial imagery. ..3

Figure 2.1 Areas of high and low potential within the RDA Mine Tract.7

Figure 3.1 View of the upper portion of project tract during the field investigations, facing north. ..12

Figure 3.2 View of the lower project tract during the field investigations, facing east.............12

Figure 3.3 South Carolina Sea Level Curve (after Brooks et al. 1989).13

Figure 3.4 The project area with the approximate location of the state grants and the project tract superimposed (SCSPB 43:82, 86, 87, 88, and 89). ...20

Figure 4.1 Plan of Site 38WG185. ...24

Figure 4.2 View and west profile of the 50-by-50-cm Test Unit at 38WG185.................26

Figure 4.3 Distribution of artifacts at Site 38WG185...28
List of Tables

Table 4.1 Artifacts recovered during shovel testing at 38WG185. ..25

Table 4.2 Artifacts recovered by level in the 50-by-50-cm test unit at 38WG185.........................27
1.0 Introduction

In January-March 2017, Brockington and Associates, Inc. (Brockington) conducted an intensive cultural resources survey of the RDA Mine Tract in Williamsburg County, South Carolina. The survey was conducted on the behalf of Tri State Turf, Inc (the current property owners) as part of their due diligence process in compliance with South Carolina Department of Health and Environmental Control (SCDHEC) mining regulations and following State Historic Preservation Office (SHPO) guidelines for cultural resources surveys in advance of a permit application to mine limestone on the property.

The RDA Mine project tract is located approximately five miles west of Andrews, South Carolina. The 803-acre tract is enclosed by S-45-629 to the west, Wheeler Road to the east, a powerline corridor south of US Highway 521 to the north, and Seaboard Road (S-45-6) to the south. It is bisected north-south by the extension of Jumpin Run Road. The property contains stands of planted pine surrounded by grassy areas and low lying hardwood swamps. The entire 803-acre project tract constitutes the Area of Potential Effect (APE).

Brockington designed the intensive cultural resources survey to identify and assess all cultural resources in the 803-acre RDA Mine project tract. Cultural resources investigations of the project tract included archival research and archaeological survey. Prior to fieldwork, the archaeologist conducted background research for the National Register of Historic Places (NRHP) listed or eligible resources using the ArchSite program maintained by the South Carolina Institute of Archaeology and Anthropology (SCIAA) on December 9, 2016. Brockington found no identified cultural resources or previous cultural surveys have been documented within a .5-mile radius of the RDA Mine Tract. No standing resources were identified on the project tract so no architectural assessment was necessary. During the survey, we identified one new archaeological site (38WG185), and two isolated artifact finds (Isolates 1 and 2). Figures 1.1 and 1.2 show the location of the project tract and all identified cultural resources within a .5-mile radius.

Site 38WG185 is a 150-by-30-meter (m) surface/subsurface scatter of Pre-Contact artifacts, located in the east central portion of the project tract. Site 38WG185 is interpreted as a seasonal resource extraction camp during the Early/Middle Woodland Period. We recommend 38WG185 eligible for the NRHP under Criterion D. Current plans call for this resource to be preserved in place. The treatment of archaeological site 38WG185 will be through a preservation-in-place plan that will include a 50-foot buffer around the site, and perimeter fencing during mining activities within 1,000 feet of the site. The green-spaced area around site 38WG185 will provide protection from any land-altering activities. These measures will have No Adverse Effect on Site 38WG185.

Isolate 1 is a projectile point diagnostic to the Middle Archaic Period that was a surface find along Jumpin Run Road. Isolate 2 is a historic-period refuse pile associated with discarded material alongside of Jumpin Run Road. Isolate 1 and 2 are recommended not eligible for the NRHP.

This report provides a detail study of the cultural resources survey of the RDA Mine in Williamsburg County, South Carolina. The methods of investigation are detailed in Chapter 2. Chapter 3 presents the project tract setting (environmental and cultural). Chapter 4 presents the results of the survey and NRHP recommendations for all identified resources. The artifact catalog is presented in Appendix A.
Figure 1.1 Location of the RDA Mine Tract and all identified cultural resources within a .5-mile radius (US Geological Survey [USGS] 1973 Trio, South Carolina quadrangle).
Figure 1.2 Location of the surveyed RDA Mine Tract and all identified cultural resources on recent aerial imagery.
This page intentionally left blank.
2.0 Methods of Investigation

2.1 Project Objectives
The objective of the cultural resources survey of the RDA Mine Tract was to locate and assess the significance of all cultural resources in the project tract and to assess what affect, if any, the proposed mining activities may have on any resources that are determined eligible for the NRHP. Tasks performed to accomplish these objectives include background research, archaeological survey, laboratory analyses, and NRHP assessment. Methods employed for each of these tasks are described below.

2.2 Archival Research
Methods employed for the background research include consultation with the records at the Charleston County Public Library, South Carolina Department of Archives and History in Columbia, and the Williamsburg County Register of Deeds Office in Kingstree. County Register records were collected by Regina Ard, Real Estate Paralegal with Jenkinson, Jerrett, and Kellahan, Attorneys at Law in Kingstree, South Carolina. Ms. Ard was particularly helpful in assembling the ownership of the project tract in the years since 1940. The Brockington archaeologist conducted background research for NRHP listed or eligible resources using the ArchSite program maintained by the SCIAA on December 9, 2016. We also visited the state site files office at the SCIAA for any information that may not have been uploaded to ArchSite.

2.3 Field Investigations

2.3.1 Survey Investigations
Archaeological survey of the project tract followed South Carolina Standards and Guidelines for Archaeological Investigations (Council of South Carolina Professional Archaeologists [COSCAPA] 2013). The field investigations were focused on locating, identifying, and documenting all archaeological sites and isolated occurrences within the RDA Mine Tract. Archaeological survey includes surface and subsurface inspection. We employed a similar model of site location developed for the Francis Marion National Forest (O’Donoughue 2008) to define areas of high and low potential within the property. Figure 2.1 displays the areas of high and low potential within the project tract. We traversed all non-wetland/inundated areas at 30-m intervals and excavated shovel tests at 30-m intervals in areas of high potential. Low potential areas were excavated shovel tests at 60-m intervals along 30-m transects, with judgmental shovel tests excavated in areas that appeared likely to contain archaeological materials (slightly elevated landforms, near historic road, etc.). No survey or inspections were performed in delineated wetlands or inundated areas. Survey transects were oriented north-south or east-west, depending on the configuration of areas of high and low potential and wetlands/inundated areas.

Each shovel test measured approximately 30 centimeters (cm) in diameter and was excavated into sterile subsoil. The fill from these tests was sifted through one-quarter-inch wire mesh hardware cloth. All identifiable or suspected cultural materials were collected and bagged by provenience. All brick fragments and oyster shell fragments were weighed using an estimate of weight based upon a standard volume and then discarded in the field. Excavators recorded provenience information, including transect, shovel test, and surface collection numbers, on resealable acid-free artifact collection bags. Information relating to each shovel test also was recorded in field notebooks. This information included the content (e.g., presence or absence of artifacts) and context (e.g., soil color, texture, stratification) of each test. Excavators flagged and labeled positive shovel tests (those where artifacts were present) for relocation and site delineation. In areas where very saturated, wetland soils were present, the subsurface soil was inspected but not screened.

An archaeological site is defined as a locale that produces three artifacts from the same occupation within a 30-m radius. Locales that produce fewer than three artifacts are identified as isolated finds (COSCAPA 2013). Locales that produced artifacts from shovel testing or surface inspection were subjected to reduced-interval shovel testing. Investigators defined the boundaries of sites and isolated finds by excavating additional shovel tests at 7.5- and 15-m intervals according to true north around Brockington and Associates 5
the positive tests until two consecutive shovel tests failed to produce artifacts or until reaching natural or cultural features. A map showing the location of each shovel test, the extent of surface scatters, of all test units, cultural features (e.g., wells, rubble piles, foundations, roads), and natural features (e.g., landforms, drainages) and the approximate site boundary was prepared in the field for each site.

The locations of each cultural resource were recording using a Global Positioning System (GPS) receiver. For this project, archaeologists used a Trimble Pro-XRT submeter-accurate differential GPS with a Trimble Nomad data collector to record the locations of cultural resources across the tract. The data was recorded using Universal Transverse Mercator (UTM) coordinates calibrated to the 1983 North American Datum (NAD-83). However, the SCIAA requires all archaeological site coordinates in NAD-27 format, which correlates with the older USGS 7.5-minute series quadrangle employed by SCIAA to record the location of identified archaeological sites. We obtained NAD-27 coordinates through ArcGIS rectification of the collected GPS data.

2.4 Laboratory Analysis and Curation

All recovered artifacts were transported to Brockington's Mount Pleasant laboratory facilities, where they were cleaned according to their material composition and fragility, sorted, and inventoried. Most artifacts were washed in warm water with a soft-bristled toothbrush. Artifacts that were fragile were not washed but left to air dry and, if needed, lightly brushed. Each separate archaeological context from within the site (surface collection, shovel test, or test unit) was assigned a specific provenience number. The artifacts from each provenience were separated by artifact type, using published artifact type descriptions from sources pertinent to the project area. Artifact types were assigned a separate catalog number, and artifacts were analyzed and quantity and weight were recorded. Certain artifacts tend to decompose through time, resulting in the recovery of fragments whose counts exaggerate the original amount present; in this case, artifact weight is a more reliable tool for reconstructing past artifact density. All artifact analysis information was entered into a coded database using Microsoft Access 2010™.

Typological identification as manifested by technological and/or stylistic attributes served as the basis for the Pre-Contact artifact analysis. Lab personnel classified all Pre-Contact ceramic sherds larger than two-by-two cm by surface treatment and aplastic content. When recognizable, diagnostic attributes were recorded for residual sherds (i.e., potsherds smaller than 2-by-2 cm). Residual sherds lacking diagnostic attributes were tabulated as a single group. Sherds were compared to published ceramic type descriptions from available sources (e.g., Anderson et al. 1982; DePratter 1979; Espenshade and Brockington 1989; Poplin et al. 1993; Sas-saman 1993; South 1973; Trinkley 1980, 1981, 1990; Williams and Shapiro 1990).

All artifacts were bagged in 4-mil-thick archivally stable polyethylene bags. Artifact types were bagged separately within each provenience and labeled using acid-free paper labels. Provenience bags were labeled with the site number, provenience number, and provenience information. Proveniences were placed into appropriately labeled acid-free boxes. Artifacts are temporarily stored at the Mount Pleasant office of Brockington and Associates, Inc., until they are ready for final curation. Upon the completion and acceptance of the final report, the artifacts and all associated materials (artifact catalog, field notes, photographic materials, and maps) will be transferred to a facility approved by the owners and the SHPO for curation.

2.5 NRHP Assessment of Cultural Resources

All cultural resources encountered are assessed as to their significance based on the criteria of the NRHP. As per 36 CFR 60.4, there are four broad evaluative criteria for determining the significance of a particular resource and its eligibility for the NRHP. Any resource (building, structure, site, object, or district) may be eligible for the NRHP that:

A. is associated with events that have made a significant contribution to the broad pattern of history;
B. is associated with the lives of persons significant in the past;
Figure 2.1 Areas of High and Low Potential within the RDA Mine Tract.
This page intentionally left blank.
C. embodies the distinctive characteristics of a type, period, or method of construction, or represents the work of a master, possesses high artistic value, or represents a significant and distinguishable entity whose components may lack individual distinction; or
D. has yielded, or is likely to yield, information important to history or prehistory.

