SCANNED

July 25, 2017

Mr. Lucas Berresford
Bureau of Land & Waste Management
Site Remediation Section
South Carolina Department of Health and Environmental Control
2600 Bull Street
Columbia, South Carolina 29201

RECEIVED

Subject: Remedial Investigation Report Addendum

Former Vermont Bosch Site Fountain Inn, South Carolina SCDHEC Site ID #52309

Amec Foster Wheeler Project 6251161022.02.03

JUL 2 7 2017

SITE ASSESSMENT, REMEDIATION & REVITALIZATION

Dear Mr. Berresford:

Amec Foster Wheeler Environment & Infrastructure, Inc. (Amec Foster Wheeler) is pleased to submit the subject report on behalf of the Robert Bosch Tool Corporation. Should you have any questions, please do not hesitate to contact Paul S. Johnstone at (864) 552-9624.

Sincerely,

Amec Foster Wheeler

Paul S. Johnstone, P.G. Principal Geologist Licensed, SC #2134

REMEDIAL INVESTIGATION REPORT ADDENDUM

FORMER VERMONT BOSCH SITE FOUNTAIN INN, SOUTH CAROLINA SCDHEC SITE ID #52309

Prepared for:

ROBERT BOSCH TOOL CORPORATION 1800 West Central Road Mount Prospect, Illinois 60056

Prepared by:

Amec Foster Wheeler Environment & Infrastructure, Inc. 400 Executive Center Drive, Suite 200 Greenville, South Carolina 29615

Amec Foster Wheeler Project 6251161022.02.03

July 25, 2017

July 25, 2017

Mr. Lucas Berresford Bureau of Land & Waste Management Site Remediation Section South Carolina Department of Health and Environmental Control 2600 Bull Street Columbia, South Carolina 29201

Subject:

Remedial Investigation Report Addendum

Former Vermont Bosch Site Fountain Inn, South Carolina SCDHEC Site ID #52309

Amec Foster Wheeler Project 6251161022.01.01

Dear Mr. Beresford:

Amec Foster Wheeler Environment & Infrastructure, Inc. is pleased to submit the subject report on behalf of the Robert Bosch Tool Corporation. Should you have any questions, please do not hesitate to contact Paul S. Johnstone at (864) 458-3707.

Sincerely,

nent & Infrastructure, Inc.

Timothy S. Reg Senior Engine

Licensed, SC

Cc:

Paul S. Joanstone, 29164

Principal G Licensed, S

Mr. Aromake Afiegbe - Robert Bosch Tool Corporation, Mourte R.

Ms. Rachael Remmers – Robert Bosch, LLC, Farmington Hills, MI

TABLE OF CONTENTS

		Page
LIST	OF TABLES AND FIGURES	V
LIST	OF ACRONYMS	vi
1.0	INTRODUCTION	1-1
1.1	PURPOSE OF REPORT ADDENDUM	1-1
1.2	BACKGROUND	1-1
2.0	FIELD ACTIVITIES	
2.1	01.001.01.71.21.11.220.001.221.11.101.11.11.11.11.11.11.11.11.11.11.1	
2.2	MONITORING WELL INSTALLATION AND DEVELOPMENT	2-2
2.3	MONITORING WELL SAMPLING	2-3
2.4		
2.5	INVESTIGATIVE DERIVED WASTE GENERATION	2-4
3.0	RESULTS	3-1
3.1	GROUNDWATER FIELD SCREENING	3-1
3.2	GROUNDWATER ELEVATIONS	3-2
3.3		
3.4		
3.5		
4.0	FINDINGS	4-1
4.1	GROUNDWATER FIELD SCREENING	
4.2		
5.0	RECOMMENDATIONS	
6.0	QUALIFICATIONS OF REPORT	
7.0	REFERENCES	7-1

TABLES FIGURES APPENDICES

LIST OF TABLES

Table 1	Groundwater Field-Screening Sample Intervals and Results
Table 2	Summary of Monitoring Well Construction Information
Table 3	Summary of Groundwater Field-Screening Sample Laboratory Analytical Results
Table 4	Summary of Groundwater Elevation Data
Table 5	Summary of Monitoring Well Groundwater Sample Laboratory Analytical Results

LIST OF FIGURES

Figure 1	Field-Screening Boring Location Map
Figure 2	Monitoring Well Location Map
Figure 3	Overburden (Saprolite) Thickness Isopach Contour Map
Figure 4	Shallow Zone PCE Isoconcentration Contour Map
Figure 5	Intermediate Zone A PCE Isoconcentration Contour Map
Figure 6	Intermediate Zone B PCE Isoconcentration Contour Map
Figure 7	Deep Zone PCE Isoconcentration Contour Map
Figure 8	Shallow Groundwater Elevation Contour Map (February 2017)
Figure 9	Deep Groundwater Elevation Contour Map (February 2017)
Figure 10	Lithologic Cross-Section A-A'

LIST OF APPENDICES

Appendix A	SCDHEC Correspondence
Appendix B	Monitoring Well Construction Diagrams and SCDHEC Form 1903
Appendix C	Field Data Records
Appendix D	Equipment Calibration Records
Appendix E	Laboratory Report of Analysis and Chain-of-Custody Records
Appendix F	Data Validation Report
Appendix G	Disposal Manifests

LIST OF ACRONYMS

A&D A&D Environmental Services, Inc.
AE A.E. Drilling Services (SC), LLC
AES Atlanta Environmental Services, Inc.

AOC Area of Concern

bgs below ground surface

C Celsius

ctu Color-Tec Units

DO Dissolved Oxygen
DPT Direct Push Technology

FDR Field Data Record FS Feasibility Study

FSAP Field Sampling and Analysis Plan

IDW Investigative Derived Waste

MCL Maximum Contaminant Level

MDL Method Detection Limit

MSL Mean Sea Level µg/L micrograms per liter

MSWLF Municipal Solid Waste Landfill ORP Oxidation Reduction Potential

PCE Perchloroethylene (tetrachloroethene)

QAPP Quality Assurance Project Plan

RBTC Robert Bosch Tool Corporation

RI Remedial Investigation

RL Reporting Limit

SCDHEC South Carolina Department of Health and Environmental Control

SPGS Screen Point Groundwater Sampler

USEPA United States Environmental Protection Agency

VAC Vermont American Corporation VCC Voluntary Cleanup Contract VOCs volatile organic compounds

1.0 INTRODUCTION

This Remedial Investigation (RI) Report Addendum has been prepared to document the additional RI activities at the Former Vermont Bosch Site (Site) located in Fountain Inn, South Carolina. The RI Report Addendum has been prepared by Amec Foster Wheeler Environment & Infrastructure, Inc. (Amec Foster Wheeler), formerly AMEC Environment & Infrastructure, Inc. and MACTEC Engineering and Consulting, Inc., on behalf of Robert Bosch Tool Corporation (RBTC), in accordance with Voluntary Cleanup Contract (VCC) #05-5613-RP, executed on August 29, 2005. RBTC, a division of Robert Bosch, LLC, is the successor to Vermont American Corporation (VAC), who manufactured screwdrivers and spade bits at the Site.

Groundwater field screening activities were conducted in response to comments on the RI Report (Amec Foster Wheeler, 2016a) from the South Carolina Department of Health and Environmental Control (SCDHEC) in a letter dated April 20, 2016 and in accordance with the Field Sampling and Analysis Plan (FSAP) for Additional Groundwater Investigation dated June 3, 2016 (Amec Foster Wheeler, 2016b) and approved by SCDHEC in a letter dated June 15, 2016. Copies of the April 20, 2016 and June 15, 2016 SCDHEC letters are included in **Appendix A**.

1.1 PURPOSE OF REPORT ADDENDUM

The purpose of the groundwater field screening was to provide additional information on the nature and extent of contaminated groundwater present at the Site including a further evaluation of the intermediate water table aquifer downgradient of the suspected source area, specifically down gradient of MW-09-07 and MW-09-11. As a result of the groundwater field screening, Amec Foster Wheeler installed additional monitoring wells to provide monitoring points for the intermediate and deep portions of the aquifer downgradient of the suspected source area. The purpose of the RI Report Addendum is to document the results of the groundwater field screening, monitoring well installation, and monitoring well sampling.

1.2 BACKGROUND

Volatile organic compounds (VOCs) were detected in previous groundwater field-screening samples and RI monitoring well groundwater samples collected immediately downgradient from Area of Concern (AOC) # 9 (Former Hazardous Waste Accumulation Building) and at the adjacent Fort Dearborn (former Sherwin-Williams) property, which is also downgradient from AOC #9.

The 2016 groundwater field screening targeted the water table aquifer below the current depth of the shallow groundwater monitoring wells that were installed during the RI over the depth interval from 10 to 25 feet below ground surface (bgs). This groundwater field screening included the intermediate (mid-level) water table aquifer, approximately 26 to 40 feet bgs, and the deeper aquifer to the top of bedrock zone, approximately 40 to 75 feet bgs. Groundwater field screening borings were installed both side gradient and down the approximate center line of known shallow groundwater contamination in order to further define the vertical presence of the plume.

The results of the groundwater field screening were documented in a Report of Groundwater Field Screening dated November 11, 2016 (Amec Foster Wheeler, 2016c) submitted to the SCDHEC. The Report of Groundwater Field Screening included a recommendation for the installation of seven new monitoring wells to monitor the intermediate and deep portions of the aquifer downgradient from AOC #9. The SCDHEC provided approval Report of Groundwater Field Screening and the proposed monitoring wells, including a Monitoring Well Permit, in a letter dated January 11, 2017, which is included in **Appendix A**.

2.0 FIELD ACTIVITIES

2.1 GROUNDWATER FIELD SCREENING

During the period from August 10, 2016 to August 12, 2016, ten multi-level groundwater field-screening borings were advanced at the Site. The borings were advanced by A.E. Drilling Services, Inc. (AE), under subcontract to Amec Foster Wheeler, using a direct-push technology (DPT) drill rig. A summary of the DPT boring locations, identified as GW-09-01 through GW-09-05, GW-09-05A, and GW-09-06 through GW-09-09, and their sample intervals is provided on **Table 1**. Each of the borings, with the exception of GW-09-05, was advanced to DPT refusal. Boring GW-09-05 was terminated at 30 feet bgs due to mechanical issues with the DPT rig and boring GW-09-5A was advanced to evaluate the aquifer below 30 feet bgs. The locations of the groundwater field-screening borings are shown on **Figure 1**. Groundwater field-screening borings conducted as part of previous Site groundwater assessments (2003 and 2005) are also shown on this figure.

Groundwater field-screening samples were collected on ten-foot centers starting approximately five feet below the bottom of existing shallow groundwater monitoring wells (approximately 25 feet bgs) to DPT refusal. Samples were collected from each groundwater field-screening boring using a Geoprobe® Screen Point Groundwater Sampler (SPGS). The SPGS was driven to the desired sampling depth and the four-foot long sampling screen was then exposed. Once groundwater had entered the sampler, a length of tubing was inserted into the SPGS and a groundwater sample was extracted using a peristaltic pump or manually extracted using a check valve system installed on the bottom of the tubing. The SPGS was then removed from the borehole and decontaminated before being driven to the next sampling depth.

A portion of each groundwater sample collected was field screened using the Color-Tec method and the remainder of the sample was collected into laboratory-provided and preserved sample containers, marked with the appropriate identifying number, packed on ice in a sample cooler, and held for potential laboratory analysis. The Color-Tec method is described in the FSAP for Additional Groundwater Investigation (Amec Foster Wheeler, 2016b). Based on field screening Color-Tec results, 17 groundwater samples were shipped under chain-of-custody protocols to Atlanta Environmental Services, Inc. (AES) located in Atlanta, Georgia and analyzed for VOCs by United States Environmental Protection Agency (USEPA) Method 8260B.

2.2 MONITORING WELL INSTALLATION AND DEVELOPMENT

As a result of the 2016 groundwater field screening, seven additional monitoring wells were installed to supplement the permanent groundwater monitoring system developed during the RI. The monitoring wells were installed over the period from February 6, 2017 through February 10, 2017 by AE under subcontract to Amec Foster Wheeler. Four of the monitoring wells were installed in the intermediate (mid-level) portion of the aquifer (MW-09-28, MW-09-29, MW-09-30, and MW-09-32) and three of the monitoring wells were installed in the deep portion of the aquifer (MW-09-26, MW-09-27, and MW-09-31).

At each intermediate location, hollow-stem augers were used to advance the boring to the targeted depth and a monitoring well was installed. At each deep location, hollow-stem augers were used to advance the boring to a depth below the intermediate zone and a six-inch casing was set and grouted in place. After allowing the grout to cure, the boring was advanced using mud-rotary drilling techniques to the top of bedrock and a monitoring well was installed in the boring. A detailed description of the monitoring well installation and sampling procedures was included in Section B2 (pages B10 thru B16) of the Quality Assurance Project Plan (QAPP), which was Appendix B of the RI/Feasibility Study (FS) Work Plan (AMEC, 2012).

Intermediate well depths ranged from approximately 35 feet below ground surface (bgs) to 45 bgs. Intermediate monitoring wells MW-09-28 and MW-09-32 have a screen length of 10 feet. Intermediate monitoring wells MW-09-29 and MW-09-30 have a screen length of 15 feet. Deep well depths range from approximately 53 feet bgs to 75 feet bgs. The deep monitoring wells have a screen length of 10 feet. Following well installation, each monitoring well was developed and sampled. The monitoring well locations are shown on **Figure 2**. A summary of the existing and newly-installed monitoring well construction details is included as **Table 2**. Monitoring well construction diagrams and SCDHEC Form 1903 are provided in **Appendix B**.

The newly-installed monitoring wells were developed by the drilling contractor as soon as practical after well installation, but no sooner than 48 hours following placement of the grout seal. A detailed description of the monitoring well development procedures was included in Section B2 (pages B12 thru B13) of the QAPP (AMEC, 2012).. Development of wells was accomplished with an electric submersible pump. The wells were surged and the pump was periodically raised and water allowed to drain back into the well in order to induce flow out through the well screen. Water was not added to the well to aid in development. Non-dedicated submersible pumps were

decontaminated prior to use and in between each well. The wells were considered developed when the purged groundwater was clear, free of sediment, and five borehole volumes were removed from the well. Monitoring well development field data records (FDRs) are presented in **Appendix C**.

2.3 MONITORING WELL SAMPLING

Prior to purging and sampling each newly-installed well, the depth to groundwater and total well depth were measured using an electronic water level indicator to calculate well and borehole volumes. The water level meter was decontaminated with an Alconox® and water mixture and rinsed with potable water prior to starting activities and between each well. The depth to groundwater was measured from a marked survey reference point at the top of well casing to the groundwater surface in each monitoring well. Measurements were recorded to the nearest 0.01 foot.

The newly-installed monitoring wells were purged prior to sampling to provide fresh formation water for analysis. A detailed description of the monitoring well purging and sampling procedures was included in Section B2 (pages B13 thru B16) of the QAPP (AMEC, 2012). Purging was conducted using the low flow/low stress purging method. The low flow/low stress method consists of removing water from a monitoring well at a flow rate that does not exceed the recharge rate of the monitoring well. The monitoring wells were purged with a peristaltic pump. Purging was conducted until the pH, dissolved oxygen (DO), oxidation reduction potential (ORP), turbidity, and temperature measurements stabilized.

During the February 2017 sampling activities, for informational purposes, field water quality parameters (pH, specific conductance, DO, ORP, and temperature) were measured using a YSI Professional Plus multi-meter. Turbidity was measured with a Hach 2100Q turbidity meter. The meters were calibrated on a daily basis according to the manufacturer's instructions. Equipment calibration records are included in **Appendix D**. Purging was terminated and samples were collected for analysis when all water quality parameters were stabilized. Stabilization of parameters was defined as three consecutive readings having acceptable variations as indicated below:

pH of +/- 0.1 standard units (s.u.) Temperature +/- 0.5 degrees Celsius (°C) Specific Conductance of +/- 3 % variation ORP of +/- 10 millivolts (mV) DO of +/-10 %

FDRs for the groundwater sampling activities are included in **Appendix C**. To minimize the potential for cross-contamination between sampling locations, all disposable sampling equipment (tubing, gloves, etc.) was changed between each well.

Groundwater samples were collected into laboratory-prepared and preserved sample containers and marked with a unique identifying number. The samples were packed in a cooler with ice and shipped or delivered by courier under chain of custody protocol to AES for analysis of VOCs by USEPA Method 8260B.

2.4 SURVEY

Following completion of well development, the monitoring wells were surveyed for horizontal and vertical control by Freeland and Associates located in Greenville, South Carolina.

2.5 INVESTIGATIVE DERIVED WASTE GENERATION

Investigative derived waste (IDW) generated during additional RI activities consisted of soil cuttings, monitoring well development water, monitoring well purge water, and decontamination fluids that were labeled with the containerized and staged on the Site pending characterization and disposal. Soil cuttings generated during monitoring well installation between February 6, 2017 and February 10, 2017 were containerized in a lined roll-off. Development water generated during monitoring well development from February 9, 2017 to February 13, 2017 and purge water generated during monitoring well sampling on February 14 and 15, 2017 were containerized in three polyethylene tanks. The rolloff and polyethylene tanks were labeled with the date of generation and that the IDW was pending analysis.

3.0 RESULTS

3.1 GROUNDWATER FIELD SCREENING

DPT refusal depths ranged from 41 feet bgs (GW-09-08) to 74 feet bgs (GW-09-01). An overburden (saprolite) isopach map representing data from previous investigations, the RI, and this investigation is presented as **Figure 3**. The saprolite thickness map is based on DPT refusal during field screening and the depth to top of rock established during the initial well installation. DPT refusal from groundwater field-screening data, presented in the previous 2003 and 2005 investigations, is also shown on this map but was not used in the generation of the contours. The thickest portion of the saprolite runs from the former hazardous waste storage area southwest and south through the rear parking lot of the Fort Dearborn (former Sherwin Williams) facility. The saprolite becomes shallow quickly to the southeast and northwest. This feature forms a potential preferential pathway that appears to influence the orientation of the groundwater contaminant transport.

During the groundwater field screening, 28 discrete groundwater samples for Color-Tec analysis were collected from 10 borings. Positive Color-Tec results were observed in six of the 28 groundwater samples and ranged from a trace to 5.0 Color-Tec units (ctu). The results of the groundwater field-screening sampling is provided in **Table 1**.

Concentrations of 2-butanone (methyl ethyl ketone), acetone, and tetrachloroethene (perchloroethylene, or PCE) were detected above the laboratory's Reporting Limit (RL) in one or more of the field-screening groundwater samples submitted to the laboratory for analysis. Estimated concentrations (J-Flagged) of acetone, methylene chloride, and PCE between the laboratory's Method Detection Limit (MDL) and the RL were reported in one or more of the field-screening groundwater samples. It should be noted that acetone and methylene chloride are common laboratory contaminants.

Detections of PCE ranged from 0.99J micrograms per liter (μ g/L) at GW-09-06 (46 to 50 feet bgs) to 130 μ g/L at GW-09-04 (26 to 30 feet bgs). Concentrations of PCE above the maximum contaminant level (MCL) of 5 μ g/L established in South Carolina Primary Drinking Water Regulation R.61-58 (October 2014) were observed in three borings: GW-09-04 (26 to 30 feet bgs), GW-09-05A (46 to 50 feet bgs), and GW-09-07 (26 to 30 feet bgs). The laboratory analytical results are summarized on **Table 3**. Isoconcentration contour maps for PCE in the Shallow Zone

from 10–25 feet bgs, Intermediate Zone A from 26–30 feet bgs, Intermediate Zone B from 36-40 feet bgs, and the Deep Zone from 46-50 feet bgs are shown on **Figure 4** through **Figure 7**. The configuration of the plume is based on monitoring well data previously presented in the RI Report (Amec Foster Wheeler, 2016a) and analytical and field screening data collected during the groundwater field-screening investigation. Additional field screening data, previously presented in the 2003 and 2005 investigations, is also shown on these maps but was not used in the generation of the contours. The laboratory report and chain-of-custody records are included in **Appendix E**.

3.2 GROUNDWATER ELEVATIONS

Prior to conducting water level measurements, the depth markings on the water level tape were verified using a commercial tape measure. Depth to groundwater measurements were obtained from 32 wells, along with background well B-1, on February 14, 2017. Water levels were collected using an electronic water level meter. The water level meter was decontaminated with an Alconox® and water mixture and rinsed with potable water prior to starting activities and between each well. At each monitoring well, the well cap was removed and the well was allowed to equilibrate. Measurements were made from a reference point at the top the well casing from a mark that had been made indicating the highest point of the casing. Depth measurements were recorded to the nearest 0.01 foot. The depth to the groundwater was subtracted from the surveyed elevation of the top of well casing reference point to determine the groundwater elevation. The groundwater elevation data collected on February 14, 2017 is presented on **Table 4**.

Groundwater elevations in the shallow portion of the aquifer ranged from 821.77 feet above mean sea level (MSL) in monitoring well B-1 to 792.98 feet above MSL in monitoring well MW-09-25. The groundwater elevations in deep portion of the aquifer ranged from 819.35 feet above MSL in monitoring well MW-08-2D to 795.94 feet above MSL in monitoring well MW-09-18D (see **Table 4**). A water table elevation contour map and a bedrock groundwater elevation contour map for the February 2017 water levels is presented in **Figure 8** and **Figure 9**, respectively.

3.3 GROUNDWATER SAMPLING

Concentrations of PCE were detected above the laboratory's RL in two intermediate samples (MW-09-28 and MW-09-32). Chloroform was detected above the laboratory's RL in two samples (MW-09-26 and MW-09-27). A concentration of toluene was reported above the laboratory's RL

in one intermediate sample. Estimated concentrations of benzene (one sample) and methylene chloride (four samples) were reported. Only one of the intermediate monitoring wells (MW-09-32) had a PCE result (30 μ g/L) that exceeded the SCDHEC MCL of 5 μ g/L. Although chloroform does not have a specific SCDHEC MCL, it is one of the trihalomethanes and total trihalomethanes have an MCL of 80 μ g/L . Two of the concentrations of chloroform (MW-09-26 and MW-09-27), both deep monitoring wells, have concentrations of chloroform that exceed the MCL for total trihalomethanes (80 μ g/L) at 730 μ g/L and 1,100 μ g/L, respectively. The estimated concentrations of benzene and methylene chloride and the concentration of toluene were below their respective SCDHEC MCLs. It should be noted that methylene chloride and toluene are common laboratory contaminants.

The PCE results from the groundwater samples collected from the newly-installed monitoring wells are shown on **Figure 4** through **Figure 7**, as applicable. Groundwater laboratory analytical results are summarized in **Table 5**. A lithologic cross-section through the axis of the contaminant plume is presented as **Figure 10**. The laboratory report is included in **Appendix E**.

3.4 DATA VALIDATION

Groundwater samples were collected during sampling completed in February 2017 at the Site. The samples were analyzed by Analytical Environmental Services, Inc. (AES) in Atlanta, Georgia. Sample results were submitted from AES in one sample delivery group (SDG): 1702E41. Samples reviewed in this report were analyzed for the following USEPA SW-846 (USEPA, 1996) method:

VOCs in water by USEPA Method 8260B

Sample results were validated using general procedures in the USEPA National Data Validation Guidelines (USEPA, 2010; USEPA, 2016). Project data quality criteria for the VOC analyses are identified based on laboratory quality control (QC) goals and the professional judgment of the project chemist. The laboratory QC limits were used during data validation. A Level II validation was performed on 100 percent of the laboratory analysis data. During the Level II validation the major quality assurance (QA)/QC indicators of analytical data quality are reviewed, but review of calculations and raw laboratory data is not included. QC data checks are completed using QC summary forms provided in the laboratory packages. The following parameters are checked during the Level II review:

- laboratory narrative
- sample chain of custody/sample condition upon receipt form
- sample preservation
- QC blanks (method, rinse, field, and trip)
- laboratory control sample (LCS) results
- matrix spike and matrix spike duplicate (MS/MSD) sample results
- surrogate recovery
- field replicate sample results
- sample results summary
- verification of electronic data deliverable (EDD) results

Validation reason codes are applied to the results to document the reason for necessary data qualification. Data validation qualifiers were added to results if associated quality control data did not meet goals in the validation guidelines or project work plan. The following data quality flags shown below are generally used to qualify data that did not meet project specific QC goals.

- J Estimated value
- R Unusable
- U Undetected
- UJ Undetected and reporting limit is estimated

Validation reason codes are applied to the results to document the reason for the validation qualification.

Except for the data qualification actions identified below, results are interpreted to be usable as reported by the laboratory. Qualification was required for the following:

Chloroform ("U" flagged) in samples MW-09-28 and MW-09-31.

The data validation report is included in **Appendix F**.

3.5 INVESTIGATIVE DERIVED WASTE DISPOSAL

As discussed in Section 2.5, IDW generated during RI field activities consisted of soil cuttings, development water, and purge water.

On February 15, 2017, a composite soil sample was collected from the soil cuttings in the lined roll-off for disposal characterization. The sample sent to AES and analyzed for Toxicity Characteristic Leachate Procedure (TCLP) metals and TCLP VOCs. Laboratory analytical results indicated that the containerized soils were non-hazardous. On April 26, 2017, A&D Environmental

Services (SC), LLC (A&D) transported 7.57 tons (15,140 pounds) of non-hazardous drill cuttings to the Upstate Regional Municipal Solid Waste (MSW) Landfill located in Enoree, South Carolina for disposal. Water samples from the three polyethylene tanks were collected on February 14 and 15, 2017 and submitted to AES and analyzed for VOCs. The laboratory analytical results indicated that the purge/development water was non-hazardous. On May 4, 2017, A&D pumped out the polyethylene tanks and transported 500 gallons of non-hazardous development water and purge water to its facility in Lexington, South Carolina for disposal.

Waste disposal manifests for IDW generated during the RI are included in **Appendix G**.

4.0 FINDINGS

4.1 GROUNDWATER FIELD SCREENING

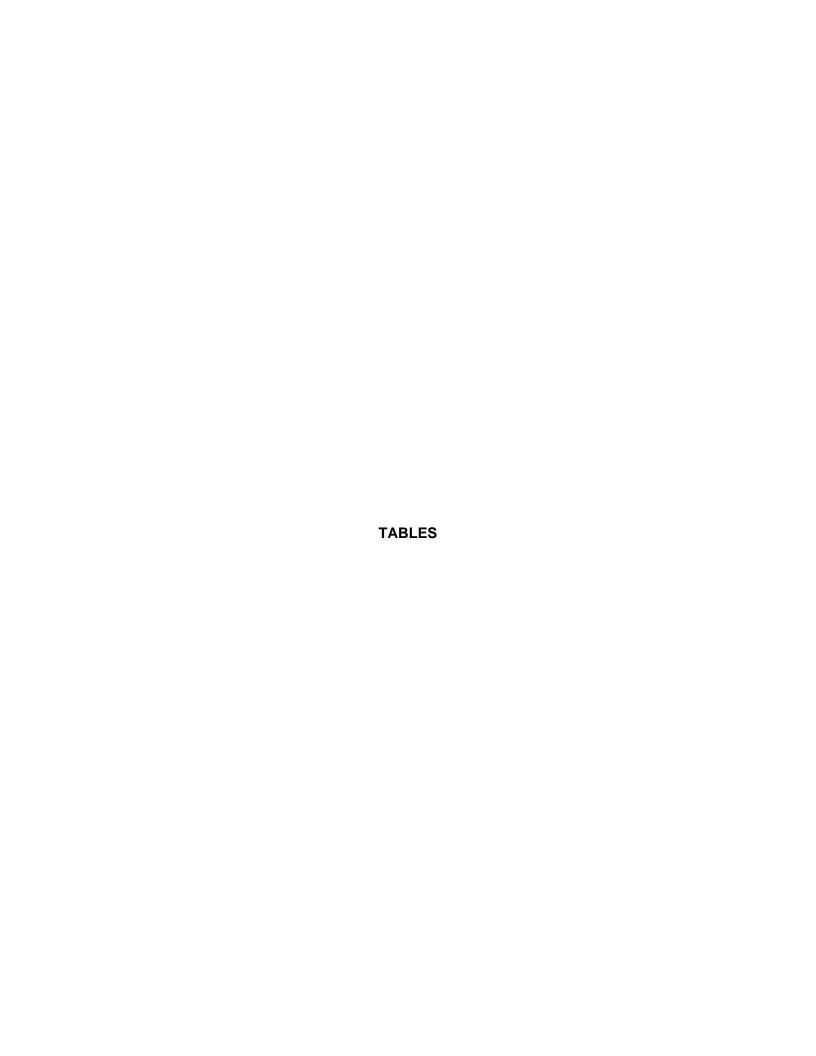
- Positive Color-Tec results were observed in six of the 28 groundwater samples and ranged from a trace to 5.0 ctu. Correlation between samples field screened using the Color-Tec method and samples selected for laboratory analysis was fair with the exception GW-09-07 at 26-30 feet bgs.
- Concentrations of PCE were detected in the groundwater field-screening samples above the SCDHEC MCL in three of the 17 groundwater samples selected for laboratory analysis. Two of the detections above the MCL were observed in Intermediate Zone A (26 to 30 feet bgs) and one detection above the MCL was observed in the Deep Zone (46 to 50 feet bgs).

4.2 GROUNDWATER SAMPLING

- The PCE-impacted groundwater plume has been defined both horizontally and vertically.
- The zone of maximum contamination appears to be in the Shallow Zone (10 to 25 feet bgs) and Intermediate Zone A (26 to 30 feet bgs) of the aquifer. Intermediate Zone B (36 to 40 feet bgs) and the Deep Zone of the saprolite aquifer (46 to 50 feet bgs) appear to be minimally impacted (i.e., minimum detections of PCE above the MCL). Based on sampling conducted during the RI, the bedrock portion of the aquifer is not impacted by the PCE contamination.
- The configuration of the plume is similar to the plume depicted in the RI report. The axis of the plume has shifted slightly to the west (see **Figure 4**). The configuration of the saprolite thickness appears to greatly influence the direction of contaminant transport at the site (see **Figure 3**).
- According to the laboratory narrative, residual chlorine or another oxidizing agent was present in samples MW-09-26 and MW-09-27. The presence of free chlorine in aqueous samples can cause formation of trihalomethanes and other chemical reactions when preserved with hydrochloric acid (HCl). These two samples had detections of chloroform, which is a trihalomethane. Therefore, this detection of chloroform could be a byproduct of residual chlorine in the groundwater and HCl preservation. Potable water was used for the drilling fluid of these deep, cased wells. The pH of the water in these wells was elevated (10-13 s.u.) during sampling. It's possible that some of the drilling fluid seeped through the casing into the formation during installation of the well and resulted in residual chlorine being captured during sampling.

5.0 RECOMMENDATIONS

Based on the completion of the additional investigation activities requested by SCDHEC, Amec Foster Wheeler recommends that SCDHEC provide final approval of the RI and approve the preparation of the draft Feasibility Study.


6.0 QUALIFICATIONS OF REPORT

The activities and evaluative approaches used in this assessment are consistent with those normally employed in environmental assessments and waste-management projects of this type. Our evaluation of Site conditions has been based on our understanding of the Site and project information and the data obtained in our assessments. The general subsurface conditions utilized in our evaluation have been based on interpolation of subsurface data between the sampling locations. Regardless of the thoroughness of an environmental Site assessment, there is always the possibility that conditions between sampling locations will be different from that at specific locations due to the variability of subsurface conditions. Therefore, it was not possible to identify all conceivable forms of contamination.

This report has been prepared on behalf of and exclusively for the use of Robert Bosch Tool Corporation, Robert Bosch, LLC, and the SCDHEC. This report and the findings contained herein shall not, in whole or in part, be disseminated or conveyed to any other party or used or relied upon by any other party without Amec Foster Wheeler's prior written consent.

7.0 REFERENCES

- AMEC Environment & Infrastructure, Inc., 2012. Remedial Investigation / Feasibility Study Work Plan, Revision 4.0, Former Vermont Bosch Site, Fountain Inn, South Carolina. AMEC Project 6251121007.01.01, May 31, 2012.
- Amec Foster Wheeler Environment & Infrastructure, Inc. (Amec Foster Wheeler), 2016a. Remedial Investigation Report, Former Vermont Bosch Site, Fountain Inn, South Carolina, SCDHEC Site ID #52309. Amec Foster Wheeler Project 6251121007.03.01, March 18, 2016.
- Amec Foster Wheeler, 2016b. Field Sampling and Analysis Plan for Additional Groundwater Investigation, Former Vermont Bosch Site, Fountain Inn, South Carolina, SCDHEC Site ID #52309. Amec Foster Wheeler Project 6251121007.03.01, June 3, 2016.
- Amec Foster Wheeler, 2016c. Report of Groundwater Field Screening, Former Vermont Bosch Site, Fountain Inn, South Carolina, SCDHEC Site ID #52309. Amec Foster Wheeler Project 6251121007.03.01, November 11, 2016.

Groundwater Field-Screening Sample Intervals and Results Former Vermont Bosch Site Fountain Inn, South Carolina Amec Foster Wheeler Project 6251161022.02.03

Proposed Sample	Sample Depth (bgs)	COLOR-TEC (ctu)	COLOR-TEC Duplicate (ctu)	PCE by USEPA 8260B (μg/L)				
שו	26-30 feet	ND	ND	NA				
	36-40 feet	ND	ND ND	NA NA				
	46-50 feet	ND	ND ND	NA NA				
GW-09-01	56-60 feet	ND	ND	NA NA				
	66-70 feet	ND	ND	NA NA				
	00-70 leet		al at 74' bgs	INA				
	26-30 feet	ND	ND	3.0				
	36-40 feet	ND	ND	NA				
GW-09-02	46-50 feet	ND	ND	< 1.0				
	10 00 1001		al at 52' bgs	1110				
	26-30 feet	ND	ND	2.4				
0144 00 00	36-40 feet	ND	ND	NA				
GW-09-03	46-50 feet	ND	ND	< 1.0				
		Refusal	at 49.5' bgs					
	16-20 feet	2.0	NČ	NA				
	26-30 feet	5.0	NC	130				
GW-09-04	36-40 feet	ND	ND	2.6				
	46-50 feet	ND	ND	< 1.0				
	Refusal at 49.5' bgs							
GW-09-05	26-30 feet	0.75	NC	< 1.0				
	26-30 feet	2.0	NC	< 1.0				
GW-09-05A	36-40 feet	ND	ND	< 1.0				
GVV-09-05A	46-50 feet	TRACE	TRACE al at 50' bgs	6.9				
	26-30 feet	0.8	0.5	NA				
GW-09-06	36-40 feet	ND	ND	NA				
GVV-03-00	46-50 feet	ND	ND	0.99J				
			al at 53' bgs					
	26-30 feet	ND	ND	27				
GW-09-07	36-40 feet	ND	ND	< 1.0				
			al at 43' bgs					
	26-30 feet	ND	ND	3.4				
GW-09-08	36-40 feet	ND	ND	< 1.0				
			al at 41' bgs					
0,44	26-30 feet	ND	ND	< 1.0				
GW-09-09	36-40 feet	ND	ND	NA				
		Refusa	al at 43' bgs					

Notes:

PCE = Tetrachloroethene (perchloroethylene)

bgs = Below ground surface

ctu = Color-Tec unit

USEPA = United States Environmental Protection Agency

μg/L = microgram per liter

ND = not detected

NC = not collected

NA = not analyzed

Refusal = probe refusal

Italicized values are estimated

Yellow shaded values represent detections above South Carolina MCL (5 µg/L)

Prepared By/Date: PSJ 08/23/16 Checked By/Date: LLM 10/04/16

TABLE 2

Summary of Monitoring Well Construction Information Former Vermont Bosch Site Fountain Inn, South Carolina Amec Foster Wheeler Project 6251161022.02.03

Monitoring Well	Date Installed	Northing	Easting	Ground Elevation (ft, msl)	TOC Elevation (ft, msl)	Boring Depth (ft, bgs)	Casing Depth (ft, bgs)	Well Depth (ft, bgs)	Screened Interval (ft, bgs)	Screen Length (ft)	Top of Sand (ft, bgs)	Top of Bentonite (ft, bgs)	Zone
B-1	4/23/1985	1040043.7640	1639622.5660	834.83	834.59	21.00	NA	20.40	10.40 - 20.40	10.00	9.00	8.00	Shallow
MW-08-01	8/30/2002	1039825.6220	1639518.2470	833.81	833.58	24.00	NA	24.00	14.00 - 24.00	10.00	NM	NM	Shallow
MW-08-2D	12/3/2014	1039818.7168	1639511.8542	834.06	833.80	82.00	63.00	82.00	76.00 - 81.00	5.00	74.00	70.00	Bedrock
MW-08-03	11/12/2014	1039759.7352	1639474.9823	834.02	833.56	20.25	NA	20.25	10.00 - 20.00	10.00	8.00	6.00	Shallow
MW-08-04	11/13/2014	1039728.9413	1639555.5862	829.01	828.78	19.75	NA	19.75	9.50 - 19.50	10.00	7.50	5.50	Shallow
MW-08-05	11/12/2014	1039793.8660	1639602.9207	831.65	831.35	20.25	NA	20.25	10.00 - 20.00	10.00	8.00	6.00	Shallow
MW-09-06	11/12/2014	1039456.7701	1639115.7991	822.46	822.13	20.25	NA	20.25	10.00 - 20.00	10.00	8.00	6.00	Shallow
MW-09-07	7/17/2015	1039581.9240	1639063.2460	829.14	828.88	25.25	NA	25.25	15.00 - 25.00	10.00	13.00	11.00	Shallow
MW-09-08D	7/17/2015	1039585.6570	1639058.7090	828.98	828.72	92.25	78.00	92.25	87.00 - 92.00	5.00	82.00	74.00	Bedrock
MW-09-09	11/10/2014	1039652.8179	1639080.8861	831.12	830.93	25.25	NA	25.25	15.25 - 25.25	10.00	13.00	10.00	Shallow
MW-09-10	11/13/2014	1039555.6434	1638909.2130	818.55	818.00	19.25	NA	19.25	9.00 - 19.00	10.00	7.00	5.00	Shallow
MW-09-11	11/13/2014	1039386.6393	1638955.6618	818.39	818.14	20.25	NA	20.00	10.00 - 20.00	10.00	8.00	6.00	Shallow
MW-09-12D	11/20/2014	1039392.0883	1638957.3280	818.29	818.18	74.00	54.00	74.00	69.00 - 74.00	5.00	67.00	64.00	Bedrock
MW-09-13	11/14/2014	1039285.2089	1639020.2683	815.95	815.59	20.25	NA	20.25	10.00 - 20.00	10.00	8.00	6.00	Shallow
MW-09-14	11/18/2014	1039303.4034	1638867.7271	814.71	814.55	19.75	NA	19.75	9.50 - 19.50	10.00	7.00	5.00	Shallow
MW-09-15	11/14/2014	1039242.2453	1638948.7488	815.05	814.76	20.25	NA	20.25	10.00 - 20.00	10.00	8.00	6.00	Shallow
MW-09-16D	11/21/2014	1039244.1948	1638952.9302	814.97	814.83	72.00	53.00	72.00	67.00 - 72.00	5.00	64.00	51.00	Deep
MW-09-17	11/18/2014	1039127.9002	1638846.3974	814.12	813.84	19.25	NA	19.25	9.00 - 19.00	10.00	7.00	5.00	Shallow
MW-09-18D	11/24/2014	1039122.2100	1638842.1298	813.91	813.76	88.00	68.00	88.00	78.00 - 88.00	10.00	75.00	67.00	Bedrock
MW-09-19D	11/25/2014	1039534.1427	1639075.8665	828.15	828.02	83.00	71.00	81.00	76.00 - 81.00	5.00	74.00	70.00	Bedrock
MW-03-20	11/11/2014	1039926.7539	1639185.7182	834.20	833.81	27.25	NA	27.25	17.00 - 27.00	10.00	15.00	13.00	Shallow
MW-03-21	11/11/2014	1039907.5862	1639187.8169	834.30	834.08	27.25	NA	27.25	17.00 - 27.00	10.00	15.00	13.00	Shallow
MW-04-22	11/10/2014	1039582.7906	1639157.3514	828.05	827.71	25.25	NA	25.25	15.00 - 25.00	10.00	13.00	11.00	Shallow
MW-04-23	11/10/2014	1039562.3922	1639179.0462	826.55	826.27	25.25	NA	25.25	15.00 - 25.00	10.00	13.00	11.00	Shallow
MW-02-24	11/11/2014	1039843.8490	1639083.9636	834.24	833.76	25.25	NA	25.25	15.00 - 25.00	10.00	13.00	11.00	Shallow
MW-09-25	7/13/2015	1039083.6100	1638635.6690	801.84	801.71	20.25	NA	20.25	10.00 - 20.00	10.00	6.90	4.70	Shallow
MW-09-26	2/8/2017	1039384.4120	1638960.5490	818.20	817.91	53.25	35.00	53.25	43.00 - 53.00	10.00	40.90	38.10	Deep
MW-09-27	2/8/2017	1039240.4790	1638944.4180	814.93	814.39	53.25	35.00	53.25	43.00 - 53.00	10.00	40.50	37.20	Deep
MW-09-28	2/7/2017	1039239.5610	1638941.6660	815.10	814.84	35.25	NA	35.25	25.00 - 35.00	10.00	22.00	19.50	Intermediate A
MW-09-29	2/7/2017	1039308.4510	1638881.4750	815.45	815.29	40.25	NA	40.25	25.00 - 40.00	15.00	22.75	20.25	Intermediate A/B
MW-09-30	2/7/2017	1039316.6710	1639025.4790	817.04	816.83	39.50	NA	39.50	24.25 - 39.25	15.00	22.00	19.40	Intermediate A/B
MW-09-31	2/10/2017	1039553.3800	1639047.8700	828.49	828.20	75.25	50.00	75.25	65.00 - 75.00	10.00	62.90	60.60	Deep
MW-09-32	2/10/2017	1039557.8300	1639046.7600	828.38	828.22	45.25	NA	45.25	35.00 - 45.00	10.00	33.00	31.00	Intermediate B

Notes:

Elevations surveyed by Freeland and Associates, Inc., of Greenville, South Carolina. Elevations expressed in feet above North American Vertical Datum 1988.