A resource may be eligible under one or more of these criteria. Criteria A, B, and C are most frequently applied to historic buildings, structures, objects, non-archaeological sites (e.g., battlefields, natural features, designed landscapes, or cemeteries), or districts. The eligibility of archaeological sites is most frequently considered with respect to Criterion D. Also, a general guide of 50 years of age is employed to define “historic” in the NRHP evaluation process. That is, all resources greater than 50 years of age may be considered. However, more recent resources may be considered if they display “exceptional” significance (Sherfy and Luce n.d.).

Following National Register Bulletin: How to Apply the National Register Criteria for Evaluation (Savage and Pope 1998), evaluation of any resource requires a twofold process. First, the resource must be associated with an important historical context. If this association is demonstrated, the integrity of the resource must be evaluated to ensure that it conveys the significance of its context. The applications of both of these steps are discussed in more detail below.

Determining the association of a resource with a historical context involves five steps (Savage and Pope 1998). First, the resource must be associated with a particular facet of local, regional (state), or national history. Secondly, one must determine the significance of the identified historical facet/context with respect to the resource under evaluation. A lack of Native American archaeological sites within a project area would preclude the use of contexts associated with the Pre-Contact use of a region.

The third step is to demonstrate the ability of a particular resource to illustrate the context. A resource should be a component of the locales and features created or used during the historical period in question. For example, early nineteenth-century farmhouses, the ruins of African American slave settlements from the 1820s, and/or field systems associated with particular antebellum plantations in the region would illustrate various aspects of the agricultural development of the region prior to the Civil War. Conversely, contemporary churches or road networks may have been used during this time period but do not reflect the agricultural practices suggested by the other kinds of resources.

The fourth step involves determining the specific association of a resource with aspects of the significant historical context. Savage and Pope (1998) define how one should consider a resource under each of the four criteria of significance. Under Criterion A, a property must have existed at the time that a particular event or pattern of events occurred, and activities associated with the event(s) must have occurred at the site. In addition, this association must be of a significant nature, not just a casual occurrence (Savage and Pope 1998). Under Criterion B, the resource must be associated with historically important individuals. Again, this association must relate to the period or events that convey historical significance to the individual, not just that this person was present at this locale (Savage and Pope 1998). Under Criterion C, a resource must possess physical features or traits that reflect a style, type, period, or method of construction; display high artistic value; or represent the work of a master (an individual whose work can be distinguished from others and possesses recognizable greatness) (Savage and Pope 1998). Under Criterion D, a resource must possess sources of information that can address specific important research questions (Savage and Pope 1998). These questions must generate information that is important in reconstructing or interpreting the past (Butler 1987; Townsend et al. 1993). For archaeological sites, recoverable data must be able to address specific research questions.

After a resource is associated with a specific significant historical context, one must determine which physical features of the resource reflect its significance. One should consider the types of resources that may be associated with the context, how these resources represent the theme, and which aspects of integrity apply to the resource in question (Savage and Pope 1998). As in the antebellum agriculture example given above, a variety of resources may reflect this context (farmhouses, ruins of slave settlements, field systems, etc.). One must demonstrate how
these resources reflect the context. The farmhouses represent the residences of the principal landowners who were responsible for implementing the agricultural practices that drove the economy of the South Carolina area during the antebellum period. The slave settlements housed the workers who conducted the vast majority of the daily activities necessary to plant, harvest, process, and market crops.

Once the above steps are completed and the association with a historically significant context is demonstrated, one must consider the aspects of integrity applicable to a resource. Integrity is defined in seven aspects of a resource; one or more may be applicable depending on the nature of the resource under evaluation. These aspects are location, design, setting, materials, workmanship, feeling, and association (36 CFR 60.4; Savage and Pope 1998). If a resource does not possess integrity with respect to these aspects, it cannot adequately reflect or represent its associated historically significant context. Therefore, it cannot be eligible for the NRHP. To be considered eligible under Criteria A and B, a resource must retain its essential physical characteristics that were present during the event(s) with which it is associated. Under Criterion C, a resource must retain enough of its physical characteristics to reflect the style, type, etc., or work of the artisan that it represents. Under Criterion D, a resource must be able to generate data that can address specific research questions that are important in reconstructing or interpreting the past.
3.0 Environmental and Cultural Setting

3.1 Introduction
The RDA Mine Tract encompasses approximately 803 acres of undeveloped land located in Williamsburg County. The project tract is located on the eastern extreme of Williamsburg County, north of S-45-6 (Seaboard Highway), approximately four miles west of Andrews and 22 miles west of Georgetown, South Carolina. Williamsburg County is bordered to the east by Georgetown County, Florence County to the north, Clarendon County on the west; and it is separated from Berkeley County on the south by the Santee River. Historically, the area has undergone few major changes in the past 200 years. Agricultural have dominated past and present economies with historic rice, corn, tobacco, and cattle practices transitioning to more modern productions of cotton and timber. Silviculture is the current landuse practice of the project tract.

Soils within the project are variable, consisting of three dominate types. These soils include Yemassee sandy loam, Eunola loamy sand, and Ogeechee fine sandy loam (USDA Web Soil Survey 2016). Yemassee sandy loam are most dominant (29 percent) and are described as somewhat poorly drained sands that occur on marine terraces throughout the Coastal Plain. These soils are predominant in the upper and middle portions of the project tract where the area is pocketed with small isolated wetlands. Eunola loamy sand soils are moderately well drained sands also located on higher elevations that are found along the middle portion of the tract. In contrast, Ogeechee fine sandy loam soils are very poorly drained and typically found along narrow drainages on the Coastal Plain such as the tributary of Murray Swamp that traverses the southern portion of tract.

3.2 Environmental Setting
The project tract is located in the Lower Coastal Plain of South Carolina on slightly elevated lands that are defined by moderate drainages and the broad floodplains of the Black River. Elevations within the tract average approximately 55 feet above mean sea level (amsl) (Ward et al. 1989). The nearest water source is a tributary of Murray Swamp waterway that traverses east-west across the southern extreme of the project tract. The general landscape is low and flat containing poorly drained soils with few ridges or elevations (Ward et al. 1989:1-2, 9). Vegetation consists of mostly planted pine trees with few scattered hardwoods around low-lying wet areas. Figures 3.1 and 3.2 present views of the project tract during the field investigations.

The Soil Survey of Williamsburg County by Ward et al. (1989:2-3) provides data on the climate of Williamsburg County. The climate of Williamsburg County is temperate, characterized by mild winters and warm summers. The average winter temperature is 46 degrees Fahrenheit (F), while the average summer temperature is 79 degrees F. The total annual precipitation is 50 inches and the average relative humidity is about 50 percent with prevailing wind from the southwest. Snowfall is a rare occurrence.

3.2.1 Holocene Changes in the Environment
Regional research in palynology, historic biogeography, and coastal geomorphology allows a general reconstruction of Holocene changes in the environment. Data from Florida, Georgia, South Carolina, North Carolina, and Virginia indicate that the Late Pleistocene was a time of transition from full glacial to Holocene environmental conditions (Gardner 1974; Watts 1980; Whitehead 1965, 1973). Upper Coastal Plain forests of the Late Pleistocene (as reflected in the White Pond pollen record) were dominated by oak, hickory, beech, and ironwood (Watts 1980:192). This deciduous forest occurred in a cooler, moister climate than exists in the region today (Barry 1980; Braun 1950).

Sea level changes resulted from the general warming trend at the onset of the Holocene. Beginning approximately 17,000 years before present (BP), sea level began to rise from its Late Pleistocene low of approximately 85 m below modern mean sea level (Colquhoun and Brooks 1986; Howard et al. 1980). By 7,000 years BP, sea level had risen dramatically to within 6.37 m of present levels. Figure 3.3 presents the sea level curve proposed by Brooks et al. (1989) for the South Carolina coast; the dates in the table reflect high or low stands that occurred within an overall rise in sea level.
Figure 3.1 View of the upper portion of project tract during the field investigations, facing north.

Figure 3.2 View of the lower project tract during the field investigations, facing east.
As drier and still warmer conditions became prevalent during the Early Holocene, pines and other species increased. The southern forest at 7,000 years BP was beginning to resemble that of modern times (Watts 1980:194). Large Pleistocene mammals also became extinct during this time.

On a regional level, vegetation and climate have remained effectively static since the Early Holocene. The continued changes in sea level undoubtedly affected the local plant and faunal communities. Shellfish resources were/are important to the Pre- and Post-Contact inhabitants of the region, and the sea level changes starting after 2500 BC probably produced conditions conducive to island shellfish beds.

3.3 Cultural Setting

The cultural history of North America is divided into three eras: Pre-Contact, Contact, and Post-Contact. The Pre-Contact era refers to Native American groups and cultures that were present for at least 10,000-12,000 years prior to the arrival of Europeans. The Contact era refers to the time of exploration and initial European settlement on the continent. The Post-Contact era refers to the time after the establishment of European settlements, when Native American populations usually were in rapid decline. Within these eras, finer temporal and cultural subdivisions have been defined to permit discussions of particular events and the lifeways of the peoples who inhabited North America at that time.

3.3.1 The Pre-Contact Era

In South Carolina, the Pre-Contact era is divided into four stages (after Willey and Phillips 1958). These include the Lithic, Archaic, Woodland, and Mississippian. Specific technologies and strategies for procuring resources define each of these stages, with approximate temporal limits also in place. Within each stage, with the exception of the Lithic stage, there are temporal periods that are defined on technological bases as well. A brief description of each stage follows. Readers are directed to Goodyear and Hanson (1989) for more detailed discussions of particular aspects of these stages and periods in South Carolina.

Paleoindian Period (10000 - 8000 BC). The earliest presence of man in the Coastal Plain of South Carolina occurred in the Paleoindian period. This cultural period corresponds with the terminal Pleistocene epoch, when the climate was generally much colder than today, and when the sea level was more than 200 feet (ft) below present levels. Although
the project area was in the Coastal Plain during the Paleoindian period, the distance to the ocean was certainly much greater than at present. Another notable feature of the terminal Pleistocene and very early Holocene geological period was the presence of large mammalian species or megafauna (e.g., elephants, camels, ground sloths).

The pattern of human adaptation for this period has been reconstructed using data from other areas of North America and using distributional data on the diagnostic fluted projectile points found within the Southeast (Anderson 1990a). While some Paleoindian sites have been excavated in the Southeast (Anderson 1990b:174), only recently have South Carolina sites received attention (Anderson et al. 1992). The data from surface finds of Paleoindian points seem to indicate that cultures of this period were focused along major river drainages, especially in terrace locations (Anderson and Logan 1981:13; Goodyear 1979; Goodyear et al. 1989; Michie 1977). If the pattern from other areas of the country holds true in South Carolina, then the adaptation was one of broad range, high-mobility hunting and gathering with a possible focus on megafauna exploitation (Gardner 1974).

Early Archaic Period (8000 - 6000 BC). The Early Archaic period corresponds to the adaptation of native groups to Holocene conditions. The environment in coastal South Carolina during this period was still colder and moister than at present, but an oak-hickory forest was establishing itself on the Coastal Plain (Watts 1970, 1980; Whitehead 1965, 1973). The megafauna of the Pleistocene became extinct very early in this period, and a more typically modern woodland flora and fauna were established. Early Archaic adaptations in the South Carolina Lower Coastal Plain are not clear, as Anderson and Logan (1981:13) report:

> At the present, very little is known about Early Archaic site distribution, although there is some suggestion that sites tend to occur along river terraces, with a decrease in occurrence away from this zone.