TOC = top of casing

ft = feet

msl = mean sea level

bgs = below ground surface

NA = Not available. No casing was constructed during the well installation process.

Summary of Groundwater Field-Screening Sample Laboratory Analytical Results Former Vermont Bosch Site Fountain Inn, South Carolina Amec Foster Wheeler Project 6251161022.02.03

				Sample ID and Interval															
		SCDHEC	GW-0	09-02	GW-0	09-03		GW-09-04		GW-09-05		GW-09-05A	1	GW-09-06	GW-	09-07	GW-0	09-08	GW-09-09
Constituent	Units	MCL	26-30'	46-50'	26-30'	46-50'	26-30'	36-40'	46-50'	26-30'	26-30'	36-40'	46-50'	46-50'	26-30'	36-40'	26-30'	36-40'	26-30'
2-Butanone	μg/L	NE ¹	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	15	< 10	< 10	< 10
Acetone	μg/L	NE ²	< 20	< 20	< 20	< 20	12J	15J	< 20	< 20	26	< 20	< 20	< 20	< 20	20J	< 20	< 20	< 20
Methylene Chloride	μg/L	5	1.0J	1.2J	< 5.0	1.1J	1.0J	1.4J	< 5.0	1.2J	< 5.0	< 5.0	< 5.0	0.93J	< 5.0	< 5.0	< 5.0	1.2J	1.0J
PCE	μg/L	5	3.0	< 1.0	2.4	< 1.0	130	2.6	< 1.0	< 1.0	< 1.0	< 1.0	6.9	0.99J	27	< 1.0	3.4	< 1.0	< 1.0

Notes:

2-Butanone also known as methyl ethyl ketone

Methylene Chloride also known as Dichloromethane

PCE = Tetrachloroethene (perchloroethylene)

μg/L = micrograms per liter

SCDHEC = South Carolina Department of Health and Environmental Control

MCL = Maximum Contaminant Level (South Carolina Primary Drinking Water Regulation R..61-58, October 2014)

Sample intervals reported in feet below ground surface

Italicized values are estimated concentrations (J-Flagged) between laboratory Method Detection Limit (MDL) and Reporting Limit (RL)

Bold values represent concentrations above the laboratory RL

Yellow shaded values indicate concentrations above the MCL

Prepared By/Date: PSJ 08/23/16 Checked By/Date: LLM 10/04/16

¹ = United States Environmental Protection Agency Tap Water Regional Screening Level for 2-Butanone = 5,600 μg/L (May 2016)

² = United States Environmental Protection Agency Tap Water Regional Screening Level for Acetone = 14,000 μg/L (May 2016)

Summary of Groundwater Elevation Data Former Vermont Bosch Site Fountain Inn, South Carolina Amec Foster Wheeler Project 625161022.01.03

Monitoring Well	Date Measured	TOC Elevation (ft, bgs)	Depth to Ground Water (ft, bgs)	Water Table Elevation (ft, msl)	Screen Placement	
B-1	02/14/17	834.59	12.82	821.77	Shallow	
MW-08-01	02/14/17	833.58	13.76	819.82	Shallow	
MW-08-2D	02/14/17	833.80	14.45	819.35	Bedrock	
MW-08-03	02/14/17	833.56	14.50	819.06	Shallow	
MW-08-04	02/14/17	828.78	9.31	819.47	Shallow	
MW-08-05	02/14/17	831.35	11.05	820.30	Shallow	
MW-09-06	02/14/17	822.13	13.79	808.34	Shallow	
MW-09-07	02/14/17	828.88	18.40	810.48	Shallow	
MW-09-08D	02/14/17	828.72	18.92	809.80	Bedrock	
MW-09-09	02/14/17	830.93	19.24	811.69	Shallow	
MW-09-10	02/14/17	818.00	8.15	809.85	Shallow	
MW-09-11	02/14/17	818.14	10.84	807.30	Shallow	
MW-09-12D	02/14/17	818.18	11.51	806.67	Bedrock	
MW-09-13	02/14/17	815.59	11.27	804.32	Shallow	
MW-09-14	02/14/17	814.55	9.49	805.06	Shallow	
MW-09-15	02/14/17	814.76	11.03	803.73	Shallow	
MW-09-16D	02/14/17	814.83	11.07	803.76	Deep	
MW-09-17	02/14/17	813.84	15.14	798.70	Shallow	
MW-09-18D	02/14/17	813.76	17.82	795.94	Bedrock	
MW-09-19D	02/14/17	828.02	18.76	809.26	Bedrock	
MW-03-20	02/14/17	833.81	14.85	818.96	Shallow	
MW-03-21	02/14/17	834.08	15.01	819.07	Shallow	
MW-04-22	02/14/17	827.71	16.63	811.08	Shallow	
MW-04-23	02/14/17	826.27	14.49	811.78	Shallow	
MW-02-24	02/14/17	833.76	20.61	813.15	Shallow	
MW-09-25	02/14/17	801.71	8.73	792.98	Shallow	
MW-09-26	02/14/17	817.91	10.60	807.31	Deep	
MW-09-27	02/14/17	814.39	10.81	803.58	Deep	
MW-09-28	02/14/17	814.84	11.28	803.56	Intermediate A	
MW-09-29	02/14/17	815.29	10.40	804.89	Intermediate A/B	
MW-09-30	02/14/17	816.83	12.39	804.44	Intermediate A/B	
MW-09-31	02/14/17	828.20	18.59	809.61	Deep	
MW-09-32	02/14/17	828.22	18.02	810.20	Intermediate B	

Notes

Water levels measured on February 14, 2017

Elevations expressed in feet above North American Vertical Datum 1988.

TOC = top of casing

ft = feet

bgs = below ground surface

msl = Mean Sea Level

Prepared ByDate: LLM 02/16/17 Checked By/Date: CHB 03/15/17

Summary of Monitoring Well Groundwater Sample Laboratory Analytical Results Former Vermont Bosch Site Fountain Inn, South Carolina Amec Foster Wheeler Project 6251161022.02.03

	Laboratory		SCDHEC	MW-09-26	MW-09-27	MW-09-28	MW-09-29	MW-09-30	MW-09-31	MW-09-32
Constituents	Method	Units	MCL	2/14/17	2/14/17	2/14/17	2/14/17	2/14/17	2/15/17	2/15/17
Benzene	8260	μg/L	5	<50	<50	0.40J	<1.0	<1.0	<1.0	<1.0
Chloroform	8260	μg/L	80*	730	1100	2.7U	<1.0	<1.0	1.1U	<1.0
Methylene Chloride	8260	μg/L	5	<250	<250	2.2J	<5.0	2.0J	<5.0	1.7J
Tetrachloroethene	8260	μg/L	5	<50	<50	1.7	<1.0	<1.0	<1.0	30
Toluene	8260	μg/L	1,000	<50	<50	1.7	<1.0	<1.0	<1.0	<1.0

Notes:

μg/L = micrograms per liter

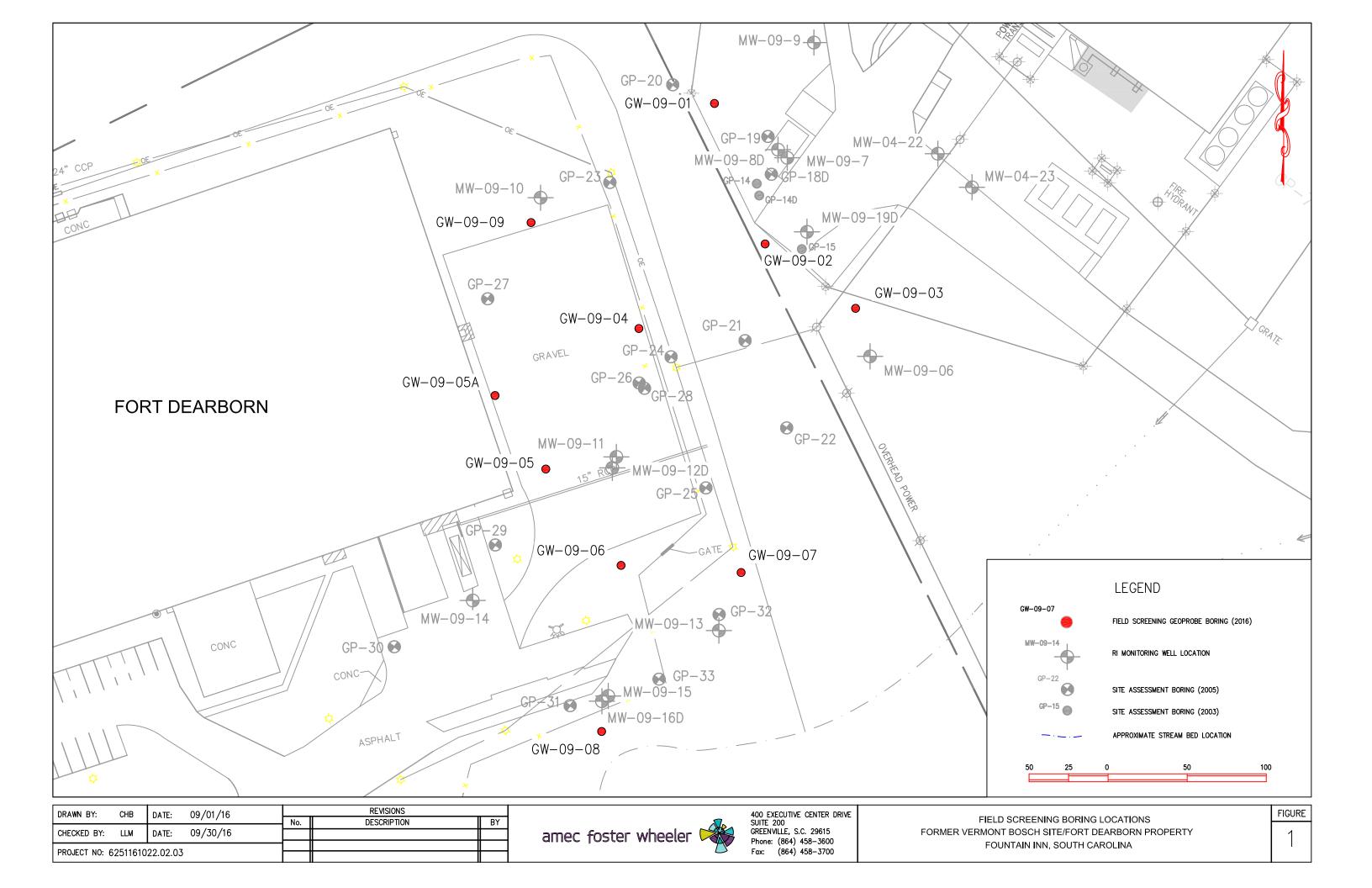
SCDHEC = South Carolina Department of Health and Environmental Control

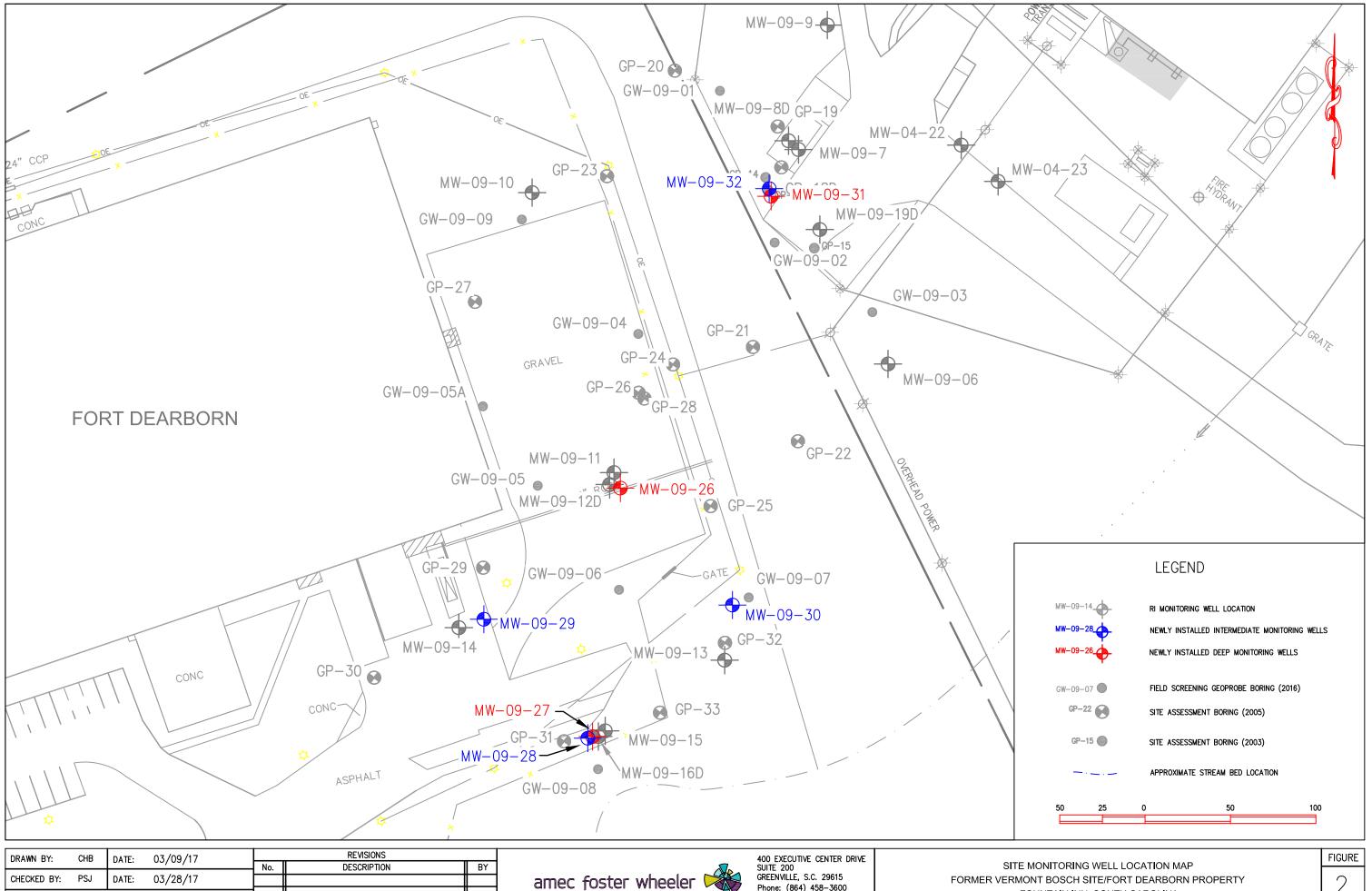
MCL = Maximum Contaminant Level (State Primary Drinking Water Regulations: R.61-58, October 2014)

* MCL for trihalomethanes

Bold values indicate detections above the Reporting Limit

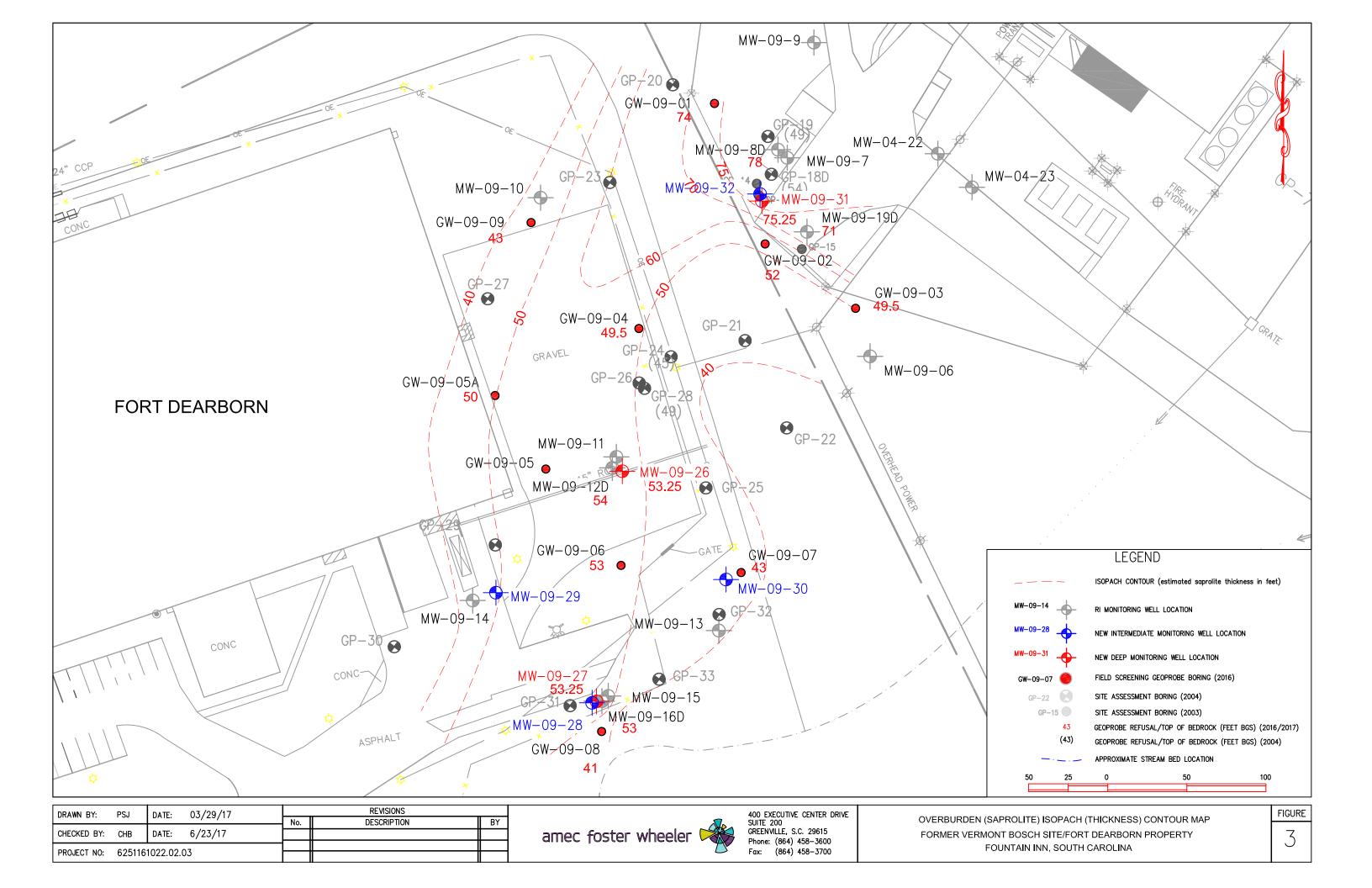
Italic values are estimated between the Method Detection Limit and Reporting Limit ("J" Flag)

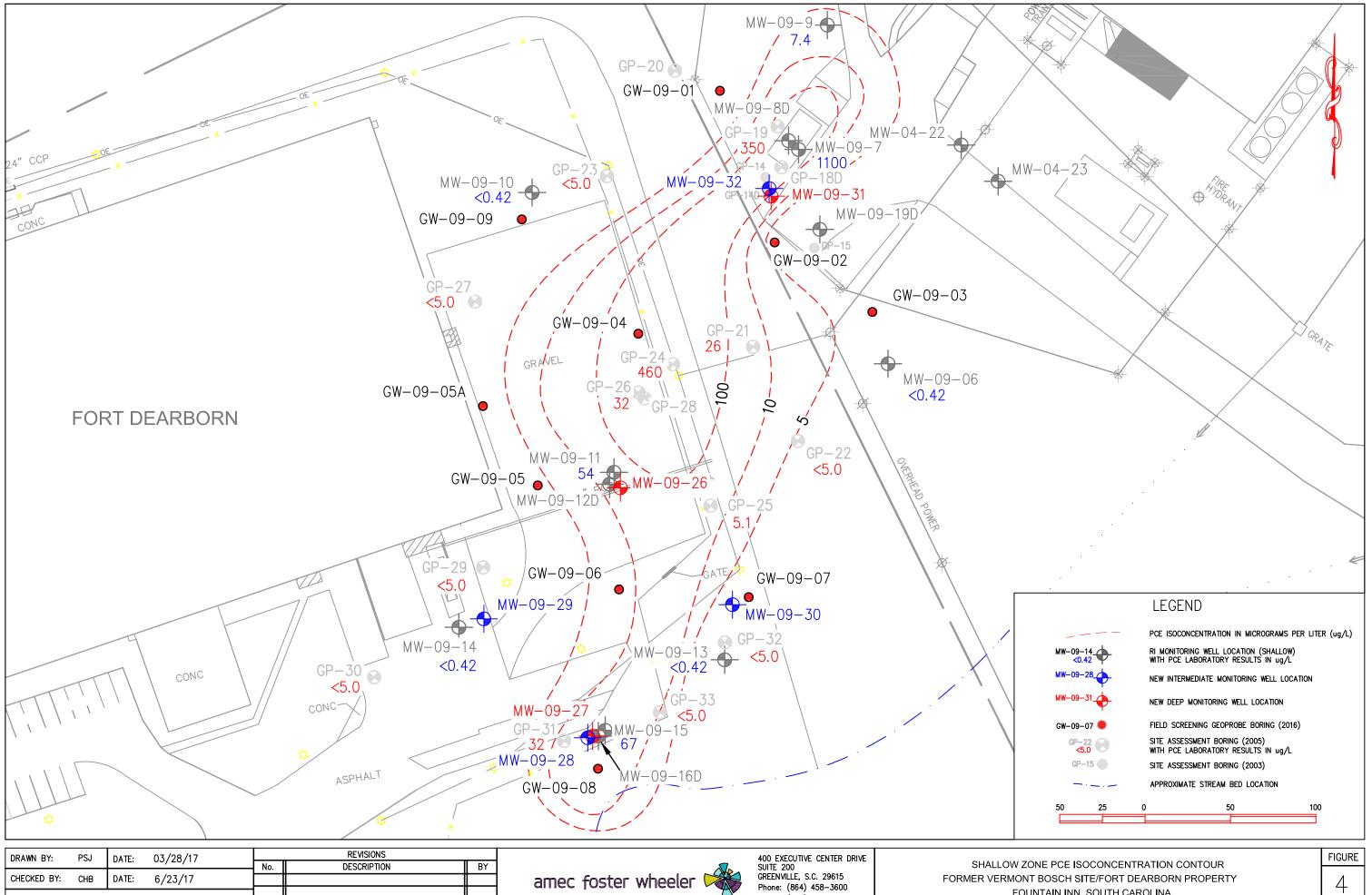

Data Validation Codes: J = value is estimated


U = not detected, value is detection limit

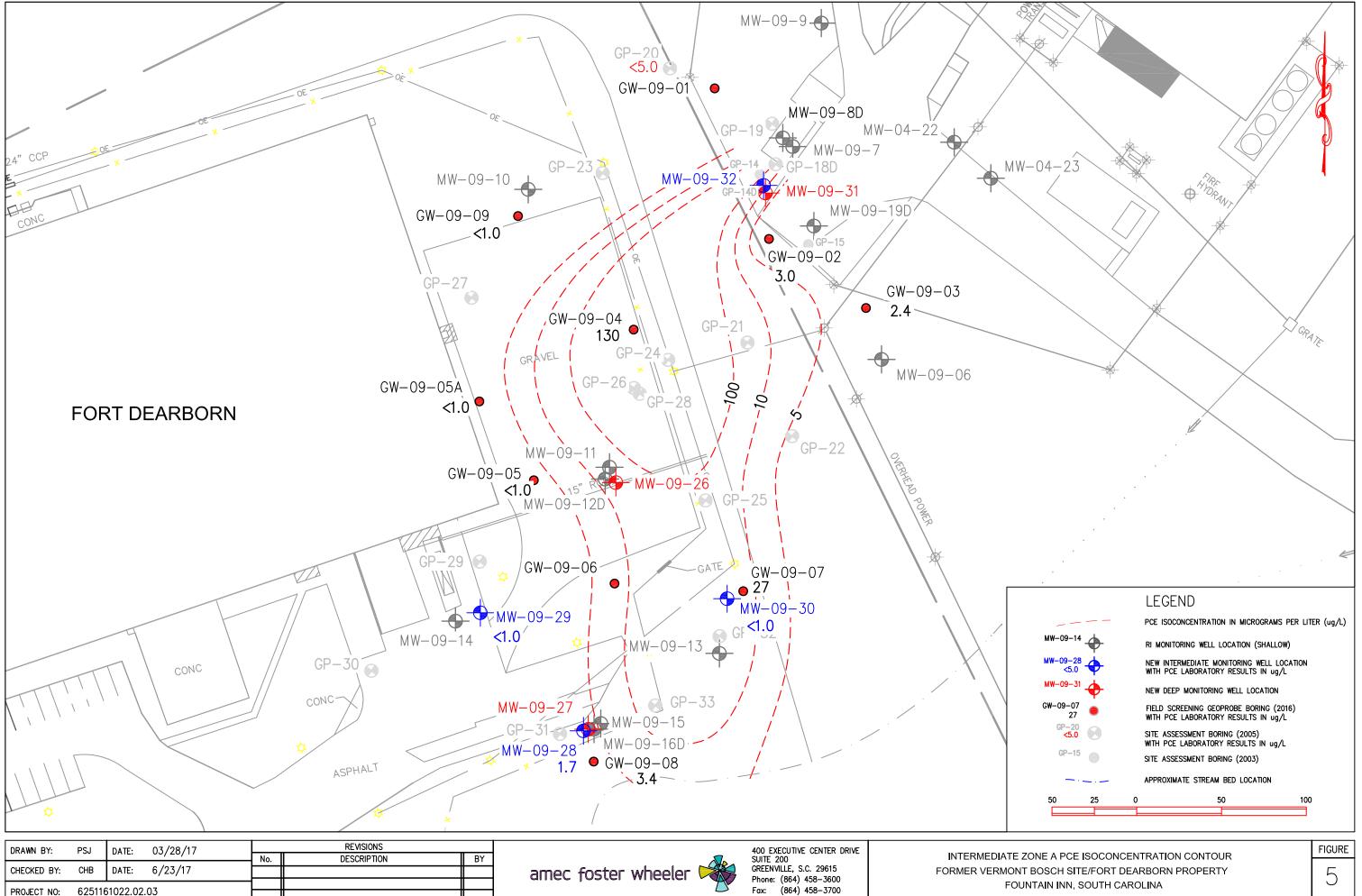
Yellow shaded values exceed MCL

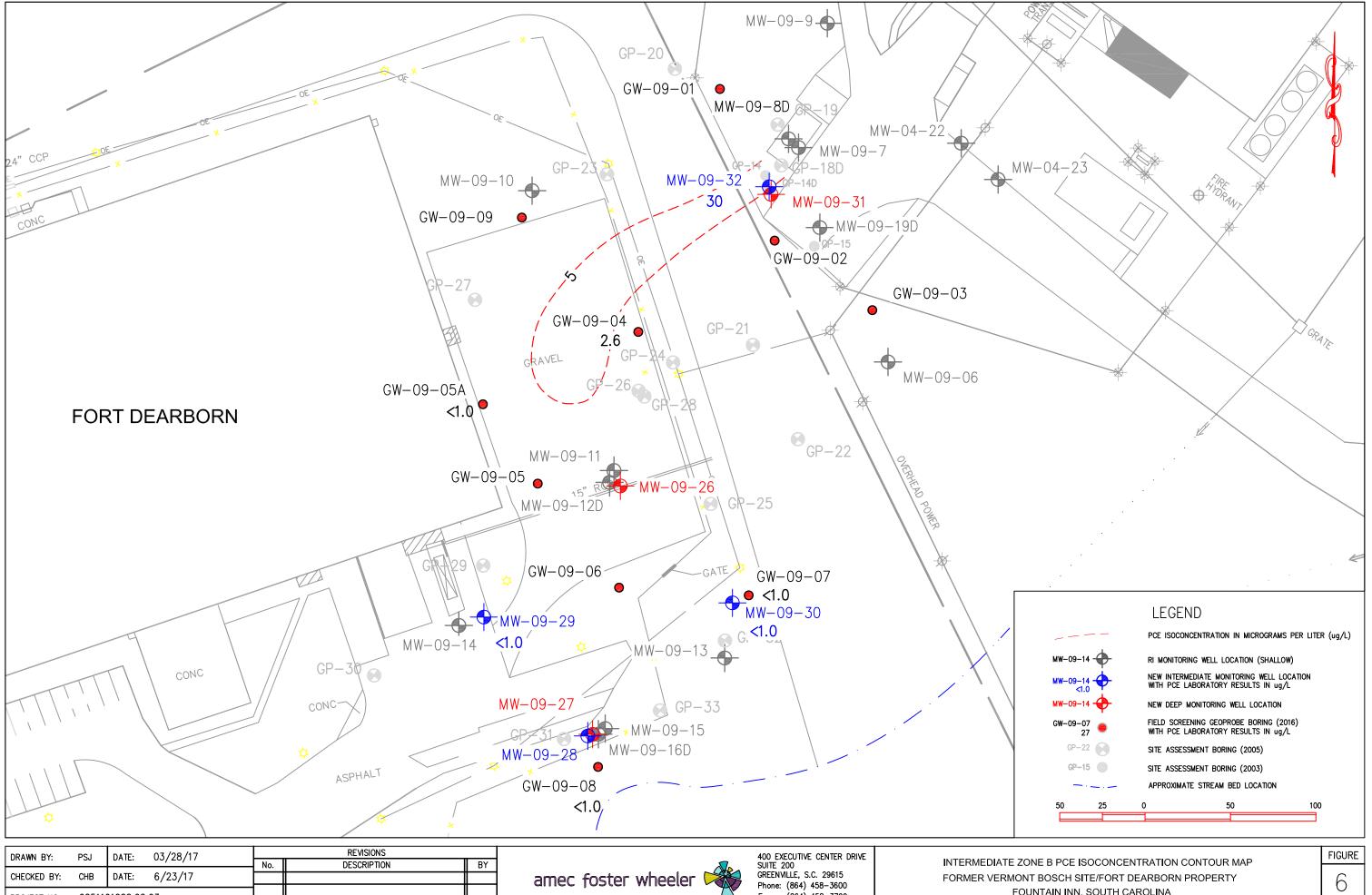
Prepared By/Date: LLM 03/20/17 Checked By/Date: PSJ 03/28/17





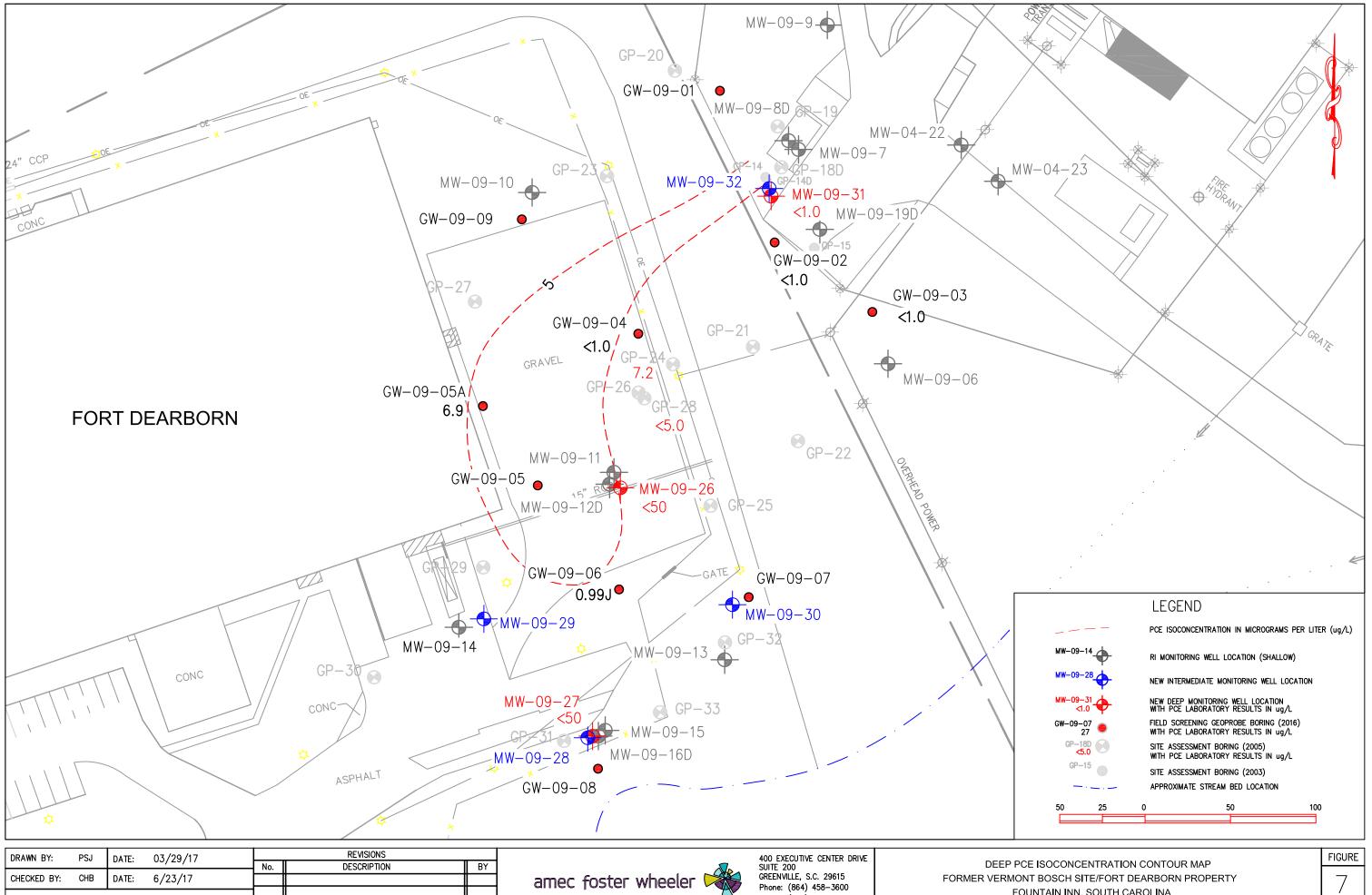
PROJECT NO: 6251161022.02.03


Phone: (864) 458–3600 Fax: (864) 458–3700

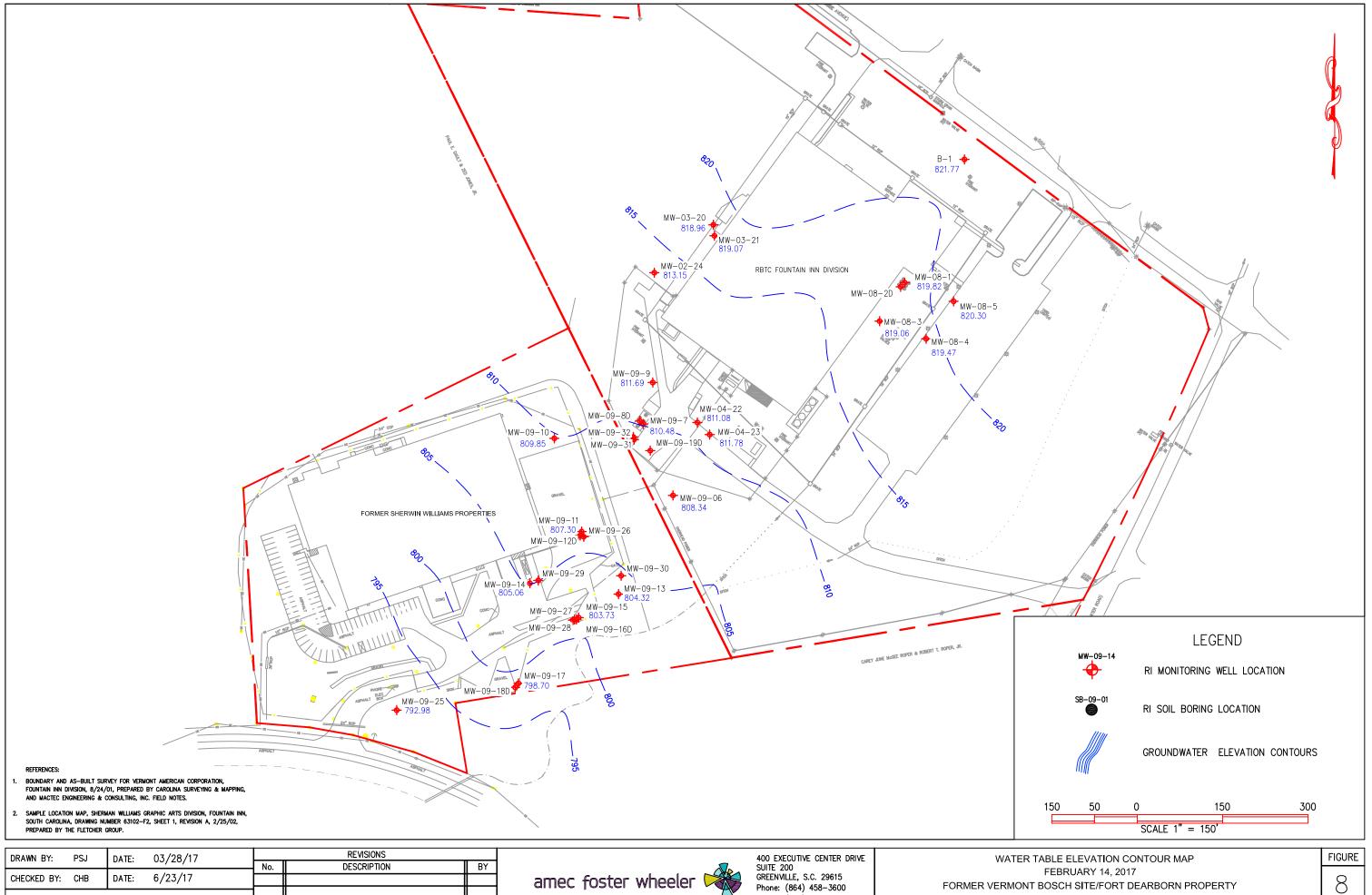


6251161022.02.03 PROJECT NO:

Fax: (864) 458–3700

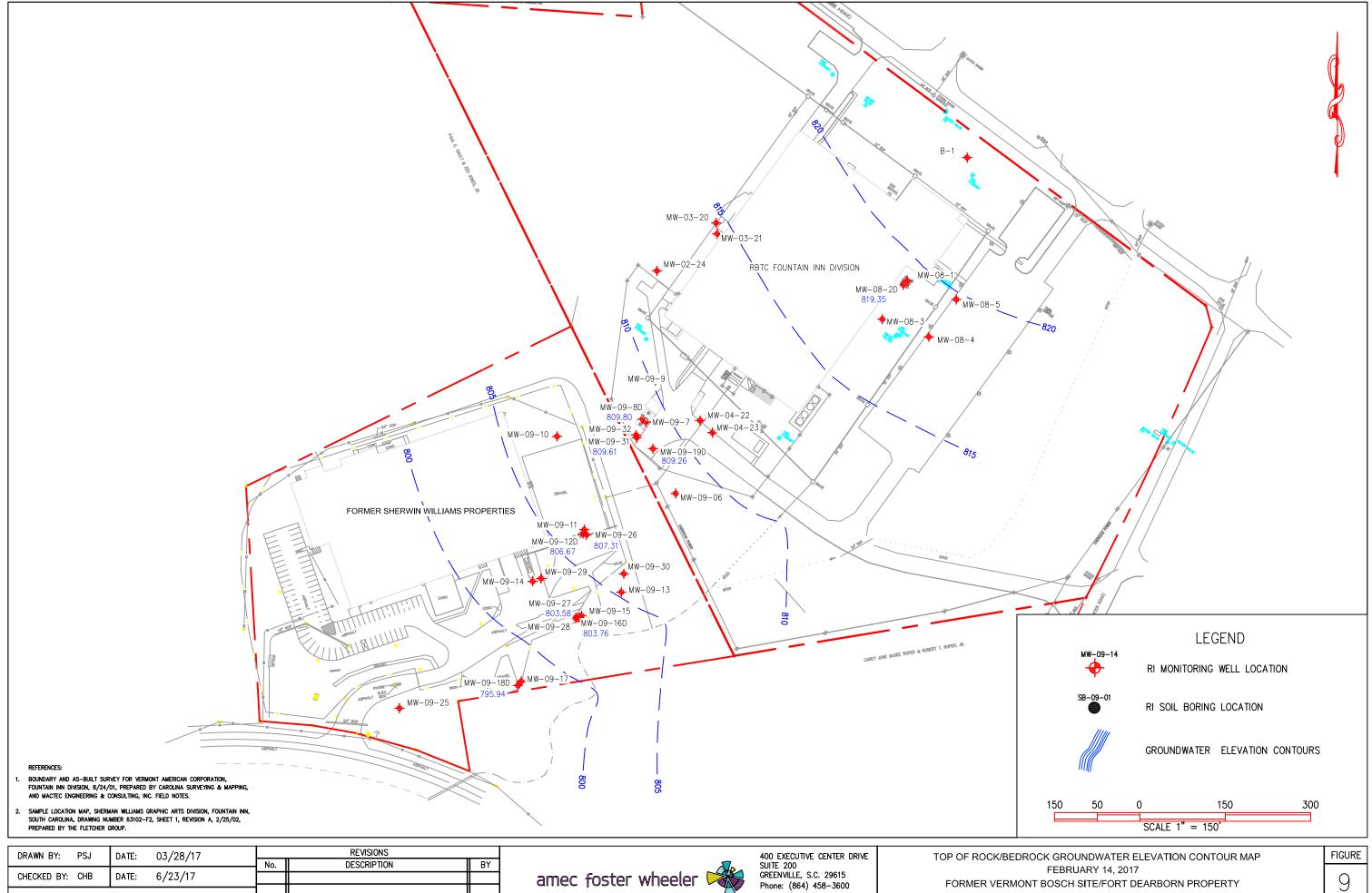


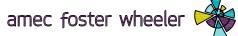
Phone: (864) 458–3600 Fax: (864) 458–3700