Early Archaic finds in the Lower Coastal Plain typically are corner- or side-notched projectile points, determined to be Early Archaic through excavation of sites in other areas of the Southeast (Chapman 1977; Claggett and Cable 1982; Coe 1964).

Anderson and Hanson (1988) offer a model of seasonal mobility for Early Archaic groups in the Southeast. This model posits macrobands of 500-1,500 people in the greater southeastern North America. The South Atlantic Macroband is defined in coastal Georgia, South Carolina, and North Carolina. Smaller bands of 50-150 people are conjectured to have occupied each of eight major drainage systems. Each band is assumed to occupy a 75-mile wide foraging zone extending out from the main channels of these rivers.

Middle Archaic and Preceramic Late Archaic Period (6000 - 2500 BC). The trends initiated in the Early Archaic, i.e., increased population and adaptation to local environments, continued through the Middle Archaic and Preceramic Late Archaic. Climatically, the project area was still warming, and an oak-hickory forest dominated the coast until ca. 2000 BC, when pines became more prevalent (Watts 1970, 1980). Stemmed projectile points and ground stone artifacts characterize this period, with sites increasing in size and density throughout the period.

Blanton and Sassaman (1989) review the archaeological literature on the Middle Archaic period in South Carolina. They document an increased simplification of lithic technology through this period, with increased use of expedient, situational tools. Furthermore, they argue that the use of local lithic raw materials is characteristic of the Middle Archaic and Preceramic Late Archaic periods. Blanton and Sassaman (1989:68) conclude, “the data at hand suggest that Middle Archaic populations resorted to a pattern of adaptive flexibility as a response to the conditions.” Sassaman et al. (1990:310) further this interpretation:

> Based on the negative evidence, a model of highly mobile, co-resident groups, subsisting on a generalized diet, and employing non-intensive technological means of food procurement and processing seems appropriate.

The Preceramic Late Archaic period saw an increase in interregional exchange, and an increase
Early Woodland Period (1500 - 200 BC). In the Early Woodland period, the region was apparently an area of interaction between widespread ceramic decorative and manufacturing traditions. The paddle stamping tradition dominated the decorative tradition to the south, and fabric impressing and cord marking dominated to the north and west (Blanton et al. 1986; Caldwell 1958; Espenshade and Brockington 1989).

The subsistence and settlement pattern of the Early Woodland period suggests population expansion and the movement of groups into areas minimally used in the earlier periods. Early and Middle Woodland sites are the most common on the South Carolina coast and generally consist of shell middens near tidal marshes, along with ceramic and lithic scatters in a variety of other environmental zones. It appears that group organization during this period was based on the semi-permanent occupation of shell midden sites, with the short-term use of interior coastal strand sites.

Ceramic Late Archaic Period (2500 - 1000 BC). By the end of the Late Archaic period, two developments occurred that changed human lifeways on the South Carolina Coastal Plain. First, sea level rose to within three feet of present levels, and the extensive estuaries now present were established (Colquhoun et al. 1981). These estuaries were a reliable source of shellfish. The second major development was the invention or adoption of pottery on the South Carolina coast. In coastal South Carolina, the earliest pottery is the fiber-tempered Stallings series and the fine to medium sand-tempered Thom’s Creek series. Stallings ceramics generally are plain but may display punctations, incising, finger pinching, and simple stamping. Thom’s Creek surface decorations include plain, incised, simple stamped, and a variety of punctations (Trinkley 1980).

Ceramic Late Archaic occupations are most prevalent and conspicuous in coastal areas of the Southeast due to their association with the archaeologically-documented use of shellfish. In addition to the impressive shell ring sites of coastal South Carolina and Georgia (Griffin 1945; Hemmings 1970; Waring 1968), small shell middens apparently derived from single households, shell-less ceramic scatters on the interior Coastal Plain, ephemeral ceramic scatters throughout the Coastal Plain, and large base camp/village sites in the Fall Line region (e.g., the Thom’s Creek site [Griffin 1945]) also are common.

Although Stallings ceramics have been identified from Florida to North Carolina, they are most common on the South Carolina Coastal Plain between the Savannah and the Santee Rivers (Sassaman 1993:17). Similarly, Anderson (1975) notes few sites with Stallings ceramics in the Pee Dee drainage. A much wider distribution of the longer-lived Thom’s Creek ceramics is indicated by Sassaman (1993:17). These ceramics occur from the Altamaha River in Georgia northward to the Pee Dee drainage.

Ceramic Late Archaic occupations are most prevalent and conspicuous in coastal areas of the Southeast due to their association with the archaeologically-documented use of shellfish. In addition to the impressive shell ring sites of coastal South Carolina and Georgia (Griffin 1945; Hemmings 1970; Waring 1968), small shell middens apparently derived from single households, shell-less ceramic scatters on the interior Coastal Plain, ephemeral ceramic scatters throughout the Coastal Plain, and large base camp/village sites in the Fall Line region (e.g., the Thom’s Creek site [Griffin 1945]) also are common.

Although Stallings ceramics have been identified from Florida to North Carolina, they are most common on the South Carolina Coastal Plain between the Savannah and the Santee Rivers (Sassaman 1993:17). Similarly, Anderson (1975) notes few sites with Stallings ceramics in the Pee Dee drainage. A much wider distribution of the longer-lived Thom’s Creek ceramics is indicated by Sassaman (1993:17). These ceramics occur from the Altamaha River in Georgia northward to the Pee Dee drainage.

Middle Woodland Period (200 BC - AD 500). The extreme sea level fluctuations marking the Ceramic Late Archaic and Early Woodland periods ceased during the Middle Woodland period. The Middle Woodland period began as sea level was rising from a significant low stand at 300 BC; for most of the period the sea level remained within three feet of current levels (Brooks et al. 1989). The comments of Brooks et al. (1989:95) are pertinent in describing the changes in settlement patterning:

It is apparent that a generally rising sea level, and corresponding estuarine expansion, caused an increased dispersion of some resources (e.g., small inter-tidal oyster beds in the expanding tidal creek network ...). This hypothesized change in the structure of the subsistence resource base may partially explain why these sites tend to be correspondingly smaller, more numerous, and more dispersed through time.

The present data from the region suggest seasonal mobility, with certain locations revisited on a regular basis (e.g., 38GE46 [Espenshade and Brockington 1989]). Subsistence remains indicate that oysters and estuarine fish were major faunal...
The Middle Woodland period witnessed increased regional interaction and saw the incorporation of extralocal ceramic decorative modes into the established Deptford technological tradition. As Caldwell (1958) first suggested, the period apparently saw the expansion and subsequent interaction of groups of different regional traditions (Espenshade 1986, 1990).

The Deptford II phase (200 BC - AD 200) saw the continued production of Deptford Check Stamped and Deptford Simple Stamped pottery. In addition, pottery of the Hanover/Wilmington (grog tempered with fabric impressed or cord marked surfaces) and Yadkin (coarse to granular crushed quartz temper) series appear during this phase. These types are only minimally represented on sites of this phase, with Deptford wares continuing to be dominant. In the Deptford III phase (AD 200 - 500), the cord marked and fabric impressed decorative modes of the Northern and Middle Eastern traditions begin to be produced on the established Deptford technological tradition.

Late Woodland Period (AD 500 - 1000). The nature of Late Woodland period adaptation in the region is unclear due to a general lack of excavations of Late Woodland components, but Trinkley (1989:84) offers this summary:

In many respects the South Carolina Late Woodland may be characterized as a continuation of previous Middle Woodland cultural assemblages. While outside the Carolinas there were major cultural changes, such as the continued development and elaboration of agriculture, the Carolina groups settled into a lifeway not appreciably different from that observed for the past 500 to 700 years.

The Late Woodland period represents the most stable prehistoric period in terms of sea level change, with sea level for the entire period between 1.3 and two feet below present high marsh surface (bphms) (Brooks et al. 1989). It would be expected that this general stability in climate and sea level would result in a well-entrenched settlement pattern, but the data are not available to address this hypothesis.

In fact, the recognition/interpretation of Late Woodland adaptations in the region has been somewhat hindered by past typological problems. Overall, the Late Woodland is noteworthy for its lack of check stamped pottery. Anderson et al. (1982) define two phases for the lower Santee Valley: McClellanville (AD 500 - 700) and Santee I (AD 700 - 900). The McClellanville phase saw the continued production of Deptford Cord Marked, Deptford Fabric Impressed, and Wilmington Fabric Impressed pottery with the introduction of medium to fine sand-tempered McClellanville Cord Marked and Fabric Impressed types.

The Santee I phase (AD 700 - 900) is characterized by the same pottery produced in the preceding phase, with the notable addition of Santee Simple Stamped pottery. The Santee Simple Stamped type (fine to medium sand aplastics) is overwhelmingly dominant on sites of this phase, with the other types only minimally represented.

A third Late Woodland phase is suggested by Poplin et al. (1993) following their investigations at the Buck Hall site (38CH644). Santee II, originally defined as Early Mississippian by Anderson et al. (1982), includes high frequencies of Santee Simple Stamped as well as McClellanville types and Wilmington Cord Marked; Deptford Cord Marked ceramics are no longer present.

Early Mississippian Period (AD 1000 - 1250). In much of the Southeast, the Mississippian period was a time of major mound ceremonialism, regional redistribution of goods, chiefdoms, and maize horticulture as a major subsistence activity. It is unclear how early and to what extent similar developments occurred in the Georgetown County region. The presence of sand-tempered complicated stamped ceramics has been employed in the Southeast as an indicator of Mississippian period occupations. The date of the appearance of complicated stamped ceramics in the South Carolina Coastal Plain is unclear at present. Poplin et al. (1993) identified Early Mississippian Savannah var. Jeremy complicated stamped wares at the Buck Hall Site (38CH644) that may date from 100-200 years prior to AD 1100.
Simple stamped, cord marked, and check stamped pottery were not produced in this period. In the Wateree Valley, two phases are identified: McDowell (AD 1350 - 1450) and Mulberry (AD 1450 - 1550). McDowell phase complicated stamped designs continue to employ fillet crosses, with larger and bolder designs more common. Vessel rims are most commonly appliqued strips. The Mulberry phase is marked by the addition of incised ceramics. Southern (1996) excavated a Late Mississippian site on the Tidewater Tract on the Little River in northern Horry County. Poplin and Hill (1994) recovered complicated stamped sherds from the Big Landing Tract on the Little River as well.

3.3.2 The Contact Era
This period is defined by the appearance of the first European explorers in the region, the De Soto expedition of 1542, and the intensive colonial settlement that occurred following the establishment of Charles Towne in 1670 at the mouth of the Cooper River. Native American populations were decimated as a result of European introduced diseases, slave raiding, and ongoing warfare between groups (Dobyns 1983; Ramenofsky 1982; Smith 1984). The regional chiefdoms characteristic of the Late Mississippian period continued to function during the early portion of this period (Anderson 1985), but declining population apparently resulted in the development of many small politically- and socially-autonomous groups in coastal South Carolina (Waddell 1980).