6251161022.02.03 PROJECT NO:

Phone: (864) 458-3600 Fax: (864) 458-3700

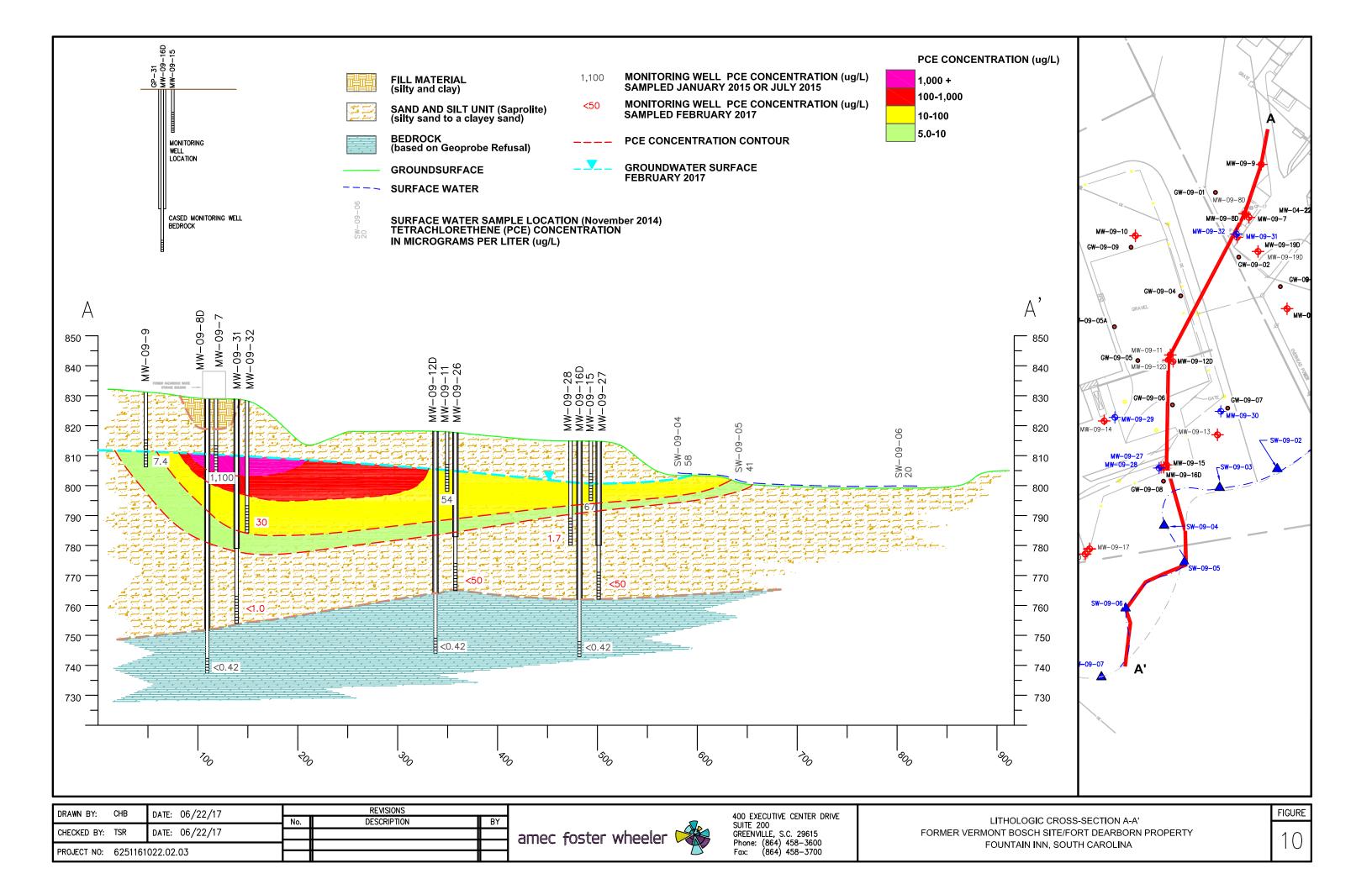
PROJECT NO: 6251161022.02.03

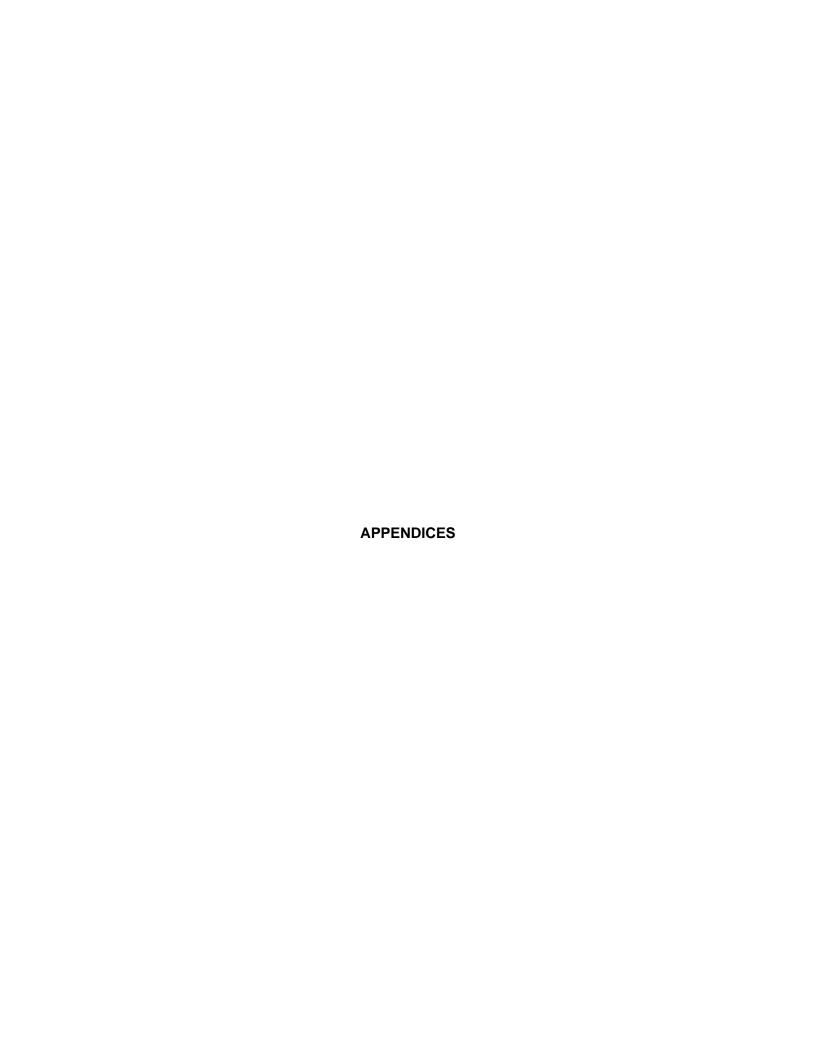

Phone: (864) 458-3600 Fax: (864) 458-3700


	DRAWN BY:	PSJ	DATE:	03/28/17	REVISIONS					
	BILITAIN BIL	tiit Bii 160 BAIL:		00/20/17	No.	DESCRIPTION	BY			
	CHECKED BY:	CHB	DATE:	6/23/17						
ĺ	PROJECT NO: 6251161022.02.03									
	I NOOLOT NO.	0201101	022.02.0				I I			

Phone: (864) 458–3600 Fax: (864) 458–3700

FORMER VERMONT BOSCH SITE/FORT DEARBORN PROPERTY FOUNTAIN INN, SOUTH CAROLINA


	DRAWN BY: PSJ	DATE:	03/28/17		REVISIONS	
ļ				No.	DESCRIPTION	BY
	CHECKED BY: CHB	DATE:	6/23/17			
Ì	PROJECT NO: 6251161022.02.03					
١						



400 EXECUTIVE CENTER DRIVE SUITE 200 GREENVILLE, S.C. 29615 Phone: (864) 458–3600 Fax: (864) 458–3700

FORMER VERMONT BOSCH SITE/FORT DEARBORN PROPERTY

FOUNTAIN INN, SOUTH CAROLINA

APPENDIX A SCDHEC CORRESPONDENCE

Catherine E. Heigel, Director

Promoting and protecting the health of the public and the environment

April 20, 2016

Aromake Afiegbe Robert Bosch Tool Corporation 1800 West Central Road Mount Prospect, IL 60056

Re:

Remedial Investigation Report Former Vermont Bosch Site Fountain Inn, South Carolina VCC # 05-5613-RP

Dear Mr. Afiegbe,

The South Carolina Department of Health and Environmental Control (the Department) has reviewed the above referenced Remedial Investigation (RI) Report. Before proceeding to the Feasibility Study (FS), the Department requests that additional groundwater sampling be completed at the intermediate depth in the area of the defined plume. Specifically, intermediate depth groundwater sampling should be completed down gradient from MW-09-7 and MW-09-11 in order to further delineate the vertical presence of the plume.

A Work Plan for the above requested sampling should be submitted to the Department by June 6, 2016. Please contact me at 803.898.0759 or at ramaglcj@dhec.sc.gov if you have any questions.

Sincerely,

Christopher J. Ramaglia

Environmental Engineer Associate Bureau of Land & Waste Management State Remediation Section

803.898.0759

CC: R. Gary Stewart, BLWM

Natalie Kirkpatrick, Area Director, Greenville EQC office, Upstate

Paul S. Johnstone, P.G., AMEC Foster Wheeler plc

File # 52309

Catherine E. Heigel, Director

Promoting and protecting the health of the public and the environment

June 15, 2016

Aromake Afiegbe Robert Bosch Tool Corporation 1800 West Central Road Mount Prospect, IL 60056

RE: Field Sampling and Analysis Plan for Additional Groundwater Investigation

Former Vermont Bosch Site Fountain Inn, South Carolina

VCC # 05-5613-RP

Dear Mr. Afiegbe:

The South Carolina Department of Health and Environmental Control (Department) has reviewed the above referenced Field Sampling and Analysis Plan for Additional Groundwater Investigation. The Department approves the report based on the information provided in the June 3, 2016 submittal. Please notify the Department five days before beginning work on site.

After June 15, 2016, I will no longer be the Department contact for this project. Future correspondence should be directed to my supervisor, R. Gary Stewart, P.E.

If you have any questions or comments, Mr. Stewart can be reached at (803) 898-0778 or stewarrg@dhec.sc.gov.

Sincerely,

Christopher J. Ramaglia, Project Manager

State Remediation Section

Bureau of Land & Waste Management

CC: R. Gary Stewart, BLWM

Natalie Kirkpatrick, Area Director, Greenville EQC office, Upstate

Paul S. Johnstone, P.G., AMEC Foster Wheeler plc

File # 52309

January 11, 2017

Aromake Afiegbe Robert Bosch Tool Corporation 1800 West Central Road Mount Prospect, IL 60056

Re:

Report of Groundwater Field Screening

Former Vermont Bosch Site Fountain Inn, South Carolina

VCC # 05-5613-RP

Dear Mr. Afiegbe,

The South Carolina Department of Health and Environmental Control (the Department) has reviewed and approves the Report of Groundwater Field Screening, dated November 11, 2016. The Department approves the installation of the additional monitoring wells as outlined in the Report and has attached a Monitoring Well Installation Permit.

Please contact the Department at least 5 days prior to the start of field activities. If you have any questions or comments please contact me at (803)898-0747 or at berresjl@dhec.sc.gov.

Sincerely,

Lucas Berresford Project Manager

Bureau of Land & Waste Management

State Remediation Section

CC: R. Gary Stewart, BLWM

Natalie Kirkpatrick, Area Director, Greenville EQC office, Upstate

File # 52309

Monitoring Well Approval

Date of Issuance: January 11, 2017 Approval #: MW-10963

Approval is hereby granted to:

Paul Johnstone P.G.

AMEC

37 Villa Road Suite 201 Greenville, SC 29615

Facility:

Former Vermont Bosch Site

Fountain Inn, South Carolina

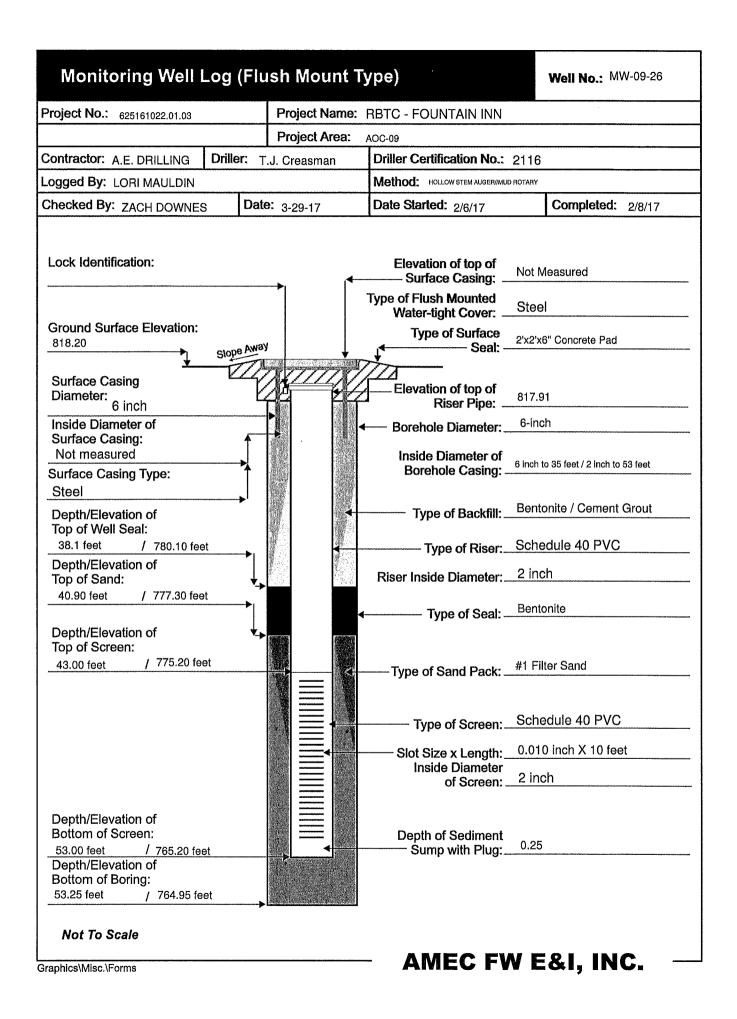
File # 52309

This approval is for the installation of 7 groundwater monitoring wells. The monitoring wells are to be installed in the locations as illustrated in the November 11, 2016 Report of Groundwater Field Screening. And consistent with the well construction details in the Sampling and Analysis Plan. Monitoring wells are to be installed following all of the applicable requirements of R.61-71.

Please note that R.61-71 requires the following:

- 1. All wells shall be drilled, constructed, and abandoned by a South Carolina certified well driller per R.61-71.D.1.
- 2. All wells shall be properly developed per R.61-71.H.2.d. A Water Well Record Form or other form provided or approved by the Department shall be completed and submitted within 30 days after well completion or abandonment unless another schedule has been approved by the Department. The form should contain the "as-built" construction details and all other information required by R.61-71.H.1.f
- 3. All analytical data and water levels obtained from each monitoring well shall be submitted to the author of this approval within 30 days of receipt of laboratory results unless another schedule has been approved by the Department as required by R.61-71.H.1.d.
- 4. All monitoring wells shall be labeled as required by R.61-71.H.2.c.
- 5. If any of the information provided to the Department changes, including the proposed

drilling date, the Author (PM Phone Number) shall be notified at least twenty-four (24) hours prior to well construction as required by R.61-71.H.1.a.

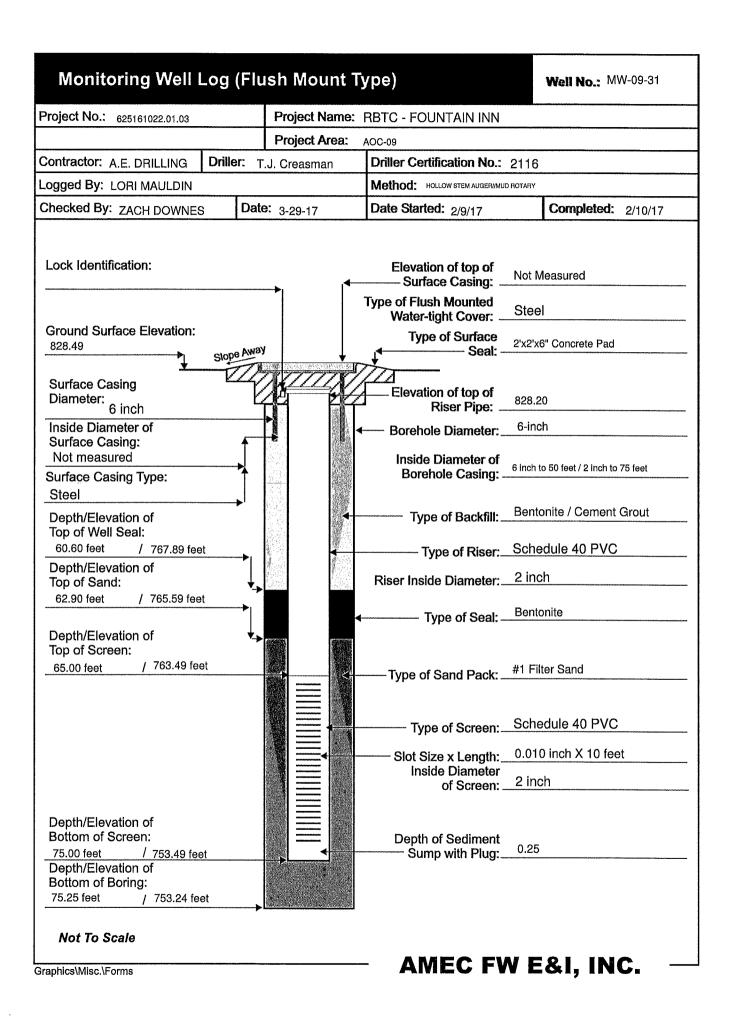

This approval is pursuant to the provisions of Section 44-55-40 of the 1976 South Carolina Code of Laws and R.61-71 of the South Carolina Well Standards, dated April 26, 2002.

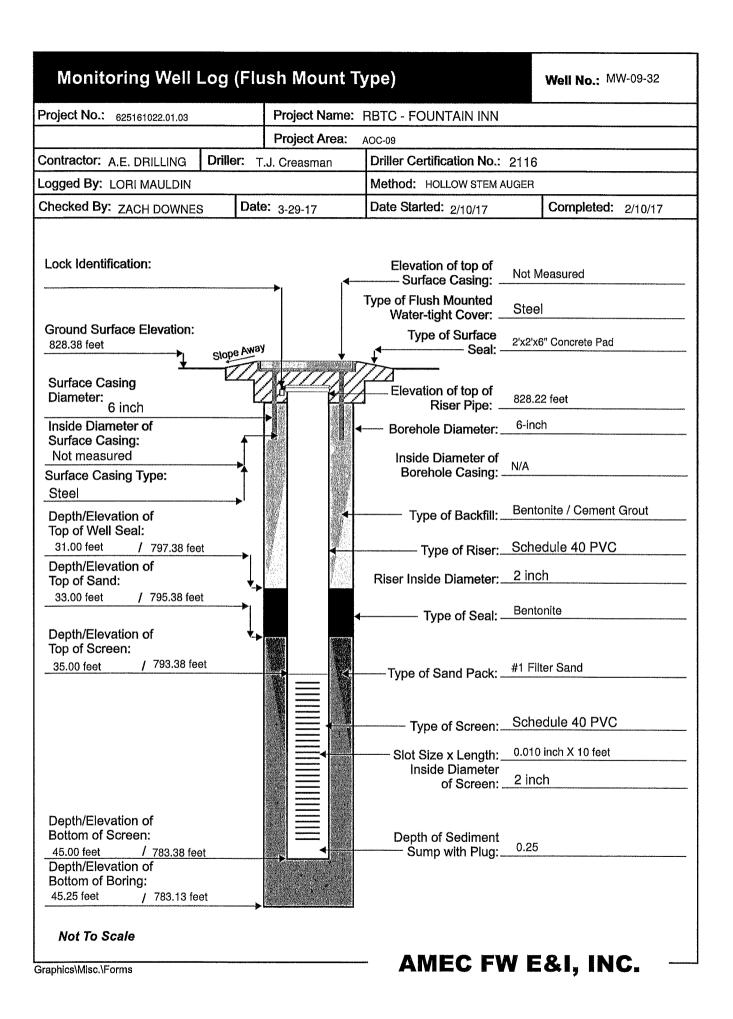
Lucas Berresford

State Remediation Section

Bureau of Land and Waste Management

APPENDIX B MONITORING WELL CONSTRUCTION DIAGRAMS AND SCDHEC FORM 1903




Monitoring Well Log (Flush Mount Type) Well No.: MW-09-27 Project No.: 625161022.01.03 Project Name: RBTC - FOUNTAIN INN **Project Area:** AOC-09 Driller: **Driller Certification No.: 2116** Contractor: A.E. DRILLING T.J. Creasman Logged By: LORI MAULDIN Method: HOLLOW STEM AUGERI/MUD ROTARY Completed: 2/8/17 Date: 3-29-17 Date Started: 2/6/17 Checked By: ZACH DOWNES Lock Identification: Elevation of top of Not Measured Surface Casing: Type of Flush Mounted Steel Water-tight Cover: **Ground Surface Elevation:** Type of Surface 2'x2'x6" Concrete Pad 814.93 Slope Away Seal: **Surface Casing** Diameter: 6 inch Elevation of top of 814.39 Riser Pipe: 6-inch Inside Diameter of **Borehole Diameter:** Surface Casing: Not measured Inside Diameter of 6 inch to 35 feet / 2 inch to 53 feet **Borehole Casing:** Surface Casing Type: Steel Bentonite / Cement Grout Depth/Elevation of Type of Backfill: Top of Well Seal: 37.20 feet Schedule 40 PVC / 777.19 feet Type of Riser:. Depth/Elevation of 2 inch Riser Inside Diameter: Top of Sand: 40.50 feet / 774.43 feet Bentonite Type of Seal: Depth/Elevation of Top of Screen: / 771.93 feet 43.00 feet #1 Filter Sand Type of Sand Pack: Schedule 40 PVC Type of Screen: 0.010 inch X 10 feet Slot Size x Length:_ Inside Diameter 2 inch of Screen: Depth/Elevation of Bottom of Screen: Depth of Sediment 0.25 53.00 feet / 761.93 feet Sump with Plug: Depth/Elevation of Bottom of Boring: 53.25 feet / 761.68 feet Not To Scale AMEC FW E&I, INC. Graphics\Misc.\Forms

Monitoring Well Log (Flush Mount Type) Well No.: MW-09-29 Project No.: Project Name: RBTC - FOUNTAIN INN 625161022.01.03 Project Area: AOC-09 Contractor: A.E. DRILLING Driller: T.J. Creasman Driller Certification No.: 2116 Logged By: LORI MAULDIN Method: HOLLOW STEM AUGER Checked By: ZACH DOWNES Date: 3-29-17 Date Started: 2/7/17 Completed: 2/7/17 Lock Identification: Elevation of top of Not Measured Surface Casing: Type of Flush Mounted Steel Water-tight Cover: **Ground Surface Elevation:** Type of Surface 2'x2'x6" Concrete Pad 815.45 feet Slope Away Seal: Surface Casing Diameter: 6 inch Elevation of top of 815.29 feet Riser Pipe: 6-inch Inside Diameter of Borehole Diameter: Surface Casing: Not measured Inside Diameter of N/A **Borehole Casing:** Surface Casing Type: Steel Bentonite / Cement Grout Depth/Elevation of Type of Backfill: Top of Well Seal: 20.25 feet Schedule 40 PVC / 795.20 feet Type of Riser: Depth/Elevation of 2 inch Riser Inside Diameter: Top of Sand: 22.75 feet / 792.7 feet Bentonite Type of Seal: Depth/Elevation of Top of Screen: / 790.45 feet 25.00 feet #1 Filter Sand Type of Sand Pack: Schedule 40 PVC Type of Screen: 0.010 inch X 15 feet Slot Size x Length: Inside Diameter 2 inch of Screen:. Depth/Elevation of Bottom of Screen: Depth of Sediment 0.25 Sump with Plug: 40.00 feet / 775.45 feet Depth/Elevation of Bottom of Boring: 40.25 feet / 775.20 feet Not To Scale AMEC FW E&I, INC. Graphics\Misc.\Forms

Monitoring Well Log (Flush Mount Type) Well No.: MW-09-30 Project Name: RBTC - FOUNTAIN INN Project No.: 625161022.01.03 **Project Area:** AOC-09 Driller: Contractor: A.E. DRILLING T.J. Creasman Driller Certification No.: 2116 Logged By: LORI MAULDIN Method: HOLLOW STEM AUGER Date: 3-29-17 Date Started: 2/7/17 Completed: 2/7/17 Checked By: ZACH DOWNES Lock Identification: Elevation of top of Not Measured Surface Casing: Type of Flush Mounted Steel Water-tight Cover: **Ground Surface Elevation:** Type of Surface 2'x2'x6" Concrete Pad 817.04 feet Slope Away Seal: Surface Casing Diameter: 6 inch Elevation of top of 816.83 feet Riser Pipe: Inside Diameter of 6-inch Borehole Diameter: **Surface Casing:** Not measured Inside Diameter of N/A **Borehole Casing:** Surface Casing Type: Steel Bentonite / Cement Grout Type of Backfill: Depth/Elevation of Top of Well Seal: 19.40 feet Schedule 40 PVC / 797.64 feet Type of Riser: Depth/Elevation of 2 inch Top of Sand: Riser Inside Diameter: 22.00 feet / 795.04 feet Bentonite Type of Seal: Depth/Elevation of Top of Screen: 1 792.79 feet 24.25 feet #1 Filter Sand Type of Sand Pack: Schedule 40 PVC Type of Screen: -0.010 inch X 15 feet Slot Size x Length: Inside Diameter 2 inch of Screen: Depth/Elevation of Bottom of Screen: Depth of Sediment 0.25 39.25 feet Sump with Plug: / 777.79 feet Depth/Elevation of **Bottom of Boring:** 39.50 feet / 777.54 feet Not To Scale AMEC FW E&I, INC. Graphics\Misc.\Forms

. WELL OWNER INFORMATION:			7. PERMIT NUMBER: MW-10963					
Name: Robert Bosch Tool Con			WW-10903					
(last)	(firs	it)	8. USE:					
Address: 1800 West Central Ro	ad		☐ Residential ☐ Public Supply ☐ Process					
City: Mount Prospect State:	IL Zip: 60	056-0000	☐ Irrigation ☐ Air Conditioning ☐ Emergency					
ony whould Prospect	1L 2.p. 00	050-0000	☐ Test Well ☐ Monitor Well ☐ Replacement					
Telephone: Work:	Home:		9. WELL DEPTH (completed) Date Started: 2-6-17					
2. LOCATION OF WELL:	COUNTY: Green	ville	ft. Date Completed:2-8-17					
Name:Fort Dearborn			10. CASING: Threaded Welded					
Street Address: 100 N. Woods	Drive		Diam.:Below ✓					
^{City:} Fountain Inn	^{Zip:} 29644-0	0000	Type: 🗹 PVC 🗖 Galvanized Surface ft.					
			Steel Other					
Latitude: Longit	ude:		in. to $\frac{33}{2}$ ft. depth Drive Shoe? \blacksquare Yes \blacksquare No					
			·					
3. PUBLIC SYSTEM NAME:	PUBLIC SYSTE	M NUMBER:	11. SCREEN: Type: PVC Diam.: 2-inch					
			Slot/Gauge: 0.010-inch Length: 10 feet					
4. ABANDONMENT : ☐ Yes	☑ No		Set Between: 43 ft. and 53 ft. NOTE: MULTIPLE SCREENS					
			ft. and ft. USE SECOND SHEET					
Grouted Depth: from			Sieve Analysis Yes (please enclose) No					
Farmatian Decembrian	*Thickness		12. STATIC WATER LEVEL ft. below land surface after 24 hours					
Formation Description	of Stratum	Bottom of Stratum	13. PUMPING LEVEL Below Land Surface.					
			ft. after hrs. Pumping G.P.M.					
			Pumping Test: 🗖 Yes (please enclose) 🗹 No					
			Yield:					
			14. WATER QUALITY					
			Chemical Analysis ☐ Yes ☑ No Bacterial Analysis ☐ Yes ☑ No					
			Please enclose lab results.					
			15. ARTIFICIAL FILTER (filter pack) ☑ Yes ☐ No					
			Installed from 40.9 ft. to 53.25 ft.					
			Effective size#1 Uniformity Coefficientsand					
			16. WELL GROUTED? ☑ Yes ☐ No					
			☑ Neat Cement ☐ Bentonite ☐ Bentonite/Cement ☐ Other					
			17. NEAREST SOURCE OF POSSIBLE CONTAMINATION: ft direction					
			Type Well Disinfected □ Yes ☑ No Type: Amount:					
			18. PUMP: Date installed: Not installed ☑					
			Mfr. Name: Model No.:					
			H.P Volts Length of drop pipe ft. Capacity gpm					
			TYPE: Submersible Jet (shallow) Turbine					
			☐ Jet (deep) ☐ Reciprocating ☐ Centrifugal					
			19. WELL DRILLER: Terry R. Creasman Jr. CERT. NO.: 2116					
			Address: (Print) 30 Grant Park Place					
			Piedmont, SC 29673					
*Indicate Water Bearing Zones			Telephone No.: 864-288-1986 Fax No.: 864-288-2272					
Indicate Water Dearing Zones			20. WATER WELL DRILLER'S CERTIFICATION: This well was drilled under					
(Use a 2nd sheet if needed)			my direction and this report is true to the best of my knowledge and belief.					
5. REMARKS:								
MW-09-26								
			Signed:					
Bentonite seal 38.1-40.9' bgs			Well Driller					
6. TYPE: ☑ Mud Rotary ☐ Je	tted 🗖	Bored	If D Level Driller, provide supervising driller's name:					
	_	Driven						
☐ Cable tool Ot	her		William Barnes, #562-A					

1. WELL OWNER INFORMATION:			7. PERMIT NUMBER: MW-10963				
Name: Robert Bosch Tool Corp			M W = 10903				
(last)	(firs	t)	8. USE:				
Address: 1800 West Central Roa	ıd		☐ Residential ☐ Public Supply ☐ Process				
City: Mount Prospect State: []	L Zip: 60	056-0000	☐ Irrigation ☐ Air Conditioning ☐ Emergency				
City: Mount Prospect State: []	L 21p. 00	030-0000	☐ Test Well ☐ Monitor Well ☐ Replacement				
Telephone: Work:	Home:		9. WELL DEPTH (completed) Date Started: 2-6-17				
2. LOCATION OF WELL:	COUNTY:Green	ville	ft. Date Completed:2-8-17				
Name:Fort Dearborn			10. CASING: ☑ Threaded ☑ Welded				
Street Address: 100 N. Woods I	Drive		Diam.: _6"/2" Height: Above ☐Below ☑				
City:Fountain Inn	Zip: 29644 - 0	000	Type: PVC Galvanized Surface ft.				
			Steel Other Weight lb./ft.				
Latitude: Longitu	ide:						
			·				
3. PUBLIC SYSTEM NAME:	PUBLIC SYSTEI	M NUMBER:	11. SCREEN: Type: PVC Diam.: 2-inch				
			Slot/Gauge: 0.010-inch Length: 10 feet				
4. ABANDONMENT: Yes	☑ No		Set Between: 43 ft. and 53 ft. NOTE: MULTIPLE SCREENS				
			ft. and ft. USE SECOND SHEET				
Grouted Depth: from			Sieve Analysis ☐ Yes (please enclose) ☐ No				
*Thickness Depth to			12. STATIC WATER LEVEL ft. below land surface after 24 hours				
Formation Description	of Stratum	Bottom of Stratum	13. PUMPING LEVEL Below Land Surface.				
			ft. after hrs. Pumping G.P.M.				
			Pumping Test: ☐ Yes (please enclose) ☑ No				
			Yield:				
			14. WATER QUALITY				
			Chemical Analysis ☐ Yes ☑ No Bacterial Analysis ☐ Yes ☑ No				
			Please enclose lab results.				
			15. ARTIFICIAL FILTER (filter pack) ☑ Yes ☐ No				
			Installed from 40.5 ft. to 53.25 ft.				
			Effective size#1 Uniformity Coefficientsand				
			16. WELL GROUTED? ☑ Yes ☐ No				
			☑ Neat Cement ☐ Bentonite ☐ Bentonite/Cement ☐ Other				
			17. NEAREST SOURCE OF POSSIBLE CONTAMINATION: ft direction				
			Type				
			Well Disinfected ☐ Yes ☐ No Type: Amount:				
			18. PUMP: Date installed: Not installed 🖸				
			Mfr. Name: Model No.:				
			H.P Volts Length of drop pipe ft. Capacity gpm				
			TYPE: Submersible Jet (shallow) Turbine				
			☐ Jet (deep) ☐ Reciprocating ☐ Centrifugal				
			19. WELL DRILLER: Terry R. Creasman Jr. CERT. NO.: 2116				
			Address: (Print) 30 Grant Park Place Level: A B C D (circle one)				
			Piedmont, SC 29673				
*Indicate Water Bearing Zones			Telephone No.: 864-288-1986 Fax No.: 864-288-2272				
Indicate Prater Bearing Lenes			20. WATER WELL DRILLER'S CERTIFICATION: This well was drilled under				
(Use a 2nd sheet if needed)			my direction and this report is true to the best of my knowledge and belief.				
5. REMARKS:							
MW-09-27			- Date -				
			Signed: Date: 2/21/17				
Bentonite seal 37.2-40.5' bgs			Well Driller				
6. TYPE: ☑ Mud Rotary ☐ Jett.	ed 🔲 E	Bored	If D Level Driller, provide supervising driller's name:				
□ Dug □ Air I	Rotary 🗖 i	Oriven	· · · · · · · · · · · · · · · · · · ·				
☐ Cable tool ☑ Othe	er		William Barnes, #562-A				

. WELL OWNER INFORMATION:			7. PERMIT NUMBER: MW-10963				
Name: Robert Bosch Tool Con			191 W = 10703				
(last)	(firs	it)	8. USE:				
Address: 1800 West Central Ro	ad		☐ Residential ☐ Public Supply ☐ Process				
City: Mount Prospect State:	IL Zip: 60	056-0000	☐ Irrigation ☐ Air Conditioning ☐ Emergency				
ony Mount Prospect	1L 2.p. 00	020-0000	☐ Test Well ☐ Monitor Well ☐ Replacement				
Telephone: Work:	Home:		9. WELL DEPTH (completed) Date Started: 2-7-17				
2. LOCATION OF WELL:	COUNTY: Green	ville	ft. Date Completed:2-7-17				
Name:Fort Dearborn			10. CASING: ☑ Threaded ☑ Welded				
Street Address: 100 N. Woods	Drive		Diam.: 2-inch Height: Above Below ✓				
^{City:} Fountain Inn	^{Zip:} 29644-0	0000	Type: 🗹 PVC 🗖 Galvanized Surface ft.				
			Usteel U Other Weight Weight Ib./ft. 2 in. to 25 ft. depth Drive Shoe? □ Yes ☑ No				
Latitude: Longit	ude:		in. toft. depth Drive Shoe? ☐ Yes ☑ No in. toft. depth				
			· · ·				
3. PUBLIC SYSTEM NAME:	PUBLIC SYSTE	M NUMBER:	11. SCREEN: Type: PVC Diam.: 2-inch				
			Slot/Gauge: 0.010-inch Length: 10 feet				
4. ABANDONMENT : ☐ Yes	☑ No		Set Between: 25 ft. and 35 ft. NOTE: MULTIPLE SCREENS				
			ft. and ft. USE SECOND SHEET				
Grouted Depth: from			Sieve Analysis Yes (please enclose) No				
Farmatian Decembrian	*Thickness		12. STATIC WATER LEVEL ft. below land surface after 24 hours				
Formation Description	of Stratum	Bottom of Stratum	13. PUMPING LEVEL Below Land Surface.				
			ft. after hrs. Pumping G.P.M.				
			Pumping Test: 🗖 Yes (please enclose) 🗹 No				
			Yield:				
			14. WATER QUALITY				
			Chemical Analysis ☐ Yes ☑ No Bacterial Analysis ☐ Yes ☑ No				
			Please enclose lab results.				
			15. ARTIFICIAL FILTER (filter pack) ☑ Yes ☐ No				
			Installed from 22 ft. to 35.25 ft.				
			Effective size#1 Uniformity Coefficientsand				
			16. WELL GROUTED? ☑ Yes ☐ No				
			☑ Neat Cement ☐ Bentonite ☐ Bentonite/Cement ☐ Other				
			17. NEAREST SOURCE OF POSSIBLE CONTAMINATION: ft direction				
			Type Well Disinfected □ Yes ☑ No Type: Amount:				
			18. PUMP: Date installed: Not installed ☑				
			Mfr. Name: Model No.:				
			H.P Volts Length of drop pipe ft. Capacity gpm				
			TYPE: Submersible Jet (shallow) Turbine				
			☐ Jet (deep) ☐ Reciprocating ☐ Centrifugal				
			19. WELL DRILLER: Terry R. Creasman Jr. CERT. NO.: 2116				
			Address: (Print) 30 Grant Park Place				
			Piedmont, SC 29673				
*Indicate Water Bearing Zones			Telephone No.: 864-288-1986 Fax No.: 864-288-2272				
Indicate Water Dearing Zones			20. WATER WELL DRILLER'S CERTIFICATION: This well was drilled under				
(Use a 2nd sheet if needed)			my direction and this report is true to the best of my knowledge and belief.				
5. REMARKS:							
MW-09-28							
			Signed:				
Bentonite seal 19.5-22' bgs			Well Driller				
6. TYPE: ☐ Mud Rotary ☐ Je	tted 🔳	Bored	If D Level Driller, provide supervising driller's name:				
		Driven					
☐ Cable tool Ot	her		William Barnes, #562-A				

1. WELL OWNER INFORMATIO	N:		7. PERMIT NUMBER: MW-10963				
Name: Robert Bosch Tool		0	W1W-10705				
Address: 1000 W C	•	t)	8. USE:				
Address: 1800 West Central	Koad		□ Residential □ Public Supply □ Process				
City: Mount Prospect Sta	ate: IL Zip: 60	056-0000	☐ Irrigation ☐ Air Conditioning ☐ Emergency ☐ Test Well ☐ Monitor Well ☐ Replacement				
Telephone: Work:	Home:		9. WELL DEPTH (completed) Date Started: 2-7-17				
2. LOCATION OF WELL:	COUNTY:Green	ville	ft Date Completed:2-7-17				
Name:Fort Dearborn			10. CASING: Threaded Welded				
Street Address: 100 N. Woo			Diam.: 2-inch Height: Above Below ✓				
^{City:} Fountain Inn	^{Zip:} 29644 - 0	000	Type: ☑ PVC ☐ Galvanized Surface				
Latitude: Lo	angitudo.		$\frac{2}{2}$ in. to $\frac{25}{2}$ ft. depth Drive Shoe? \square Yes \square No				
Latitude. Lo	ongitude:		in. toft. depth				
3. PUBLIC SYSTEM NAME:	PUBLIC SYSTE	M NUMBER:	11. SCREEN: Type: PVC Diam.: 2-inch				
			Slot/Gauge: 0.010-inch Length: 15 feet				
4. ABANDONMENT:	es 🗹 No		Set Between: 25 ft. and 40 ft. NOTE: MULTIPLE SCREENS				
			ft. and ft. USE SECOND SHEET				
Grouted Depth: from			Sieve Analysis 🔲 Yes (please enclose) 🗹 No				
Formation Description	*Thickness of	Depth to Bottom of	12. STATIC WATER LEVEL ft. below land surface after 24 hours				
i dimation Description	Stratum	Stratum	13. PUMPING LEVEL Below Land Surface.				
			ft. after hrs. Pumping G.P.M.				
			Pumping Test: ☐ Yes (please enclose) ☑ No				
			Yield:				
			14. WATER QUALITY Chemical Analysis ☐ Yes ☑ No Bacterial Analysis ☐ Yes ☑ No				
			Please enclose lab results.				
			15. ARTIFICIAL FILTER (filter pack) ☑ Yes ☐ No				
			Installed from 22.75 ft. to 40.25 ft. Effective size $\#1$ Uniformity Coefficient \underline{sand}				
			16. WELL GROUTED? ☑ Yes ☐ No				
			☑ Neat Cement ☐ Bentonite ☐ Bentonite/Cement ☐ Other				
			Depth: From ground surface ft. to 20.25 ft.				
			17. NEAREST SOURCE OF POSSIBLE CONTAMINATION: ft direction				
			Type				
			Well Disinfected ☐ Yes ☑ No Type: Amount:				
			18. PUMP: Date installed: Not installed ☑				
			Mfr. Name: Model No.:				
			H.P Volts Length of drop pipe ft. Capacity gpm TYPE: ☐ Submersible ☐ Jet (shallow) ☐ Turbine				
			☐ Jet (deep) ☐ Reciprocating ☐ Centrifugal				
			19. WELL DRILLER: Terry R. Creasman Jr. CERT. NO.: 2116				
			Address: (Print) 30 Grant Park Place Level: A B C D (circle one)				
			Piedmont, SC 29673				
*Indicate Water Bearing Zones			Telephone No.: 864-288-1986 Fax No.: 864-288-2272				
(Use a 2nd sheet if needed)			WATER WELL DRILLER'S CERTIFICATION: This well was drilled under my direction and this report is true to the best of my knowledge and belief.				
5. REMARKS:			,				
MW-09-29							
111 11 07 47			Signed: Pote: 2/21/17				
Bentonite seal 20.25-22.75' b	ogs		Signed: Date: 2/21/17 Well Driller				
6. TYPE: ☐ Mud Rotary ☐	Jetted 🔲 I	Bored	If D Level Driller, provide supervising driller's name:				
□ Dug		Oriven					
☐ Cable tool ☑	1 Other		William Barnes, #562-A				