Late Mississippian Period (AD 1250 - 1550). During this period, the regional chiefdoms apparently realigned, shifting away from the Savannah River centers of the earlier periods to those located in the Oconee River basin and the Wateree-Congaree basin. This period marks the height of the regional chiefdoms, with agricultural production providing a large portion of the diet of the population in and around the mound centers. As in the Early Mississippian period, the project area apparently lacked any mound centers. The region appears to have been well removed from the core of Cofitachequi (near Camden), the seat of the principal chiefdom in interior South Carolina (Anderson 1989; DePratter 1989). At least one author (Anderson 1986) places coastal Georgetown County within the boundaries of the chiefdom of Cofitachequi, although DePratter (1989:150) feels that the extension of the chiefdom’s boundaries to the coast is questionable.

Along the central South Carolina coast, Pee Dee Complicated Stamped and Mississippian Plain ceramics mark the Late Mississippian Pee Dee phase. Savannah Complicated Stamped ceramics first appear in the lower Savannah River Valley around AD 900 (Crook 1986:36). DePratter and Judge (1990) developed a Mississippian sequence for the Wateree Valley to the west that begins with the Belmont Neck phase (AD 1200 - 1250). This marks the first appearance of complicated stamped ceramics in this interior portion of the Coastal Plain of South Carolina. Thus, the beginning of Mississippian cultures in the region remains unclear.

In any event, sites associated with Mississippian occupations in the coastal region include large shell middens, sites with multiple single household shell middens, and multiple small shell middens. The presence of small numbers of complicated stamped sherds in sites with earlier Woodland occupations also suggests that Mississippian subsistence strategies were directed toward many of the same resources utilized during the preceding periods. By the end of the Early Mississippian, populations had increased along the major river drainages. Extensive use of the flood plains of the major rivers for horticulture undoubtedly occurred, and the hierarchical societies of the Late Mississippian and Contact periods were undoubtedly in place.
Waccamaw migrated southward from North Carolina, where they were called the Woccon (Trinkley 1983). Specific accounts of the Winyah and the Waccamaw, who inhabited the area of modern Georgetown County, are summarized by Waddell (1980). It appears that both groups included horticultural production within their seasonal round but did not have permanent, year-round villages.

At the time of the arrival of early European arrival, the region was occupied by numerous Indian tribes, many of whom were probably associated with the Santee tribe that may have occupied the eastern Williamsburg County area (Waddell 1980:26). The Waccamaw and the Cape Fear tribes probably ranged northward from their home along the Waccamaw River and the lower reaches of the Pee Dee into the coastal portions of Georgetown County (Swanton 1952:100-101). The Cape Fear lived along the Cape Fear River in North Carolina during the sixteenth and seventeenth centuries. They presumably were related to the Waccamaw and other Siouan groups in the region, and they apparently sold lands along the south shore of the Cape Fear River in Brunswick County, North Carolina, in 1665 to English settlers (Swanton 1952:75). This settlement was abandoned prior to the establishment of Charles Towne in 1670. These past inhabitants subsisted through maize-based agriculture, fishing, hunting, and gathering wild plants (Brooks and Canouts 1984:12, 13). By the first quarter of the eighteenth century, all of the native groups in the region were destroyed, displaced, or removed (some at their own request, see Swanton 1952:75) from the project area, although isolated individuals or families remained into the nineteenth century.

3.3.3 The Post-Contact Era

The earliest European attempt to settle on the Atlantic coast of North America occurred in the 1520s. Researchers (e.g., Quattlebaum 1955) believe that Lucas Vasquez De Alwyon attempted to settle somewhere between the Cape Fear and the Santee Rivers in 1526, but the evidence is equivocal (Hoffman 1990). The Spanish settled at Santa Elena on Parris Island near Beaufort in the 1560s-1580s, although Europeans did not arrive on a permanent basis until the late seventeenth century (Wallace 1951). English settlers made three attempts in the 1660s to establish settlements along the Cape Fear River to the north; none were successful (Swanton 1952:75). Finally, the establishment of Charles Towne on Albemarle Point in 1670 represented the first permanent European settlement on the South Carolina coast.

The establishment of this British settlement, later renamed Charleston, reflected the increasing dominance of England in European trade and political developments, and its desire to participate fully in the exploitation of the wealth and resources of the New World. Charleston became the hub for traders and settlers entering the newly-established Carolinas Colony, and for the passage of goods and raw materials to English markets. Farms and plantations quickly spread from the Ashley-Cooper estuary to neighboring sections of the coast, particularly Port Royal Sound to the south and Winyah Bay to the north.

During the seventeenth century, settlement was discouraged above the Santee River. However, Indian traders, trappers, and particularly French Huguenots began to filter into this northeastern area of the colony. By 1705, a number of influential persons in Charleston received land grants in the area. European activities in the area during the late seventeenth and early eighteenth centuries focused on trade with the Indians. The Waccamaw and the Winyah represented the major aboriginal groups in the Winyah Bay area in the early eighteenth century, with a population estimated at 900. The Winyah had one village with a population of just over 100 people (Swanton 1946:207).

The project tract is located in the Anderson Township of Williamsburg County. This area was part of Prince Frederick Winyaw Parish in Craven County. Eighteenth-century settlements in the Prince Frederick Winyaw Parish were concentrated along the Black and Santee Rivers. Many of the early settlements occurred in the area of the natural crossings of the Black River at Kingstree and the Santee at Murray's Ferry, west and southwest of the project tract. Settlements between John's Swamp Creek and Spring Gulley Creek, two subsidiary creeks of the Black River that generally frame the project tract area, likely began in the mid-1700s. For example, Samuel Jones operated a cattle ranch in the Spring Gulley Creek area as early as 1746 (South Carolina State Miscellaneous Records Books 2G:156).
After the American Revolution, part of Prince Frederick Winyaw Parish became Georgetown District, and then Williamsburg District in 1804 (Stauffer 1994:10, 13). The area became more intensely occupied with Europeans and enslaved Africans. The State of South Carolina issued a number of grants to settlers along Johnsons Swamp Creek, south of the Georgetown-Kingstree Road in the general project area (South Carolina State Plat Book [SCSPB] 26:251, 28:6, and 34:290). However, the state issued no grants in the project area until the mid-nineteenth century since the swampy region attracted few new settlers. The 1826 Mills’ Atlas reported that John Kelty had a sizable settlement southwest of the project tract along the road from Lenude’s Ferry to modern-day Trio (Mills 1980: Williamsburg District). Another settlement owned by W. B. Lester was located to the southeast of the project tract, near the Williamsburg-Georgetown district line. The Mills’ Atlas also reported a number of settlers on the south side of the Georgetown-Kingstree Road (modern-day US Route 521). However, the Mills’ Atlas shows the area of the project tract as vacant.

From at least 1850, the project area has been known as the Anderson Township section of Williamsburg County. In 1850, Miles Norton, John J. Moore, Abraham Moore, James (Jim) Rowell, and William White obtained land grants in the project tract area (SCSPB 43:82, 86, 87, 88, and 89). Figure 3.4 shows the approximate location of the grants in relation to the project tract. Development in the area continued to be sparse, and the 1860 US Census records show that B. Norton, John J. Moore, W. S. Camlin and W. B. Lester were living in the general vicinity of the project tract, though the tract was apparently unoccupied (US Census of 1860, South Carolina, Williamsburg District, Anderson Township). Williamsburg District became Williamsburg County in 1868 (Stauffer 1994:15).

Little development occurred in the project area until the early 1880s. In 1881, the Georgetown and Lanes Railroad Company was incorporated in South Carolina and the firm drove a line west from Georgetown to Lanes, South Carolina where it intersected with the North Eastern Railroad line from Charleston (Fetters 1990:45). The Georgetown and Lanes Railroad reverted to receivership in 1885 and was sold to C. O. Witte who re-chartered the line as the Georgetown and Western Railroad (GWRR) in 1886 (Fetters 1990:47). The line became a primary source of supply of timber for several small lumber companies in Georgetown, and after 1899 the larger Atlantic Coast Lumber Company (ACLC). By the end of the first decade of the twentieth century, scores of logging trains were pouring into the large ACLC mill using the GWRR line (Fetters 1990:48-49). Local landowners harvested timber for the lumber company off the vast stretches of pinelands in the region, including the project tract area. As a result of the company expansion, two small communities located along the GWRR line, Rosemary and Harper, were united into the town of Andrews in 1912. The community contained a roundhouse and repair shops for the rail line and was named for W. H. Andrews, the superintendent of the GWRR and the field operations of the ACLC (Fetters 1990:51).

3.4 Brief History of the RDA Mine Tract

The 803-acre RDA Mine tract is located north of Seaboard Road (see Figure 1.2). Red Mountain Timber, LLC acquired the tract in a series of transactions between 2006 and 2009. The tract was originally granted to several planters in the 1850s (see Figure 3.4). Short-staple cotton was the region’s primary cash crop in the second half of the nineteenth century and into the first two decades of the twentieth century. Cattle and timber were also cash products of the land.

In the early twentieth century, the boll weevil destroyed much of Williamsburg’s cotton production and farmers converted to tobacco, corn, soybeans, livestock, and other grains (Ward et al. 1989:1-2). Between 1941 and 1961, International Paper Company [IPC] purchased the lands associated with the tract from local landowners (WCDB A34:406, A54:88, A49:581, A64:306, and A64:396). In 1936, IPC acquired the Georgetown facility of ACLC and built a large kraft-paper plant there. According to company history, by 1942 the plant was the largest kraft-paper plant in the world (South Carolina Information Highway Website 2016). The company used the tract for more than 50 years, planting most of it in loblolly pine. In 1998, the company conveyed
Figure 3.4 The project area with the approximate location of the state grants and the project tract superimposed (SCSPB 43:82, 86, 87, 88, and 89).
some of the project tract lands to Sustainable Forests, LLC. The current owner obtained the land from Sustainable Forests and IP Timberlands Operating Company, LTD., a subsidiary of IPC over a three-year period beginning in 2006 (WCDB A616:57, A617:01, 41:01, and 142:01).
4.0 Results of the Survey

Brockington completed an intensive cultural resources survey to identify and assess all cultural resources in the 803-acre RDA Mine project tract. During the survey, we identified one new archaeological site (38WG185), and two isolated artifact finds. A description of each of these cultural resources follows.

4.1 Site 38WG185

Cultural Affiliation – Early/Late Archaic to Middle Woodland
Site Type – Ceramic and lithic scatter
Site Dimensions – 150 m north-south by 60 m east-west
Soil Type – Eunola loamy sand
Elevation – 13 m amsl
Nearest Water Source – Black River
Present Vegetation – Mixed planted pine and open field
NRHP Recommendation – Eligible
Management Recommendations – Preserve-in place or mitigation

Site 38WG185 is a subsurface scatter of Pre-Contact artifacts, located in the northeastern portion of the project tract (see Figure 1.1). The site measures approximately 150-by-60 m and encompasses a small sand ridge located between two isolated wetlands. The majority of the vegetation around Site 38WG185 consists of low-lying grasses and shrubs that have grown post-harvest of the once surrounding planted pine forest. Site 38WG185’s boundary is defined by negative shovel tests to the north and south and by saturated or negative shovel tests to the east and west. Figure 4.1 presents a plan of 38WG185.

Investigators excavated a total of 87 shovel tests in and around the site; 33 of these tests were positive. Shovel tests revealed a 10YR 5/2 grayish brown (0-20 cm bs) underlain by a 10YR 6/4 light yellowish brown (20-60 cm bs). Artifacts were generally found within the upper 50 cm of soil in all positive shovel tests. Positive shovel tests were primarily located along inside and on both sides of the dirt road that traverses the highest point of the sand ridge.