1. WELL OWNER INFORMATION:			7. PERMIT NUMBER: MW-10963					
Name: Robert Bosch Tool Con			W 10903					
(last)	(firs	it)	8. USE:					
Address: 1800 West Central Ro	ad		☐ Residential ☐ Public Supply ☐ Process					
City: Mount Prospect State:	IL Zip: 60	056-0000	☐ Irrigation ☐ Air Conditioning ☐ Emergency					
owy. Wiount Prospect	1L 2.p. 00	020-0000	☐ Test Well ☐ Monitor Well ☐ Replacement					
Telephone: Work:	Home:		9. WELL DEPTH (completed) Date Started: 2-7-17					
2. LOCATION OF WELL:	COUNTY:Green	ville	ft. Date Completed:2-7-17					
Name:Fort Dearborn			10. CASING: ☐ Threaded ☐ Welded					
Street Address: 100 N. Woods	Drive		Diam.: <u>2-inch</u> Height: Above Below ✓					
City: Fountain Inn	Zip: 29644-0	0000	Type: 🗹 PVC 🗖 Galvanized Surface ft.					
1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	27011 (,000	Steel Other Weight — lb./ft.					
Latitude: Longit	ude:		in. to24.25 ft. depth					
			in. to ft. depth					
3. PUBLIC SYSTEM NAME:	PUBLIC SYSTE	M NUMBER:	11. SCREEN: Type: PVC Diam.: 2-inch					
			Slot/Gauge: 0.010-inch Length: 15 feet					
4. ABANDONMENT: Yes	☑ No		Set Between: 24.25 ft. and 39.25 ft. NOTE: MULTIPLE SCREENS					
			ft, andft. USE SECOND SHEET					
Grouted Depth: from	ft. to	ft.	Sieve Analysis Yes (please enclose) No					
	*Thickness	Depth to	12. STATIC WATER LEVEL ft. below land surface after 24 hours					
Formation Description	of	Bottom of	13. PUMPING LEVEL Below Land Surface.					
	Stratum	Stratum	ft. after hrs. Pumping G.P.M.					
			Pumping Test: Yes (please enclose) No					
			Yield:					
			14. WATER QUALITY					
			Chemical Analysis ☐ Yes ☑ No Bacterial Analysis ☐ Yes ☑ No					
			Please enclose lab results.					
			15. ARTIFICIAL FILTER (filter pack) ☑ Yes ☐ No					
			Installed from 22 ft. to 39.5 ft.					
			Effective size #1 Uniformity Coefficient sand					
			16. WELL GROUTED? ☑ Yes ☐ No					
			☑ Neat Cement ☐ Bentonite ☐ Bentonite/Cement ☐ Other					
			Depth: From <u>ground surface</u> ft. to <u>19.4</u> ft.					
			17. NEAREST SOURCE OF POSSIBLE CONTAMINATION: ft direction					
			Type					
			Well Disinfected ☐ Yes ☐ No Type: Amount:					
			18. PUMP: Date installed: Not installed ☑					
			Mfr. Name: Model No.:					
			H.P Volts Length of drop pipe ft. Capacity gpm					
			TYPE: Submersible Jet (shallow) Turbine					
			☐ Jet (deep) ☐ Reciprocating ☐ Centrifugal					
			19. WELL DRILLER: Terry R. Creasman Jr. CERT. NO.: 2116					
			Address: (Print) 30 Grant Park Place Level: A B C D (circle one)					
			Piedmont, SC 29673					
*Indicate Water Bearing Zones			Telephone No.: 864-288-1986 Fax No.: 864-288-2272					
			20. WATER WELL DRILLER'S CERTIFICATION: This well was drilled under					
(Use a 2nd sheet if needed)			my direction and this report is true to the best of my knowledge and belief.					
5. REMARKS:								
MW-09-30			2 14-					
			Signed: Date: 2/21/17					
Bentonite seal 19.4-22' bgs			Well Driller					
6. TYPE: ☐ Mud Rotary ☐ Je	tted 🔲	Bored	If D Level Driller, provide supervising driller's name:					
		Driven						
☐ Cable tool	•		William Barnes, #562-A					

1. WELL OWNER INFORMATION:			7. PERMIT NUMBER: MW-10963				
Name: Robert Bosch Tool Corp			191 W - 10303				
(last)	(firs	t)	8. USE:				
Address: 1800 West Central Roa	ad		☐ Residential ☐ Public Supply ☐ Process				
City: Mount Prospect State: I	IL Zip: 60	056-0000	☐ Irrigation ☐ Air Conditioning ☐ Emergency				
owy Wiount Prospect	-ip. 00	050-0000	☐ Test Well ☐ Monitor Well ☐ Replacement				
Telephone: Work:	Home:		9. WELL DEPTH (completed) Date Started: 2-9-17				
2. LOCATION OF WELL:	COUNTY:Green	ville	ft. Date Completed:2-10-17				
Name:SC Plastics			10. CASING: ☐ Threaded ☐ Welded				
Street Address: 800 Woodside	Avenue		Diam.: _6"/2" Height: Above ☐Below ☑				
^{City:} Fountain Inn	Zip: 29644-0	000	Type: PVC Galvanized Surface ft.				
			Usteel ☐ Other Weight lb./ft. 6 in. toft. depth Drive Shoe? ☐ Yes ☑ No				
Latitude: Longitu	ude:		in. to $\begin{array}{c c} \hline 0 & \hline \\ 0 & $				
			·				
3. PUBLIC SYSTEM NAME:	PUBLIC SYSTEM	/I NUMBER:	11. SCREEN: Type: PVC Diam.: 2-inch				
			Slot/Gauge: 0.010-inch Length: 10 feet				
4. ABANDONMENT : ☐ Yes	✓ No		Set Between: 65 ft. and 75 ft. NOTE: MULTIPLE SCREENS				
			ft. and ft. USE SECOND SHEET				
Grouted Depth: from			Sieve Analysis				
Farmation Description	*Thickness	Depth to	12. STATIC WATER LEVEL ft. below land surface after 24 hours				
Formation Description	of Stratum	Bottom of Stratum	13. PUMPING LEVEL Below Land Surface.				
			ft. after hrs. Pumping G.P.M.				
			Pumping Test: 🗖 Yes (please enclose) 🗹 No				
			Yield:				
			14. WATER QUALITY				
			Chemical Analysis ☐ Yes ☑ No Bacterial Analysis ☐ Yes ☑ No				
			Please enclose lab results.				
			15. ARTIFICIAL FILTER (filter pack) ☑ Yes ☐ No				
			Installed from 62.9 ft. to 75.25 ft.				
			Effective size#1 Uniformity Coefficientsand				
			16. WELL GROUTED? ☑ Yes ☐ No				
			☑ Neat Cement ☐ Bentonite ☐ Bentonite/Cement ☐ Other				
			17. NEAREST SOURCE OF POSSIBLE CONTAMINATION: ft direction				
			Type Well Disinfected □ Yes ☑ No Type: Amount:				
			18. PUMP: Date installed: Not installed ☑				
			Mfr. Name: Model No.:				
			H.P Volts Length of drop pipe ft. Capacity gpm				
			TYPE: Submersible Jet (shallow) Turbine				
			☐ Jet (deep) ☐ Reciprocating ☐ Centrifugal				
			19. WELL DRILLER: Terry R. Creasman Jr. CERT. NO.: 2116				
			Address: (Print) 30 Grant Park Place				
			Piedmont, SC 29673				
*Indicate Water Bearing Zones			Telephone No.: 864-288-1986 Fax No.: 864-288-2272				
Indicate Water Bearing 20nes			20. WATER WELL DRILLER'S CERTIFICATION: This well was drilled under				
(Use a 2nd sheet if needed)			my direction and this report is true to the best of my knowledge and belief.				
5. REMARKS:							
MW-09-31							
			Signed:				
Bentonite seal 60.6-62.9' bgs			Well Driller				
6. TYPE: ☑ Mud Rotary ☐ Jeti	ted 🗖 F	Bored	If D Level Driller, provide supervising driller's name:				
	_	Driven					
☐ Cable tool ☐ Oth	ner		William Barnes, #562-A				

1. WELL OWNER INFORMATION:			7. PERMIT NUMBER: MW-10963					
Name: Robert Bosch Tool Cor			IVI W - 1070J					
(last)	(firs	t)	8. USE:					
Address: 1800 West Central Ro	ad		☐ Residential ☐ Public Supply ☐ Process					
City: Mount Prospect State:	IL Zip: 60	056-0000	☐ Irrigation ☐ Air Conditioning ☐ Emergency					
owy. Wiount Prospect	IL 2.p. 00	050-0000	☐ Test Well ☐ Monitor Well ☐ Replacement					
Telephone: Work:	Home:		9. WELL DEPTH (completed) Date Started: 2-10-17					
2. LOCATION OF WELL:	COUNTY:Green	ville	ft. Date Completed:2-10-17					
Name:SC Plastics			10. CASING: ☑ Threaded ☑ Welded					
Street Address: 800 Woodside	Avenue		Diam.: 2-inch Height: Above Below ✓					
City: Fountain Inn	Zip: 29644-0	000	Type: 🗹 PVC 🗖 Galvanized Surface ft.					
- 1 ountain nin	29044-0	000	☐ Steel ☐ Other Weight lb./ft.					
Latitude: Longit	ude:		in. to35ft. depth Drive Shoe? □ Yes ☑ No					
			in. to ft. depth					
3. PUBLIC SYSTEM NAME:	PUBLIC SYSTE	M NUMBER:	11. SCREEN:					
			Type: PVC Diam.: 2-inch					
4. ABANDONMENT: Yes	☑ No		Slot/Gauge: 0.010-inch Length: 10 feet Set Between: 35 ft. and 45 ft. NOTE: MULTIPLE SCREENS					
_ ::-			Set Between: 35 ft. and 45 ft. NOTE: MULTIPLE SCREENS					
Grouted Depth: from	ft. to	ft.	Sieve Analysis Yes (please enclose) No					
·	*Thickness	Depth to	12. STATIC WATER LEVEL ft. below land surface after 24 hours					
Formation Description	of	Bottom of						
	Stratum	Stratum	13. PUMPING LEVEL Below Land Surface.					
			ft. after hrs. Pumping G.P.M. Pumping Test: ☐ Yes (please enclose) ☑ No					
			Yield:					
			14. WATER QUALITY Chemical Analysis ☐ Yes ☑No Bacterial Analysis ☐ Yes ☑ No					
			Please enclose lab results.					
			15. ARTIFICIAL FILTER (filter pack)					
			Effective size _ #1 Uniformity Coefficient _ sand					
			16. WELL GROUTED? ☑ Yes ☐ No ☑ Neat Cement ☐ Bentonite ☐ Bentonite ☐ Other					
			Depth: From ground surface ft. to 31 ft.					
			17. NEAREST SOURCE OF POSSIBLE CONTAMINATION: ft direction Type					
			Well Disinfected ☐ Yes ☑ No Type: Amount:					
			18. PUMP: Date installed: Not installed ☑ Mfr. Name: Model No.:					
			H.P Volts Length of drop pipe ft. Capacity gpm					
			TYPE: Submersible Jet (shallow) Turbine					
			☐ Jet (deep) ☐ Reciprocating ☐ Centrifugal					
			19. WELL DRILLER: Terry R. Creasman Jr. CERT. NO.: 2116					
			Address: (Print) 30 Grant Park Place Level: A B C D (circle one)					
			Piedmont, SC 29673					
			·					
*Indicate Water Bearing Zones			Telephone No.: 864-288-1986 Fax No.: 864-288-2272					
(Use a 2nd about if needed)			20. WATER WELL DRILLER'S CERTIFICATION: This well was drilled under					
(Use a 2nd sheet if needed)			my direction and this report is true to the best of my knowledge and belief.					
5. REMARKS:								
MW-09-32			2 15					
D			Signed: Date: 2/21/17					
Bentonite seal 31-33' bgs			Well Driller					
6. TYPE: ☐ Mud Rotary ☐ Je	tted 🔲 E	Bored	If D Level Driller, provide supervising driller's name:					
□ Dug □ Air	Rotary 🗖 [Oriven	, , , , , , , , , , , , , , , , , , , ,					
☐ Cable tool ☑ Otl	her		William Barnes, #562-A					

APPENDIX C FIELD DATA RECORDS

Project No.: \(\Q \(\alpha \) \(\lambda \	Mall Davids and Daney				Well No.:
Client Name: \$\text{Project Name: } \text{Foundard } \text{T_{DOS}}\$ Checked By: \$\text{Uwall Installation Date:} Start Date: Start Date: Finish Date: Finish Date: Finish Date: Finish Date: Finish Date: Finish Date: Finish Date: Finish Time: Finish Date: Finish Time: Fin	Well Development Record			:	MW-09-26D
Well Development Date:					
Well Development Date: 2-9, 2-10-17 Start Time: 2-5 Finish Time: Initial Water Level (ft.): Water Level during Initial Pumping/Purging (ft): Water Level at Termination of Pumping/Purging (ft): Water Level at Termination of Pumping/Purging (ft): Weather: # Height of Water Column: 0.16 gal./ft. (2 in.) 0.65 gal./ft. (6 in.) User Column: Well-Volume (gal./ft.) Well-Volume as described in Notes will be used in place of Well-Volume (gal./ft.) Borehole volume as described in Notes will be used in place of Well-Volume (gal./min.): Well-Volume (gal./min.): User Conductivity: Approximate Pumping Rate (gal./min.): User Conductivity: Approximate Pumping Rate (gal./min.): User Conductivity: Approximate Pumping Rate (gal./min.): User Conductivity: User Con	**************************************				
Initial Water Level (ft.): Water Level during Initial Pumping/Purging (ft): Water Level at Termination of Pumping/Purging (ft): Weather: Height of Water Column: (ft.) No.65 gal./ft. (6 in.) 28.1/ft. (6 in.) 39.1/ft. (6 in.) = Well Volume (gal./ft.) Borehole volume as described in Notes will be used in place of Well Volume Well-Volumes: However the pumping Rate (gal./min.): However the pumping Rate (gal./min.): Well-Volumes: However the pumping Rate (gal./min.): 10.5					nish Date:
Water Level at Termination of Pumping/Purging (ft): Weather: J Height of Water Column:	Well Development Date: 2-9 + 2-10	1-17	Start Time: 1225	5 FI	nish Time:
Water Level at Termination of Pumping/Purging (ft): Weather: Height of Water Column:	Initial Water Level (ft.): \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				
Weather: J					
Height of Water Column: (ft.) x		urging (ft).:			· ,
Solid Soli	Weather:				
Notes: One borehole volume = ((gallons per foot of borehole x 0.3) + (gallons per foot of well x 0.7)) x HWC Gallons per foot of water column Notes: One borehole volume = ((gallons per foot of borehole x 0.3) + (gallons per foot of well x 0.7)) x HWC Gallons per foot of water column	(ft.)	0.65 gal./ft 1.5 gal./ft. gal./ft. ((4 in.) (6 in.) in.) =		olume (gal./ft.)
Well-Voldmes: Pumping Rate (gal./min.):		Notes will be used	n place of Well Volum	<u>e</u>	
Notes: One borehole volume = ((gallons per foot of borehole x 0.3) + (gallons per foot of well x 0.7)) x HWC Gallons per foot of water column Notes: One borehole volume = Pi x (radius of well*2) x 7.48 gallons per foot HWC = height of water column		ature: pH	·	Pumpin	g Rate (NTU's):
Notes: One borehole volume = ((gallons per foot of borehole x 0.3) + (gallons per foot of well x 0.7)) x HWC Gallons per foot of well = Pi x (radius of well^2) x 7.48 gallons per foot HWC = height of water column	40 a allows - surget	purged 13	urged 4 tin	ر (gai.//	
Notes: One borehole volume = ((gallons per foot of borehole x 0.3) + (gallons per foot of well x 0.7)) x HWC Gallons per foot of well = Pi x (radius of well^2) x 7.48 gallons per foot HWC = height of water column	50 1235 18.	1 1.5	$\frac{2}{541.2}$		
Notes: One borehole volume = ((gallons per foot of borehole x 0.3) + (gallons per foot of well x 0.7)) x HWC Gallons per foot of borehole = Pi x (radius of borehole x 2) x 7.48 gallons per foot Gallons per foot of well = Pi x (radius of well^2) x 7.48 gallons per foot HWC = height of water column				- A B A C	
Notes: One borehole volume = ((gallons per foot of borehole x 0.3) + (gallons per foot of well x 0.7)) x HWC Gallons per foot of borehole = Pi x (radius of borehole^2) x 7.48 gallons per foot Gallons per foot of well = Pi x (radius of well^2) x 7.48 gallons per foot HWC = height of water column				_	
Notes: One borehole volume = ((gallons per foot of borehole x 0.3) + (gallons per foot of well x 0.7)) x HWC Gallons per foot of borehole = Pi x (radius of borehole*2) x 7.48 gallons per foot Gallons per foot of well = Pi x (radius of well^2) x 7.48 gallons per foot HWC = height of water column					
Gallons per foot of borehole = Pi x (radius of borehole^2) x 7.48 gallons per foot Gallons per foot of well = Pi x (radius of well^2) x 7.48 gallons per foot HWC = height of water column	1310 18	· (c) -13.	19 243.4	_	<u> 7.65</u>
Gallons per foot of borehole = Pi x (radius of borehole^2) x 7.48 gallons per foot Gallons per foot of well = Pi x (radius of well^2) x 7.48 gallons per foot HWC = height of water column					
Gallons per foot of borehole = Pi x (radius of borehole^2) x 7.48 gallons per foot Gallons per foot of well = Pi x (radius of well^2) x 7.48 gallons per foot HWC = height of water column					
Gallons per foot of borehole = Pi x (radius of borehole^2) x 7.48 gallons per foot Gallons per foot of well = Pi x (radius of well^2) x 7.48 gallons per foot HWC = height of water column				-	
Gallons per foot of borehole = Pi x (radius of borehole^2) x 7.48 gallons per foot Gallons per foot of well = Pi x (radius of well^2) x 7.48 gallons per foot HWC = height of water column	· · · · · · · · · · · · · · · · · · ·		<u> </u>		
Gallons per foot of borehole = Pi x (radius of borehole^2) x 7.48 gallons per foot Gallons per foot of well = Pi x (radius of well^2) x 7.48 gallons per foot HWC = height of water column					
Gallons per foot of borehole = Pi x (radius of borehole^2) x 7.48 gallons per foot Gallons per foot of well = Pi x (radius of well^2) x 7.48 gallons per foot HWC = height of water column					
Gallons per foot of borehole = Pi x (radius of borehole^2) x 7.48 gallons per foot Gallons per foot of well = Pi x (radius of well^2) x 7.48 gallons per foot HWC = height of water column					Management of the second of th
Gallons per foot of borehole = Pi x (radius of borehole^2) x 7.48 gallons per foot Gallons per foot of well = Pi x (radius of well^2) x 7.48 gallons per foot HWC = height of water column					9
Gallons per foot of borehole = Pi x (radius of borehole^2) x 7.48 gallons per foot Gallons per foot of well = Pi x (radius of well^2) x 7.48 gallons per foot HWC = height of water column					
Gallons per foot of borehole = Pi x (radius of borehole^2) x 7.48 gallons per foot Gallons per foot of well = Pi x (radius of well^2) x 7.48 gallons per foot HWC = height of water column	Notes: One borehole volume = ((gallons)	per foot of borehole	x 0.3) + (gallons per	foot of well x (0.7)) x HWC
HWC = height of water column	Gallons per foot of borehole = Pi x	(radius of borehol	e^2) x 7.48 gallons pe		,
L. Marke		ius of well^2) x 7.4	8 gallons per foot		
Law Made	Tivvo – neight of water column				
Lux Made					-
Lux Made					
Lucy Made					
1 Well Davaloners Signature: // VV 1 1 1 1//VV	Well Developers Signature: $\frac{1}{2}$	Marla	,		

Graphics\Misc.\Forms

Mall David and David		Well No.:								
Well Development Record		MW-09-27D								
Project No.: (251 14 1022	Logged By: Lov: Mauldin									
Client Name: RBC	Project Name: Fountons Inn	Checked By:								
Well Installation Date:	Start Date:	Finish Date:								
Well Development Date: 2.16-17	Start Time: C4+10 1035	Finish Time:								
Initial Water Level (ft.): 9 40 T	oC .									
Vater Level during Initial Pumping/Purging (ft).:										
Water Level at Termination of Pumping/Pu	rging (ft).:									
Weather: \$ Colo, clear										
Height of Water Column: 0.16 gal./ft. (2 in.) (ft.) x 0.65 gal./ft. (4 in.) 1.5 gal./ft. (6 in.) gal./ft. (in.) = Well Volume (gal./ft.) Borehole volume as described in Notes will be used in place of Well Volume										
Gallows										
Number of Well-Volumes: O Surve Puw 1105 1105 1115 50 1113 1110	2 In 30 Minutes (ga 1 10.44 18+5518. 1 10.72 490.1	roximate oing Rate (NTU's): I./min.): I. 0 23 I 21 9 20 1 21 4								
Gallons per foot of borehole = Pi x	er foot of borehole x 0.3) + (gallons per foot of well (radius of borehole^2) x 7.48 gallons per foot us of well^2) x 7.48 gallons per foot	x 0.7)) x HWC								