Investigators recovered a total of 97 Pre-Contact ceramic and lithic artifacts from the shovel tests at 38WG185. A total of 13 temporally diagnostic ceramics were found that display examples of Cord Marked and Simple-Stamped sand-tempered pottery associated with the Deptford Culture (Early to Middle Woodland Period). The remaining ceramics are representative of temporally non-diagnostic plain undecorated sand tempered sherds (n=18) and heavily eroded and residual sand tempered sherds (n=13). Lithic artifacts consist of quartzite, translucent quartz, and metavolcanic tools and flaked debitage. A total of five projectile point tools were recovered that include one quartzite Kirk Corner Notched point (Early Archaic Period), one quartzite Brewerton point (Late Archaic Period), one base and midsection of a quartzite Gary point (Late Archaic/Middle Woodland), and two translucent quartz projectile points (Early Woodland Period). Other tools include a translucent quartz biface (distal end) and a translucent quartz core fragment. Lithic flakes include 11 metavolcanic fragments, 23 quartzite fragments, eight translucent quartz fragments, one quartzite shatter, and one translucent quartz shatter. Lastly, two fragments of fire-cracked rock (FCR) were recovered. Table 4.1 presents the total amount of material recovered during shovel testing at 38WG185.

Test Unit Investigation at 38WG185

Test unit placement was based on the general location that yielded the most informative deposit associated with the 7.5 m and 15 m delineations of Site 38WG185. One 50-by-50-cm square unit was placed near the positive shovel test (500N/500E) located 5 m east of the boundary of the dirt access road. Eight 10-cm levels were excavated in this test unit to a depth of 80 cm bs. During excavation, no cultural features were identified.

Soils were consistent with shovel test results between 0-60 cm bs showing four distinct soil zones. These consisted of a 10YR 5/2 grayish brown semi-compact fine grained sand topsoil (0-15 cm bs) followed by two zones of 10YR 6/4 light yellowish brown semi-compact fine grained sand (15-35 cm bs) and 10YR 6/6 brownish yellow semi-compact fine grained sand. Lastly, a zone of 10YR 5/8 yellowish brown loose fine grained sand sterile subsoil (60-80 cm bs) was encountered. The upper gray-brown
Figure 4.1 Plan of Site 38WG185.
The horizon (0-20 cm bs) represents a layer mostly likely related to the activities associated with the construction and maintenance of the nearby dirt road and continued usage of the area for silviculture agriculture. Three distinct zones superseded the topsoils (10-60 cm bs) showed minimal signs of disturbance from these activities and produced the majority of recovered artifacts. No cultural features were identified in our test unit. Figure 4.2 shows a view and sketch of the west profile of our 50-by-50-cm test unit.

We recovered a total of 37 Pre-Contact artifacts from the 50-by-50-cm test unit. All of the artifacts were recovered from 20-60 cm bs, which generally fell within the undisturbed soil horizons beneath the plow zone. The recovered Pre-Contact sand-tempered pottery includes 24 Deptford Cord Marked sherds and one undecorated plan sherd. Lithic artifacts consist of more examples of quartzite, translucent quartz, and metavolcanic flakeddebitage. No lithic tools were recovered. Faunal and floral remains include one bone fragment and a small amount of charcoal, respectively. Table 4.2 presents the quantity of artifacts recovered by level from the 50-by-50-cm test unit.

All artifacts were recovered within the middle levels of the test unit excavation, between 20 and 60 cm bs. Excavation of this test unit was terminated after two culturally sterile levels of soil were found at 60-80 cm bs. Artifacts were concentrated between level 2 and level 3 (20-40 cm bs) and included diagnostichistoric sherds (Deptford), and the majority (72 percent) of recovered lithic flakes and fragments. This concentration of artifacts suggests a significant cultural activity during the Early-to-Middle Woodland Period. No Archaic Period artifacts were recovered in the test unit.

Table 4.1 Artifacts recovered during shovel testing at 38WG185.

<table>
<thead>
<tr>
<th>Artifact Class</th>
<th>Artifact Description</th>
<th>Affiliation</th>
<th>Count</th>
<th>Weight (grams)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prehistoric Ceramics</td>
<td>Cord Marked Body/Rim Sherd, Fine/Medium Sand Tempered</td>
<td>Deptford/Early/Middle Woodland</td>
<td>11</td>
<td>70.4</td>
</tr>
<tr>
<td></td>
<td>Simple Stamped Body Sherd, Coarse Sand Tempered</td>
<td></td>
<td>2</td>
<td>28.5</td>
</tr>
<tr>
<td></td>
<td>Plain Body Sherd, Fine/Medium Sand Tempered</td>
<td></td>
<td>18</td>
<td>144.8</td>
</tr>
<tr>
<td></td>
<td>Eroded/Residual Body Sherd, Fine/Medium Sand Tempered</td>
<td></td>
<td>13</td>
<td>36.500</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>44</td>
<td>280.200</td>
</tr>
<tr>
<td>Prehistoric Flaked Stone Tools and Debitage</td>
<td>Quartzite Projectile Point</td>
<td>Kirk Corner Notched/Early Archaic</td>
<td>1</td>
<td>6.8</td>
</tr>
<tr>
<td></td>
<td>Quartzite Projectile Point</td>
<td>Brewerton/Late Archaic</td>
<td>1</td>
<td>1.100</td>
</tr>
<tr>
<td></td>
<td>Quartzite Projectile Point (Base and Midsection)</td>
<td>Gary/Late Archaic/Middle Woodland</td>
<td>1</td>
<td>7.4</td>
</tr>
<tr>
<td></td>
<td>Translucent Quartz Projectile Point</td>
<td>Early Woodland</td>
<td>2</td>
<td>1.900</td>
</tr>
<tr>
<td></td>
<td>Translucent Quartz Biface (Distal End)</td>
<td></td>
<td>1</td>
<td>0.700</td>
</tr>
<tr>
<td></td>
<td>Translucent Quartz Core Fragment</td>
<td></td>
<td>1</td>
<td>89.1</td>
</tr>
<tr>
<td></td>
<td>Metavolcanic Flake Fragment</td>
<td></td>
<td>11</td>
<td>5.450</td>
</tr>
<tr>
<td></td>
<td>Quartzite Flake Fragment</td>
<td></td>
<td>23</td>
<td>33.9</td>
</tr>
<tr>
<td></td>
<td>Translucent Quartz Flake Fragment</td>
<td></td>
<td>8</td>
<td>3.15</td>
</tr>
<tr>
<td></td>
<td>Quartzite Shatter</td>
<td></td>
<td>1</td>
<td>1.800</td>
</tr>
<tr>
<td></td>
<td>Translucent Quartz Shatter</td>
<td></td>
<td>1</td>
<td>6.5</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>51</td>
<td>157.800</td>
</tr>
<tr>
<td>Prehistoric Other</td>
<td>FCR</td>
<td></td>
<td>2</td>
<td>22.2</td>
</tr>
<tr>
<td>Total Sum</td>
<td></td>
<td></td>
<td>97</td>
<td>460.2</td>
</tr>
</tbody>
</table>
Figure 4.2 View and west profile of the 50-by-50-cm Test Unit at 38WG185.

1. 10YR 5/2 grayish brown sand (plowzone)
2. 10YR 6/4 light yellowish brown sand
3. 10YR 6/6 brownish yellow sand
4. 10YR 5/8 yellowish brown sand

38WG185
West Profile
50x50 Test Unit

Brockington and Associates
26
Artifact Discussion
Investigators attempted to isolate specific activity areas of the site by displaying the distributions of types of artifacts across 38WG185. Isolating patterns of artifact density across portions of 38WG185 might provide the opportunity to examine how the use of space is associated with past activity area(s). Since Site 38WG185 has undergone a moderate level of modern disturbances (planted pine tree cultivation and a dirt road), investigators were also interested in seeing how much of an impact these activities have on the site's integrity.

Results of the horizontal distribution by artifact type at 38WG185 revealed a discernable pattern of Woodland Period activity areas from the combined artifact distributions (Figure 4.3). Sherd distributions were somewhat evenly dispersed in all areas, with the highest in the northern portion of the site. This is also true for the lithic material, with the highest cluster being recovered from shovel test Provenience 26. The majority of the artifacts are concentrated along the highest elevation of this low ridge, within the 13 m (43 ft) amsl elevation line (see Figure 4.1). This indicates a distinct activity area that could be assigned to one specific or multiple overlapping seasonal encampments within this location. The cluster of artifacts and lack of discernable features or refuse at 38WG185 suggests the occupations were substantial but brief, possibly during episodes of migration. In contrast, a long-term habitation would result in wider scattering of artifacts, typically found over broader river terraces.

Table 4.2 Artifacts recovered by level in the 50-by-50-cm test unit at 38WG185.

<table>
<thead>
<tr>
<th>Level</th>
<th>CM BS</th>
<th>Artifact Class</th>
<th>Artifact Description</th>
<th>Affiliation</th>
<th>Count</th>
<th>Weight (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>20-30</td>
<td>Prehistoric Flaked Stone</td>
<td>Quartzite 1/4-inch Flake Fragment</td>
<td>Early/Middle Woodland</td>
<td>1</td>
<td>0.050</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prehistoric Ceramics</td>
<td>Cord Marked Rim/Body Sherd, Fine/Medium Sand Tempered</td>
<td></td>
<td>16</td>
<td>129</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Plain Body Sherd, Fine/Medium Sand Tempered</td>
<td></td>
<td>1</td>
<td>8.6</td>
</tr>
<tr>
<td>3</td>
<td>30-40</td>
<td>Prehistoric Flaked Stone</td>
<td>Quartzite 1/4-inch Flake Fragment</td>
<td>Early/Middle Woodland</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Translucent Quartz 1/4-inch Flake Fragment</td>
<td></td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prehistoric Ceramics</td>
<td>Cord Marked Body Sherd, Fine/Medium Sand Tempered</td>
<td></td>
<td>7</td>
<td>47.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flora</td>
<td>Charcoal</td>
<td></td>
<td>1</td>
<td>0.600</td>
</tr>
<tr>
<td>4</td>
<td>40-50</td>
<td>Prehistoric Flaked Stone</td>
<td>Quartzite 1/2-inch Flake Fragment</td>
<td>Early/Middle Woodland</td>
<td>1</td>
<td>3.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Quartzite 1/4-inch Flake Fragment</td>
<td></td>
<td>1</td>
<td>0.300</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Metavolcanic 1/4-inch Flake Fragment</td>
<td></td>
<td>1</td>
<td>0.100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Translucent Quartz 1/4-inch Flake Fragment</td>
<td></td>
<td>1</td>
<td>0.200</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prehistoric Ceramics</td>
<td>Cord Marked Rim Sherd, Fine/Medium Sand Tempered</td>
<td></td>
<td>1</td>
<td>0.800</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fauna</td>
<td>Bone</td>
<td></td>
<td>1</td>
<td>0.050</td>
</tr>
<tr>
<td>5</td>
<td>50-60</td>
<td>Prehistoric Flaked Stone</td>
<td>Quartzite 1/4-inch Flake Fragment</td>
<td></td>
<td>1</td>
<td>0.400</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Metavolcanic 1/4-inch Flake Fragment</td>
<td></td>
<td>1</td>
<td>0.050</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td>37</td>
</tr>
</tbody>
</table>
Figure 4.3 Distribution of artifacts at Site 38WG185.
Isolating this inter-site pattern also illustrates the horizontal integrity for 38WG185 is in a good state of preservation, even within the disturbed context of the ground surface along the dirt road (see Figure 4.2). This level of preservation also indicates that this isolated ridge suffered minimal disturbance by man-made or natural processes that have occurred over time across 38WG185.

NRHP Recommendation

Pre-Contact sites are evaluated under Criterion D, which requires an archaeological site to hold information important to history or prehistory (Savage and Pope 1998). Site 38WG185 contains a multi-component archaeological footprint from the Archaic through the Early/Middle Woodland Periods. Since the Archaic Period occupations within Site 38WG185, we posit that the site has the greatest potential to yield information regarding the lifeways associated the Deptford Culture.

According to the National Park Service, Deptford in the Southeast, particularly for the coast and coastal plains of Georgia and the Carolinas, appears to have subsistence strategies that follow a transhumant (or seasonal) pattern of winter shellfish camps on the coast, then inland occupation during the spring and summer for deer hunting, and fall for nut gathering (Southeastern Archaeological Center Website 2017). Site 38WG185 produced a significant quantity of the Early-Middle Woodland Period ceramics and lithic tools and debitage that indicates that in addition to domestic activity, the production and maintenance of stone tools occurred as well. These activities suggest the site was primarily occupied for the exploitations of the resources found in the nearby wetlands and inland forest. The well-preserved horizontal distribution suggests the site has been had minimal disturbance by past land management activities and has the potential to yield significant information regarding these types of activities. More specifically, the recovery of large numbers of artifacts, particularly in the northern portion of the site, suggests the presence of artifact clusters and/or cultural features that could further our comprehension of Woodland Period sites. Additionally, the distribution of ceramic and lithic artifacts across the site indicates discrete intra-site patterns that might be associated with earlier occupations during the Archaic Period. Therefore, it is likely that additional investigation of 38WG185 will produce important information about the Pre-Contact use of the site and region. Additional archaeological investigations at 38WG185 would most likely yield further contributing information about the Early/Middle Woodland Periods. Based upon our review, we have found no other survey sample in this portion of Williamsburg County that can provide a comparable dataset of Archaic or Early/Middle/Late Woodland occupations in the inner coastal region. This scarcity of information suggests that sites like 38WG185 have a greater potential to contribute to our understanding of Native American life in this portion of the state.

Research Design

In order to evaluate an archaeological site using Criterion D, questions must be generated to further produce information that is important in reconstructing or interpreting the past activities at the site. Additional investigations should be able to provide substantial evidence that the Pre-Contact occupation at 38WG185 yields further knowledge of our understanding of seasonal resource encampments during the Archaic through the Early/Middle Woodland Periods along the Lower Coastal Plain of South Carolina. Questions regarding the multicomponent site should address site integrity, ceramic chronology, intra- and inter-site organization. Specific research questions regarding 38WG185 may include the following:

- Does the high density of Deptford pottery indicate a reflection of one or re-occurring settlement practices?
- Does the intra-site distribution between lithic tools and debitage show occupational or settlement patterning?
- Do inland sites, like 38WG185, offer inter-site subsistence and migratory strategies that can be compared with other regional Archaic or Woodland studies?
- How do smaller sites with multiple occupations, like 38WG185, contribute to our understanding of cultural sequence or settlement patterns specific in this region? And, do they contain more pertinent information than larger sites with multiple occupations?
Regional archaeological investigations, particularly in the Wambaw and Witherbee Districts of the nearby Francis Marion Forest (located approximately 15 miles southeast of Site 38WG185), have produced a significant amount of information regarding seasonal resource extraction campsites during the Early/Middle Woodland Period (Cable et al. 1993; Gresham and Price 1991; Poplin and Baluha 2012; Southerlin et al. 2010; Wise and Morgan 1992). The majority of sites are identified on river or stream terrace landforms; while fewer sites, like 38WG185, are found inland, on isolated elevation in floodplains or nearby bays of a major waterway. Eligible sites, like 38BK1136 found on broad flat forested lands near isolated wetlands, have yielded significant information despite only producing a small scatters of Woodland Period artifacts. Site 38BK1136’s significance is based primarily on lithic reduction activities, much like 38WG185, where the majority of deposits were within an intact cultural zone beneath a designated plowzone (Gresham and Price 1991: 40). Other sites, like Site 38BK2417 and 38BK2404, produced a large subsurface scatter of prehistoric ceramic artifacts in deep stratigraphic zones over broad sand ridges that overlook wetlands. Artifacts at 38BK2417 were found clustered, indicating intra-site patterning that produced evidence of domestic and lithic reduction activities (Poplin and Baluha 2012:62). Artifacts recovered at 38BK2404 yielded diagnostics from fairly deep soils, suggesting the potential for intact stratigraphy, representing at least four different occupational zones illustrating migratory patterns of seasonalityencampments across these types of landforms through broad episodes of time during the Pre-Contact period (Southernlin 2011:186). Lastly, smaller sites like 38BK1446 and 38BK1448, located on eroded but terraced ridges overlooking smaller waterways, have produced less artifact densities but have yielded significant evidence of subsistence during Woodland Period occupations with the recovery of nutshells and mussel shell fragments (Cable 1993:102-105).

Site 38WG185 is located on a low sand ridge overlooking the floodplain delta of Martin Creek, an area that would have provided diverse resources nearby. The sand ridge overlooking an inland water resource would have been an optimal area for resource extraction. However, only general concepts concerning site function and temporal occupation can be identified from this Phase I survey. According to the horizontal and vertical distribution data, 38WG185 represents a small occupational area of multiple habitations during the Archaic through the Early/Middle Woodland Periods. Based upon the recovery of lithic and ceramics artifacts, it can be speculated that these occupations were focused upon resource collecting and hunting. The absence of features and heavier concentrations of ceramics reveals that settlement and subsistence activities were brief and occupations were mostly small bands of people that may have migrated seasonally or during traversing migrations.

Management Recommendations
Archaeological research has shown that Site 38WG185 contains a multi-component archaeological footprint from the Archaic through the Early/Middle Woodland Periods. We argue that 38WG185 has primarily yielded and will yield important information pertaining to the lifeways associated the Deptford Culture. We recommend Site 38WG185 eligible for the NRHP under Criteria D. This site exhibits distinct archaeological details and artifact integrity and has the potential to contribute to a broader comprehension of the Archaic and Early/Middle Woodland Period along the Coastal Plain of Lower South Carolina. Avoidance of Site 38WG185 is recommended.

The plans for development of the project tract into a limestone mine have been designed to avoid adversely affecting the site. The current preservation strategy involves a preservation-in-place plan that will include a 50-foot buffer around the site, and perimeter fencing during mining activities within 1,000 feet of the site. The green-spaced area around site 38WG185 will provide protection from any land altering activities. We recommend these management practices will have No Adverse Effect to Site 38WG185. This preservation plan should be prescribed as a stipulation in the SCDHEC mining permit.
4.2 Isolated Artifact Finds
Investigators identified two isolated finds (Isolates 1-2) during the cultural resources survey of the RDA Mine Tract (see Figure 1.1). Investigators excavated additional shovel tests at 15-m intervals around the initial find in an attempt to recover additional artifacts and define the artifact cluster. Isolate 1, recovered from the surface, is a Pre-Contact Metavolcanic Projectile Point Tool, Guilford-type (Middle Archaic). Isolate 2, recovered from 0-10 cm bs, is a small amount of artifacts (n=4) associated with a small pile of non-contextual discarded historic period trash along Jumpin Run Road. For a complete artifact inventory, see Appendix A. Due to the low frequency of material at these locales and the lack of cultural features, we recommend Isolates 1 and 2 not eligible for the NRHP. Further management consideration is not warranted.
5.0 Project Summary

During 2017, Brockington conducted a cultural resources survey of the RDA Mine Tract. During the survey, we identified one new archaeological site (38WG185) and two isolated finds (Isolates 1-2). Site 38WG185 is interpreted as a seasonal resource extraction camp during the Early/Middle Woodland Period. The distribution of ceramic and lithic artifacts across the site indicates discrete inter-site patterns associated with the Deptford Culture. Additional archaeological investigations at 38WG185 have the potential to yield additional contributing information about Pre-Contact lifeways along the Coastal Plain of Lower South Carolina. We recommend 38WG185 eligible for the NRHP under Criterion D. Isolate 1 and 2 are recommended not eligible for the NRHP. Current plans call for this resource to be preserved in place. The treatment of archaeological site 38WG185 will be through a preservation-in-place plan that will include a 50-foot buffer around the site, and perimeter fencing during mining activities within 1,000 feet of the site. The green-spaced area around site 38WG185 will provide protection from any land-altering activities. These measures will have No Adverse Effect on 38WG185.
References Cited

Anderson, David G.

Anderson, David G., Charles E. Cantley, and A. Lee Novick
1982 The Mattassee Lake Sites: Archaeological Investigations along the Lower Santee River in the Coastal Plain of South Carolina. US Department of the Interior, National Park Service, Southeast Regional Office, Atlanta, Georgia.

Anderson, David G., and Glen T. Hanson

Anderson, David G., and Patricia A. Logan

Anderson, David G., Charles E. Cantley, and A. Lee Novick
1982 The Mattassee Lake Sites: Archaeological Investigations along the Lower Santee River in the Coastal Plain of South Carolina. US Department of the Interior, National Park Service, Southeast Regional Office, Atlanta.

Anderson, David G., Kenneth E. Sassaman, and Christopher Judge (editors)

Barry, John M.
Blanton, Dennis B., and Kenneth E. Sassaman

Blanton, Dennis B., Christopher T. Espenshade, and Paul E. Brockington Jr.
1986 An Archaeological Study of 38SU83: A Yadkin Phase Site in the Upper Coastal Plain of South Carolina. Prepared for the South Carolina Department of Transportation, Columbia.

Braun, E. Lucy

Brooks, Mark J., P. A. Stone, D. J. Colquhoun, and J. G. Brown

Brooks, Mark J., and Veletta Canouts

Butler, William B.

Cable, John S., G Ishmael Willias, Cynthia Abrams, and Mary Beth Reed

Caldwell, Joseph R.

Chapman, Jefferson

Claggett, Stephen R., and John S. Cable (compilers)

Coe, Joffre L.
Colquhoun, Donald R. and Mark J. Brooks

Council of South Carolina Professional Archaeologists (COSCAPA), South Carolina State Historic Preservation Office, and South Carolina Institute of Archaeology and Anthropology

Crook, Morgan R., Jr.
1986 Mississippi Period Archaeology of the Georgia Coastal Zone. Georgia Archaeological Research Design Papers 1. Georgia Laboratory of Archaeology, University of Georgia, Athens.

DePratter, Chester B.

Dobyns, Henry F.

Drucker, Lesley M., and Susan Jackson
1984 Shell in Motion: An Archaeological Study of Minim Island National Register Site, Georgetown County, South Carolina. Carolina Archaeological Services Resources Studies Series 73. Columbia.

Espenshade, Christopher T.

1990 The Early Woodland Ceramics from the Minim Island Site (38GE46), Georgetown County, South Carolina. Paper presented at the Sixteenth Conference on South Carolina Archaeology, Columbia.

Espenshade, Christopher T., and Paul E. Brockington Jr. (compilers)
Fetters, Thomas

Gardner, William H.

Goodyear, Albert C., III

Goodyear, Albert C., III, and Glen T. Hanson (editors)

Goodyear, Albert C., III, James L. Michie, and Tommy Charles

Gregorie, Anne K.
1925 Notes on Sewee Indians and Indian Remains of Christ Church Parish, Charleston County, South Carolina. Contributions from the Charleston Museum V. Charleston, South Carolina.

Gresham, Thomas and T. Jeffrey Price

Griffin, James B.

Hemmings, E. Thomas

Hoffman, Paul E.

Howard, James D., Chester B. DePratter, and Robert W. Frey

Michie, James L.
1977 Late Pleistocene Human Occupation of South Carolina. Senior Honors Thesis, Department of Anthropology, University of South Carolina, Columbia, South Carolina.
Mills, Robert

O'Donoughue, Jason M.

Poplin, Eric C., Christopher T. Espenshade, and David C. Jones

Poplin, Eric and David Baluha
2012 Archaeological Survey of Selected Timber Stands in Part Two of the Macedonia II Analysis Area, Francis Marion National Forest, Berkeley County, South Carolina, Submitted to Francis Marion and Sumter National Forests (CRM Report 2012-07), Prepared by Brockington and Associates, Mt. Pleasant, SC.

Poplin, Eric C. and James R. Hill III

Quattlebaum, Paul

Ramenofsky, Anne P.

Sassaman, Kenneth

Sassaman, Kenneth E., Mark J. Brooks, Glen T. Hanson, and David G. Anderson

Savage, Beth L., and Sarah Dillard Pope

Smith, Marvin T.
South, Stanley

South Carolina Information Highway Website

South Carolina State Miscellaneous Records Books
1732-1981 Originals in the South Carolina Department of Archives and History, Columbia.

South Carolina State Plat Books (SCPB)
1783-1868 Unpublished plats of State of South Carolina granted lands. Originals at the South Carolina Department of Archives and History, Columbia.

Southeastern Archaeological Center Website

Southerlin, Bobby G.
1996 The Grand Strand Frontier: Late Native American Occupation at the Tidewater Site (38HR254), Horry County, South Carolina. Prepared for Tidewater Golf Club and Plantation, Little River, South Carolina.

Southerlin, Bobby, Rachel Tibbetts, Michael Keith O’Neal, Dawn Reid, and Kimberly Villemez

Stauffer, Michael E.
1994 The Formation of Counties of South Carolina. South Carolina Department of Archives and History, Columbia.

Swanton, John R.

Townsend, Jan, John H. Sprinkle Jr., and John Koernl
Trinkley, Michael

1980 *Investigations of the Woodland Period along the South Carolina Coast.* Unpublished PhD dissertation, Department of Anthropology, University of North Carolina, Chapel Hill.

United States Census Bureau
1850-1860 Population Census of Anderson Township, Williamsburg District, South Carolina. Microfilm copy at the Charleston County Public Library, Charleston.

Waddell, Eugene

Wallace, David D.
1951 *South Carolina: A Short History.* University of South Carolina Press, Columbia, South Carolina.

Ward, Bobby J., Ronald Morton, Leander Brown, Ben Stuckey, and J.J. Pitts

Waring, Antonio J., Jr.

Watts, W. A.

1980 Late Quaternary Vegetation History at White Pond on the Inner Coastal Plain of South Carolina. *Quaternary Research* 10.
Wise, Robert and Robert Morgan

Whitehead, Donald R.

Willey, Gordon R., and Philip Phillips

Williams, Mark, and Gary Shapiro (editors)

Williamsburg County, South Carolina Deed Books (WCDB)
1785-present Originals kept at the Williamsburg County Register of Deeds Office, Kingstree, SC.
Appendix A
Artifact Catalog
Artifact Catalog

Brockington and Associates, Inc. uses the following proveniençing system. Provenience 1 designates general surface collections. Numbers after the decimal point designate subsequent surface collections, or trenches. Proveniences 2 to 200 designate shovel tests. Controlled surface collections and 50 by 50 cm units are also designated by this provenience range. Proveniences 201 to 400 designate 1 by 1 m units done for testing purposes. Proveniences 401 to 600 designate excavation units (1 by 2 m, 2 by 2 m, or larger). Provenience numbers over 600 designate features. For all provenience numbers except 1, the numbers after the decimal point designate levels. Provenience X.0 is a surface collection at a shovel test or unit. X.1 designates level one, and X.2 designates level two. For example, 401.2 is Excavation Unit 401, level 2. Flotation samples are designated by a 01 added after the level. For example, 401.201 is the flotation material from Excavation Unit 401, level 2.

Table of Contents

<table>
<thead>
<tr>
<th>Site Number</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>38WG185</td>
<td>1-5</td>
</tr>
<tr>
<td>Isolates</td>
<td>5</td>
</tr>
<tr>
<td>Projectile Point Forms</td>
<td>6-8</td>
</tr>
</tbody>
</table>

Site Number: 38WG185

<table>
<thead>
<tr>
<th>Catalog #</th>
<th>Count</th>
<th>Weight (in g)</th>
<th>Artifact Description</th>
<th>Lithic Type</th>
<th>Ceramic Type</th>
<th>Temporal Range</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 . 1</td>
<td>1</td>
<td>0.2</td>
<td>Translucent Quartz 1/4 inch Flake Fragment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 . 1</td>
<td>1</td>
<td>2.9</td>
<td>Cord Marked Body Sherd, Fine/Medium Sand Tempered</td>
<td>Deptford</td>
<td>Early/Middle Woodland (1000 BC-700 AD)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 . 0</td>
<td>2</td>
<td>1.9</td>
<td>Translucent Quartz Projectile Point Tool</td>
<td>Eared Yadkin</td>
<td>Early Woodland (450 BC-250 AD)</td>
<td>Mend</td>
<td></td>
</tr>
<tr>
<td>5 . 1</td>
<td>1</td>
<td>1.2</td>
<td>Quartzite 1/4 inch Flake Fragment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 . 1</td>
<td>1</td>
<td>0.7</td>
<td>Translucent Quartz Non-Cortical Bifacial Reduction 1/4 inch Flake</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.3</td>
<td>Residual Sherd</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 . 1</td>
<td>1</td>
<td>0.9</td>
<td>Quartzite 1/4 inch Flake Fragment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site Number:</td>
<td>38WG185</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Provenience Number:</td>
<td>8 . 1</td>
<td>Shovel Test , N530, E492.5, 20-70 cmbs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1.9</td>
<td>Quartzite Retouched Flake Tool</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Provenience Number:</td>
<td>9 . 1</td>
<td>Shovel Test , N560, E492.5, 0-50 cmbs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>47</td>
<td>Plain Body Sherd, Fine/Medium Sand Tempered</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>33.2</td>
<td>Plain Body Sherd, Fine/Medium Sand Tempered</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0.4</td>
<td>Quartzite 1/4 inch Flake Fragment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Provenience Number:</td>
<td>10 . 0</td>
<td>Shovel Test , N567.5, E492.5, Surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>15.7</td>
<td>Simple Stamped Body Sherd, Coarse Sand Tempered</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0.3</td>
<td>Quartzite 1/4 inch Flake Fragment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0.8</td>
<td>Metavolcanic 1/4 inch Flake Fragment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Provenience Number:</td>
<td>11 . 1</td>
<td>Shovel Test , N440, E500, 0-50 cmbs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1.6</td>
<td>Quartzite 1/4 inch Flake Fragment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Provenience Number:</td>
<td>12 . 0</td>
<td>Shovel Test , N455, E500, Surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>11.2</td>
<td>Quartzite Non-Cortical Core Reduction 3/4 inch Flake</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Provenience Number:</td>
<td>13 . 1</td>
<td>Shovel Test , N470, E500, 20-60 cmbs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>30.9</td>
<td>Plain Body Sherd, Fine/Medium Sand Tempered</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Provenience Number:</td>
<td>14 . 1</td>
<td>Shovel Test , N477.5, E500, 20-60 cmbs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>7.8</td>
<td>Quartzite 3/4 inch Flake Fragment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>6.5</td>
<td>Translucent Quartz Shatter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>22.2</td>
<td>FCR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Provenience Number:</td>
<td>15 . 1</td>
<td>Shovel Test , N485, E500, 40-70 cmbs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0.2</td>
<td>Quartzite 1/4 inch Flake Fragment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Provenience Number:</td>
<td>16 . 1</td>
<td>Shovel Test , N492.5, E500, 0-60 cmbs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>4.8</td>
<td>Cord Marked Body Sherd, Fine/Medium Sand Tempered</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Provenience Number:</td>
<td>17 . 1</td>
<td>Shovel Test , N500, E500, 0-75 cmbs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>27.3</td>
<td>Cord Marked Body Sherd, Fine/Medium Sand Tempered</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>4.9</td>
<td>Residual Sherd</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>7.4</td>
<td>Quartzite Projectile Point Tool Base and Midsection</td>
<td>Gary</td>
<td>Late Archaic/Middle Woodland (1500 BC-100 BC)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1.1</td>
<td>Quartzite Projectile Point Tool</td>
<td>Brewerton</td>
<td>Late Archaic (2500-1500 BC)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Provenience Number</td>
<td>Catalog #</td>
<td>Count</td>
<td>Weight (in g)</td>
<td>Lithic Type</td>
<td>Ceramic Type</td>
<td>Temporal Range</td>
<td>Comments</td>
</tr>
<tr>
<td>--------------------</td>
<td>-----------</td>
<td>-------</td>
<td>---------------</td>
<td>-------------</td>
<td>--------------</td>
<td>----------------</td>
<td>----------</td>
</tr>
<tr>
<td>18 . 1</td>
<td>18</td>
<td>5</td>
<td>0.3</td>
<td>Translucent Quartz 1/4 inch Flake Fragment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shovel Test , N507.5, E500, 0-60 cmbs</td>
<td>1</td>
<td>1</td>
<td>0.7</td>
<td>Translucent Quartz Biface Tool Distal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1.2</td>
<td></td>
<td>Translucent Quartz 1/4 inch Flake Fragment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>0.3</td>
<td></td>
<td>Quartzite 1/4 inch Flake Fragment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1.8</td>
<td></td>
<td>Quartzite Shatter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>2.8</td>
<td></td>
<td>Metavolcanic 1/4 inch Flake Fragment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19 . 1</td>
<td>19</td>
<td>1</td>
<td>0.1</td>
<td>Translucent Quartz Non-Cortical 1/4 inch Thinning Flake</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shovel Test , N515, E500, 0-60 cmbs</td>
<td>1</td>
<td>1</td>
<td>0.1</td>
<td>Metavolcanic 1/4 inch Flake Fragment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 . 1</td>
<td>20</td>
<td>1</td>
<td>3.5</td>
<td>Cord Marked Rim Sherd, Fine/Medium Sand Tempered</td>
<td>Deptford</td>
<td>Early/Middle Woodland (1000 BC-700 AD)</td>
<td></td>
</tr>
<tr>
<td>Shovel Test , N522.5, E500, 0-60 cmbs</td>
<td>2</td>
<td>1</td>
<td>3.1</td>
<td>Plain Body Sherd, Fine/Medium Sand Tempered</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2.6</td>
<td></td>
<td>Residual Sherd</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0.05</td>
<td></td>
<td>Translucent Quartz 1/4 inch Flake Fragment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1.6</td>
<td></td>
<td>Quartzite Non-Cortical Bifacial Reduction 1/2 inch Flake</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1.4</td>
<td></td>
<td>Quartzite 1/4 inch Flake Fragment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21 . 1</td>
<td>21</td>
<td>1</td>
<td>0.3</td>
<td>Quartzite 1/4 inch Flake Fragment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shovel Test , N530, E500, 0-60 cmbs</td>
<td>1</td>
<td>1</td>
<td>3.9</td>
<td>Plain Body Sherd, Fine/Medium Sand Tempered</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>12.3</td>
<td></td>
<td>Plain Body Sherd, Fine/Medium Sand Tempered</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 . 1</td>
<td>22</td>
<td>1</td>
<td>12.3</td>
<td>Plain Body Sherd, Fine/Medium Sand Tempered</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shovel Test , N537.5, E500, 0-60 cmbs</td>
<td>2</td>
<td>1</td>
<td>12.8</td>
<td>Simple Stamped Body Sherd, Coarse Sand Tempered</td>
<td>Deptford</td>
<td>Early/Middle Woodland (1000 BC-700 AD)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0.7</td>
<td></td>
<td>Quartzite Non-Cortical Core Reduction 1/4 inch Flake</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>1.1</td>
<td></td>
<td>Quartzite 1/4 inch Flake Fragment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0.5</td>
<td></td>
<td>Metavolcanic Non-Cortical Bifacial Reduction 1/4 inch Flake</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>0.4</td>
<td></td>
<td>Metavolcanic 1/4 inch Flake Fragment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23 . 1</td>
<td>23</td>
<td>1</td>
<td>5.9</td>
<td>Cord Marked Rim Sherd, Fine/Medium Sand Tempered</td>
<td>Deptford</td>
<td>Early/Middle Woodland (1000 BC-700 AD)</td>
<td></td>
</tr>
<tr>
<td>Shovel Test , N552.5, E500, 10-60 cmbs</td>
<td>1</td>
<td>1</td>
<td>5.9</td>
<td>Cord Marked Rim Sherd, Fine/Medium Sand Tempered</td>
<td>Deptford</td>
<td>Early/Middle Woodland (1000 BC-700 AD)</td>
<td></td>
</tr>
<tr>
<td>Site Number: 38WG185</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Catalog #</td>
<td>Count</td>
<td>Weight (in g)</td>
<td>Artifact Description</td>
<td>Lithic Type</td>
<td>Ceramic Type</td>
<td>Temporal Range</td>
<td>Comments</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>11.3</td>
<td>Cord Marked Body Sherd, Fine/Medium Sand Tempered</td>
<td>Deptford</td>
<td>Early/Middle Woodland (1000 BC-700 AD)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0.4</td>
<td>Quartzite 1/4 inch Flake Fragment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0.2</td>
<td>Translucent Quartz 1/4 inch Flake Fragment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Provenience Number: 25. 1 | Shovel Test , N560, E500, 0-45 cmbs |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Provenience Number: 26. 1 | Shovel Test , N575, E500, 0-30 cmbs |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Provenience Number: 27. 1 | Shovel Test , N590, E500, 0-70 cmbs |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

Provenience Number: 28. 0 | Shovel Test , N530, E507.5, Surface |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Provenience Number: 29. 1 | Shovel Test , N552.5, E507.5, 20-60 cmbs |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Provenience Number: 30. 1 | Shovel Test , N560, E507.5, 20-60 cmbs |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Provenience Number: 31. 1 | Shovel Test , N500, E515, Surface |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Provenience Number: 32. 1 | Shovel Test , N545, E515, Surface |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Provenience Number: 33. 1 | Shovel Test , N560, E515, Surface |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Provenience Number: 34. 2 | 50x50cm Unit , N500.5, E499.5, Level 2, 10-20 cmbs |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Site Number: 38WG185</td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td></td>
</tr>
<tr>
<td>Catalog #</td>
<td>Count</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Provenience Number:	34 . 3	50x50cm Unit , N500.5, E499.5, Level 3, 20-30 cmbs				
1	7	47.2	Cord Marked Body Sherd, Fine/Medium Sand Tempered	Deptford	Early/Middle Woodland (1000 BC-700 AD)	
2	2	1	Quartzite 1/4 inch Flake Fragment			
3	1	0.5	Translucent Quartz 1/4 inch Flake Fragment			
4	1	0.6	Charcoal			

Provenience Number:	34 . 4	50x50cm Unit , N500.5, E499.5, Level 4, 30-40 cmbs				
1	1	0.8	Cord Marked Rim Sherd, Fine/Medium Sand Tempered	Deptford	Early/Middle Woodland (1000 BC-700 AD)	Mends with Prov. 17.1:1
2	1	3.6	Quartzite 1/2 inch Flake Fragment			
3	1	0.3	Quartzite 1/4 inch Flake Fragment			
4	1	0.1	Metavolcanic 1/4 inch Flake Fragment			
5	1	0.2	Translucent Quartz 1/4 inch Flake Fragment			
6	1	0.05	Bone			

Provenience Number:	34 . 5	50x50cm Unit , N500.5, E499.5, Level 5, 40-50 cmbs				
1	1	0.4	Quartzite 1/4 inch Flake Fragment			
2	1	0.05	Metavolcanic 1/4 inch Flake Fragment			

<table>
<thead>
<tr>
<th>SITE NUMBER: Isolate 1</th>
</tr>
</thead>
</table>

Provenience Number:	2 . 0	Transect 3, Shovel Test , Surface, Road			
1	1	19.2	Metavolcanic Projectile Point Tool	Guilford	Middle Archaic (3550-2850 BC)

<table>
<thead>
<tr>
<th>SITE NUMBER: Isolate 2</th>
</tr>
</thead>
</table>

Provenience Number:	2 . 1	Area M, Transect 11, Shovel Test 2, 0-35 cmbs			
1	1	2.6	Ironstone, Undecorated Flatware Base	1815-1900	
2	1	2.6	Common Wire Nail	1850-	
3	2	3.1	Colorless Melted Glass Container		
4	2	1.4	Plastic Fragment	Burned	
Projectile Point/Hafted Biface Forms

<table>
<thead>
<tr>
<th>Site Number:</th>
<th>38WG185</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provenience #:</td>
<td>4 , 0</td>
</tr>
<tr>
<td>Catalog Number:</td>
<td>1</td>
</tr>
</tbody>
</table>

All measurements are in mm.

<table>
<thead>
<tr>
<th>Lithic Type:</th>
<th>Translucent Quartz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point Type:</td>
<td>Eared Yadkin</td>
</tr>
<tr>
<td>Period:</td>
<td>Early Woodland (450 BC-250 AD)</td>
</tr>
<tr>
<td>Remarks:</td>
<td>Mend</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Complete Tool Length:</th>
<th>26.7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete Tool Width:</td>
<td>12.3</td>
</tr>
<tr>
<td>Complete Tool Thickness:</td>
<td>4.1</td>
</tr>
<tr>
<td>Haft Element Length:</td>
<td>6.3</td>
</tr>
<tr>
<td>Haft Element Width:</td>
<td>14.1</td>
</tr>
<tr>
<td>Haft Element Thickness:</td>
<td>2.2</td>
</tr>
<tr>
<td>Shoulder Length:</td>
<td>0</td>
</tr>
</tbody>
</table>

Provenience #: 17 , 1
Catalog Number: 3

All measurements are in mm.

<table>
<thead>
<tr>
<th>Lithic Type:</th>
<th>Quartzite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point Type:</td>
<td>Gary</td>
</tr>
<tr>
<td>Period:</td>
<td>Late Archaic/Middle Woodland (1500 BC-100 AD)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Complete Tool Length:</th>
<th>0.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete Tool Width:</td>
<td>17.9</td>
</tr>
<tr>
<td>Complete Tool Thickness:</td>
<td>6.6</td>
</tr>
<tr>
<td>Haft Element Length:</td>
<td>12.5</td>
</tr>
<tr>
<td>Haft Element Width:</td>
<td>13.3</td>
</tr>
<tr>
<td>Haft Element Thickness:</td>
<td>5.7</td>
</tr>
<tr>
<td>Shoulder Length:</td>
<td>4.8</td>
</tr>
</tbody>
</table>
Quartzite
Brewerton
Late Archaic (2500-1500 BC)

Provenience #: 17, 1
Catalog Number: 4

All measurements are in mm.
Complete Tool Length: 17.1
Complete Tool Width: 11.8
Complete Tool Thickness: 5.9
Haft Element Length: 0.0
Haft Element Width: 0.0
Haft Element Thickness: 0
Shoulder Length: 0
Lithic Type: Quartzite
Point Type: Brewerton
Period: Late Archaic (2500-1500 BC)
Remarks:

Quartzite
Kirk Corner Notched
Early Archaic (7050-4050 BC)

Provenience #: 30, 1
Catalog Number: 1

All measurements are in mm.
Complete Tool Length: 0.0
Complete Tool Width: 19.6
Complete Tool Thickness: 7.1
Haft Element Length: 6.6
Haft Element Width: 15.4
Haft Element Thickness: 3.6
Shoulder Length: 3.8
Lithic Type: Quartzite
Point Type: Kirk Corner Notched
Period: Early Archaic (7050-4050 BC)
Remarks:
Site Number: Isolate 1
Provenience #: 2 , 0
Catalog Number: 1

All measurements are in mm.

Complete Tool Length: 64.3
Complete Tool Width: 26.0
Complete Tool Thickness: 10.4
Haft Element Length: 19.6
Haft Element Width: 20.5
Haft Element Thickness: 5.5
Shoulder Length: 0

Lithic Type: Metavolcanic
Point Type: Guilford
Period: Middle Archaic (3550-2850 BC)
Remarks:

Actual Size/Scanned Image
Appendix B
SHPO Correspondence
15 June 2017

Larry James
Brockington and Associates
498 Wando Park Blvd, Ste 700
Mount Pleasant, SC 29464

Re: CRS of RDA Mine Tract
Williamsburg County, South Carolina
SHPO Project No. 17-AD0014

Dear Mr. James:

Our office has received the documentation dated June 6, 2017 that you submitted as due diligence for the project referenced above, including the description of and plans for avoidance of site 38WG0185. This letter is for preliminary, informational purposes only and does not constitute consultation or agency coordination with our office as defined in 36 CFR 800: “Protection of Historic Properties” or by any state regulatory process. The recommendation stated below could change once the responsible federal and/or state agency initiates consultation with our office.

The updated plans call for preservation in place of site 38WG0185, which is eligible for the National Register of Historic Places, through preservation in place, a 50-foot buffer around the site, and perimeter fencing during mining activities within 1000 feet of the site. Our office agrees that these measures are sufficient to protect the site.

If the project were to require state permits or federal permits, licenses, funds, loans, grants, or assistance for development, we would recommend to the federal or state agency or agencies that the project will have no adverse effect on cultural resources.

We do request, however, that our office be notified immediately if archaeological materials or human skeletal remains are encountered prior to or during construction on the project site. Archaeological materials consist of any items, fifty years old or older, which were made or used by man. These items include, but are not limited to, stone projectile points (arrowheads), ceramic sherds, brick scatters, worked wood, bone and stone, along with metal and glass objects.

If you have any questions, please contact me at (803) 896-6184 or at adaggett@scdhah.sc.gov.

Sincerely,

Adrienne Daggett, PhD.
Transportation Review Coordinator
South Carolina State Historic Preservation Office