Well Dev	elopment R	ecord					Well N	10.:
	No make the second						MW.	09-28
Project No.: \o			Logged By:	<u>Lori</u>	Mauldin	7		
Client Name:	RBTC		Project Nam		Nain Inc	7.	Checked I	Ву:
Well Installation D		Start Date:				Finish Dat	e:	
Well Developmen	t Date: 💢 _ \	0.17	, and a second s	Start Ti	me:		Finish Tim	ie:
Initial Water Leve	·		oC					
Water Level durin			······································					
Water Level at Te			ing (ft).:					
Weather:	Cold,	Clear						
	nt of Water Colur _ (ft.) ole volume as des	X	0.65 gal. 1.5 gal./ft gal./ft.	/ft. (4 in.) :. (6 in.) (ir	i.) =	Well	,Volume (ç	gal./ft.)
Q allows Number of Well-Volumes: 20 20 20 25 25	Time:	Sura 16 9 17 . 5 17 . 9	$ \begin{array}{c c} \text{ure:} & p \\ \hline & b \\ \hline & b \end{array} $	H: ged for 19 31	Conductivity:	Pump (ga 0 0	roximate bing Rate I./min.): 0.5 5 5	Turbidity (NTU's): 19.2 10.8 8.9
Gallor Gallor HWC	orehole volume = ns per foot of boreh ns per foot of well = height of water o	nole = Pi x (ra = Pi x (radius	adius of boreh	ole^2) x 7	.48 gallons per fo		I x 0.7)) x H\	N C

Well Deve	Well Development Record							
Project No.: _2			ogged By:		•	MM	-09.29	
Client Name: - (2)						Checked	Du	
			Tojectivani					
Well Installation D				Start D		Finish Da		
Well Development Date: 2-9-17 / 2-18 17 Start Time: 8 15 Finish Time: 855 Initial Water Level (ft.):							me: -855	
						·		
Water Level during								
Water Level at Te		imping/Purgi	ng (ft).:					
Weather:	ld , clear							
	nt of Water Colu _ (ft.) ole volume as des	X		./ft. (4 in t. (6 in.) () ln.) =	Well Volume ((gal./ft.)	
	de volume as des	scuped in More	s will be use	d in place	or vveil volume			
Callons Number-of Well-Volumes:	Time:	Temperatu		h:	Conductivity:	Approximate Pumping Rate (gal./min.):	Turbidity (NTU's):	
40	835	16.6	— ———	00	103.3	0.15	403 - Sural	
50 45 #	845	17.4	6.	51	93.9	1.0 ·	2014 - Swy	
Gallon	s per foot of bore	hole = Pi x (ra	foot of borehodius of boreh	iole^2) x	+ (gallons per fool		46.7 9.3	
Gallon	s per foot of well = height of water	= Pi x (radius					•	
Well Develope	rs Signature: _	your /	1/any dr)				

Well Developn	aont Pocord					Well	No.:		
Project No.: 4 25114		Logged By:	. <u>, ,</u>			m	s-09 - 30		
Client Name:		Project Name):		. 1	Checked	L Checked By:		
Well Installation Date:		- rojout ruint	Start Da	te.		Finish Da			
Well Development Date:	29.17/2	12 17	Start Tim			Finish Tir			
Initial Water Level (ft.):	10.43	. (0 - 1)	Ctart IIII	10. 1330		Limen in	ne.		
Water Level during Initial		(ft).:							
Water Level at Termination	······································								
Weather: 🤚									
Height of War	X		ft. (4 in.) (6 in.) in.) = f Well Volume	_ Well	,Volume (gal./ft.)		
Well-Volumes: A A Now S DO 134 45 15 15 14 Notes: One borehole v Gallons per foo	rolume = ((gallons pe t of borehole = Pi x (radius t of well = Pi x (radius	r foot of borehol	Purg (3) 34 94 93 93 18 18 18 18 18 18 18 18 18 18	8 gallons per foc	Pump (ga		Turbidity (NTU's): 27.4 22.6 15.4 9.4		
Well Developers Signa	ature:	Marle	~						

Graphics\Misc.\Forms

Wall Day	nin manasi I					Well No.:
Project No.: (0)	elopment F		ged By: Lovi	Maudie		MW-09-31
Client Name:			ect Name: Fou	ecked By:		
Well Installation D		1 ,	Start D			ish Date:
Well Developmen		_ \~	Start Ti			ish Time: 855
Initial Water Leve		00	- Contri		1, i	1017 Tarrie. (3)
Water Level durin					······································	
Water Level at Te	· · · · · · · · · · · · · · · · · · ·	·	(ft).:			
Weather: 🥬 (lear, cold		·			
Boreh	nt of Water Colur _ (ft.) ole volume as des	X1).16 gal./ft. (2 in.) 0.65 gal./ft. (4 in.) i.5 gal./ft. (6 in.) gal./ft. (i ill be used in place) n.)= <u>896</u>	_ Well,Vol	lume (gal./ft.) ちこ 45 ga (
Gallons Number of Well-Volumes:	Time:	Temperature:	pH:	Conductivity:	Approxi	
Well-Volumes: 50 40 45 10 15 Notes: One b			of borehole x 0.3)			in.): 151
Gallor	•	= Pi x (radius of w	vell^2) x 7.48 gállor	is per foot		Jubid 14
Well Develope	ers Signature: _	Lu M	aulan			

Mall Davidson Davidson	•	Well No.:
Well Development Recor		MW-09-32
Project No.: 6251161022	Logged By: Lovi Maudin	
Client Name: 1287C	Project Name:	Checked By:
Well Installation Date:	Start Date: 95 ^m	Finish Date:
Well Development Date: 2-13-17	Start Time: 900	Finish Time:
Initial Water Level (ft.): 18.05.		
Water Level during Initial Pumping/Purgir		
Water Level at Termination of Pumping/F	urging (ft).:	
Weather: Dear Colel		
(ft.) x	0.16 gal./ft. (2 in.) 0.65 gal./ft. (4 in.) 1.5 gal./ft. (6 in.) gal./ft. (in.) = 4 33	_ Well Volume (gal./ft.) よち゠る2ga
Notes: One borehole volume = ((gallons Gallons per foot of borehole = Pix (rail	per foot of borehole x 0.3) + (gallons per foot of well^2) x 7.48 gallons per foot lius of well^2) x 7.48 gallons per foot	138 41.6 28.3 14.2 9.2
HWC = height of water column Well Developers Signature:	Monta	

FIELD DATA RECORD - LOW FLOW GROUNDWATER SAMPLING											
PROJECT	DJECT RBTC- Fountain Inn, SC					I.D. NUMBER	M	1W.09	-26		EVENT Q1 2017
TIME	START	10	OS EN	1105		JOB NUMBER		6251161022.0	1.02		DATE 2-14-17
WATER LEVEL /WELL INFORMATION MEASUREMENT POINT TOP OF WELL RIS TOP OF PROTECT OTHER								STICK	H MOUNT UP CASING		
	INITIAL DEPTH TO WATER 10.40 FT WELL DEPTH (TOR)					COO FT	WE INT	LL EGRITY: CA	YES	NO I	N/A 1 [1
FINAL DE TO WA		Į	0.70	FT SCRI	EEN	10		CASIN			
	PTH		O · (O n) or x 0.65 (4-incl			2	IN	LOCKE]	
TOTAL \			2_	GAL							
PURGE DA	DEPTH WATEI	R (ft)	PURGE RATE (ml/m)	TEMP. (deg. c)	SPECIFIC CONDUCTANCE (ms/cm)	pH (units)	DISS. 02 (mg/L) 7.01	TURBIDITY (ntu)	REDOX (mv) 511, 2	<u> </u>	COMMENTS
1053	101			16.3	1163	11.18	5.86	158	527.0 533.0	1	
1035	10.			16.1	1150	11,18	5.63	166	536.9		
1045	10.7			16.6	1127	11.17	5.81	185	543.4 548.5		
1105	10.7		\downarrow	16.8	1110	11.16	5.25	221	550.7		Sampled
									.,		
☐ GÉ	NT DOCU OF PUMP OTECH B RISTALTIC	LADDE			OR TEFLON LINED	NE [POLYVINYL STAINLESS OTHER	CHLORIDE			ADDER MATERIAL ENSITY POLYETHYLENE
L	d 50 70 10 Metals H-DRO eer eer eer eer eer eer	AMETE	RS	8 8 6	METHOD NUMBER 260 270 010c 015C		PRESERVATION METHOD HCL / 4 DEG. C 4 DEG. C 4 DEG. C H2SO4	REQU 3 X 40 3 X 20 1 X 25	IRED : mL mL	==	0 0 0 METALS 1-DRO er er er er er
PURGE OF		TONS		NUMBER OF GALLO	NS 😘		Comments				
NOTES						11	05				
SIGNATURE:)				

FIELD DATA RECORD - LOW FLOW GROUNDWATER SAMPLING													
PROJECT	ROJECT RBTC- Fountain Inn, SC					SAMPLE I.	D. NUMBER	MW-09.27				EVENT	Q1 2017
TIME	AE START 1145 END						JOB NUMBER	MBER 6251161022.01.02			DATE 2.14-17		
TOP OF					REMENT POINT OP OF WELL RISER OP OF PROTECTIVE	CASING			I MOUNT UP CASING				
INITIAL DEI TO WA		10	18.6	FT	WELL (TOR)	DEPTH 5	2.96 FT	WE	LL EGRITY: CAF	YES	NO	N/A	
FINAL DEI TO WA				FT	SCREE LENGTI		Ď FT		CASING	3			
	PTH	(2-inch)	or x 0.65 {4-inc	GAL		<u></u>		٦	LOCKEE				
TOTAL V PURC	/OL.		,	GAL	DIAME1	TER	<u>,} </u>	N			J [
PURGE DA	ATA DEPTH		PURGE RATE (ml/m)		EMP. eg. c)	SPECIFIC CONDUCTANCE (ms/cm)	pH (units)	DISS. O2	TURBIDITY (ntu)	REDOX (mv)	PUMP INTAKE DEPTH (ft)	COMMENTS	
1155	11 4:		200	11		3499	12.29	1.21	122	580 . 1	48	COMMENTS	
1205	11 4		300	18		3396	12.27	1.25	140	5792			
1215	11.4		900	18		3321	12.26	1.25	127	588 9			
1730	11.40		300	18.		3211	12.23	1.27	131	587.0			
1245 1250	11.49		३०० २००	13.		3001	12.21	1.28	126	584.3			
1255	11.4		300	18	- * .	2995	12,19	1.27	119	584 3			
1302	11.40		300	18		2993	12,19	1,28	122	5841	上		
				· ·				.,,					
												···	
-													
EQUIPMENT DOCUMENTATION TYPE OF PUMP GEOTECH BLADDER PERISTALTIC OTHER TYPE OF TUBING TEFLON OR TEFLON LINED HIGH DENSITY POLYETHYLENE							PE OF PUMP POLYVINYL STAINLESS OTHER	CHLORIDE STEEL			- (A	:NE	
ANALYTIC		METER	रड			171100					0.11451.5		
_	0 0 0 Metals H-DRO er er er er er er er					0 0c	,	PRESERVATIC METHOD HCL / 4 DEC 4 DEG. C 4 DEG. C H2SO4	REQUI 3 X 40 3 X 20 1 X 250	<u>RED</u> mL mL))) METALS -DRO IT	
PURGE OF	BSERVATION	ONS						Comments	:				3 1
PURGE WATER CONTAINERIZED YES NO GENERATED							Mud	noton	y well	i = hig	ih turbidit igh pH	12	
NOTES										٧	٧ ٧	injud k	
SIGNATURE	Ju	νί	\mathcal{M}	/a~	M				1300				

FIELD DATA RECORD - LOW FLOW GROUNDWATER SAMPLING											
PROJECT	RBTC- Foun	tain Inn, SC		SAMPLE I.D	. NUMBER	m	5.PO.W	છ		EVENT Q1 2017	
TIME	START 13	JO ENI	<u></u>		JOB NUMBER	6251161022,01,02			DATE 2141-		
INITIAL DEF TO WAT FINAL DEF TO WAT DRAWDON DEF	PTH FER WN PTH Inal x 0.16 {2-inch	FORMATION () Jタ) or x 0.65 (4-incl	FT WELL D (TOR) FT SCREEL LENGTH	34.	25 гт гт	1	STICK		NO NO	N/A	
PURGE DA	TA			SPECIFIC					PUMP		
TIME	DEPTH TO WATER (ft)	PURGE RATE (ml/m)	TEMP. (deg. c)	CONDUCTANCE (ms/cm)	pH (units)	DISS, O2 (mg/L)	TURBIDITY (ntu)	REDOX (mv)	INTAKE DEPTH (ft)	COMMENTS	
1310	12,25	240	18.9	169.	9.95	0.97	82 8	443.6	30		
1325	12.27	200	18.7	111.3	8.31	0.97		396.1	30		
1335	12.27	300	18.9	166.2	8.04	0.95	96.2	-155.1	11		
1345	12.20	303	18.91	166.5	7.98	0.93	102.0	-245.3			
1350	12.28	200	8.81	166.9	1,92 1,89	692	87.8	-261.7		· · · · · · · · · · · · · · · · · · ·	
1355	12,27	200	18. le	100.2	7.89	0.92	83.5	-2652			
1400	12.27	200	18.6	166.5	1.0.1	0.12	37.0	-265.4	سلب		
		<u> </u>									
										10011	
EQUIPMENT DOCUMENTATION TYPE OF PUMP GEOTECH BLADDER PERISTALTIC OTHER OTHER GOTHUMENT TYPE OF TUBING TYPE OF TUBING TEPLON OR TEFLON LINED HIGH DENSITY POLYETHYLENE OTHER						PE OF PUMP POLYVINYI STAINLESS OTHER	L CHLORIDE		\equiv		
ANALYTICA To Be Collected	AL PARAMETE	RS		ETHOD	F	RESERVATION		ME	SAMPLE		
)) Metals -DRO or or or or or or			<u>IMBER</u> D D DC		METHOD HCL / 4 DEG. C 4 DEG. C 4 DEG. C H2SO4	<u>REQUI</u>	RED nL nL mL P	COLLECTED- 8260 8270 6010	D METALS -DRO or or or or or or or or or or or or or	
PURGE OB	SERVATIONS					Comments	s:				
PURGE WATER CONTAINERIZED YES NO GENERATED											
NOTES	<u> </u>		CLINITATED				V	199			
SIGNATURE	Lu	\mathcal{M}_{i}	alo								

FIELD DATA RECORD - LOW FLOW GROUNDWATER SAMPLING							
PROJECT RBTC- Fountain Inn, SC	SAMPLE I.D. N	IUMBER M	W-09-29	EVENT Q1 2017			
TIME START 1155 END 125	5.5 JC	DB NUMBER	6251161022.01.02	DATE 2-14-17			
WATER LEVEL /WELL INFORMATION INITIAL DEPTH TO WATER FINAL DEPTH TO WATER DRAWDOWN DEPTH (Initial - final x 0.16 (2-inch) or x 0.65 (4-inch)) TOTAL VOL. PURGED GAL	(TOR) 31.7 SCREEN 15 WELL DIAMETER 2	w	FLUSH MOUNT STICK UP CASING ELL YES TEGRITY: CAP CASING LOCKED COLLAR	NO N/A			
TIME WATER (ft) RATE (ml/m) (de 1155 10.40 110 19 1205 10.59 1 19 1215 10.61 19 1225 10.59 20	5.8 8/.3 S	pH (units) (mg/L) 9,09 6.33 6.18 2.73 6.01 2,69 5.94 2.62 5.87 2.55 5.80 2.85 5.81 2.67		PUMP INTAKE DEPTH (ft) COMMENTS 3 0 Sample J			
EQUIPMENT DOCUMENTATION TYPE OF PUMP GEOTECH BLADDER PERISTALTIC OTHER ANALYTICAL PARAMETERS TO Be Collected X 8260 8270 6010 Metals TPH-DRO Other	TUBING TEFLON OR TEFLON LINED HIGH DENSITY POLYETHYLENE OTHER METHOD NUMBER 8260 8270 6010c 8015C	TYPE OF PUM POLYVIN' STAINLES OTHER PRESERVAT METHOD HCL / 4 DEG. C 4 DEG. C H2SO4	AL CHLORIDE [SS STEEL [ALL CHLORIDE [SOURCE SOURCE STEEL [STEE	TYPE OF BLADDER MATERIAL HIGH DENSITY POLYETHYLENE TEFLON OTHER SAMPLE COLLECTED V 8260 8270 6010 METALS TPH-DRO Other			
PURGE OBSERVATIONS	OF GALLONS 2	Common M S	1255				

FIELD	DATA REC	CORD - LO	W FLOW GRO	JNDWATER	SAMPLING						
PROJECT	RBTC- Fou	ntain Inn, SC		SAMPLE I.C). NUMBER	M	J-09-31	2]	EVENT	Q1 2017
TIME	START 100	O EN	D		JOB NUMBER		6251161022.0				14-17
INITIAL DE TO WA FINAL DE TO WA DRAWDO	TER PTH TER PHH	FORMATION (2). 39	FT WELL E (TOR) FT SCREE LENGTH	1 10 m	Ч _{гт}	WE INT	E STICK ILL EGRITY: CAF CASING LOCKEE		NO NO	N/A	
TOTAL \	/OL.	, , , , , , , , , , , , , , , , , , ,	DIAMET GAL	ER 13	· ? " "	N	COLLAF		I L		
TIME 10:0 10:20 10:20	DEPTH TO WATER (ft) 13 . 50 13 . 45 13 . 45	PURGE RATE (ml/m) 00 160	TEMP. (deg. c) 15. W 15. T 15. C	SPECIFIC CONDUCTANCE (Ms/cm) 138 2 13-1. Lo 140. 1	pH (units) 6.71 6.50	DISS. 02 (mg/L)	TURBIDITY (ntu) 13.4 13.3	REDOX (mv) -2934 -388.4	PUMP INTAKE DEPTH (ft)	COMMENTS	
1035 1040	13.46 13.46	100	16.0	141.4	6.53	1.60	8.8	-395.4 -3923			
TYPE O	NT DOCUMENT F PUMP OTECH BLADDE RISTALTIC HER	ı		R TEFLON LINED HTY POLYETHYLENE] STAINLESS	. CHLORIDE			DDER MATERIAL ISITY POLYETHYLEN	E
X 826	0 0 0 Metals H-DRO erer er erer_er_er_er	ERS	ME NU 8266 8276 6016 8018))c	F	PRESERVATION METHOD HCL / 4 DEG. C 4 DEG. C H2SO4	REQUI	nL nL mLP	SAMPLE COLLECTED 28260 28270 6010 I TPH-L Other Other Other Other Other Other		· · · · · · · · · · · · · · · · · · ·
PURGE OE PURGE WA CONTAINER			NUMBER OF GALLONS GENERATED			Comments	:				
NOTES	lur	· M	ash-					1040			

FIELD DATA RECORD - LOW FLOW GROUN	IDWATER SAMPLING		
PROJECT RBTC- Fountain Inn, SC	SAMPLE I.D. NUMBER	MW-09-31	EVENT Q1 2017
TIME START 1030 END	JOB NUMBER	6251161022.01.02	DATE 2-15 17
TOP OF	74.90 FT	FLUSH MOUNT STICK UP CASING WELL INTEGRITY: CAP CASING LOCKED COLLAR	NO N/A
PURGE DATA	SPECIFIC		PUMP
TIME WATER (ft) RATE (ml/m) (deg. c)	(Ms/cm) (units) (r	ISS. O2 TURBIDITY REDOX mg/L) (ntu) (mv)	INTAKE DEPTH (ft) COMMENTS
		151 15.2 120.7	70
1050 19.26 200 18.0 3		36 9.06 103.4	
		28 7.89 94.5	
		22 7.60 89.8	
11.7 1.7 000			
1115 19.21 240 18.1 3	368.7 10.09 6	20 7.30 885	<u>_</u>
EQUIPMENT DOCUMENTATION TYPE OF PUMP GEØTECH BLADDER PERISTALTIC OTHER OTHER GOLDHANNEN TYPE OF TUBING TYPE OF TUBING TYPE OF TUBING HIGH DENSITY	EFLON LINED POLYPOLYETHYLENE STA	F PUMP MATERIAL LYVINYL CHLORIDE AINLESS STEEL HER	TYPE OF BLADDER MATERIAL HIGH DENSITY POLYETHYLENE TEFLON OTHER NOTHER
ANALYTICAL PARAMETERS To Be Collected METHO	IOD DDEGI	ERVATION VOLUME	241715
NUMB NUMB	<u>ME</u> HCL 4 DE	ETHOD REQUIRED C L / 4 DEG. C 3 X 40 mL EG. C EG. C 3 X 20 mL EG. C	SAMPLE COLLECTED
PURGE OBSERVATIONS	Con	nments:	
PURGE WATER CONTAINERIZED (YES) NO GENERATED	20 1	Mud donlled we	Il = high pH
NOTES SIGNATURE: LOW MANUEL SIGNATURE: LOW		Mud donlled we	Ž

FIELD	DATA REC	ORD - LO	W FLOW GRO	UNDWATER	SAMPLING					
PROJECT	RBTC- Four	ntain Inn, SC		SAMPLE I.C). NUMBER	0	712-09	.32]	EVENT Q1 2017
TIME	START \	20 EN	D		JOB NUMBER		6251161022.0	1.02	j	DATE 2.15.17
WATER LE	EVEL /WELL IN	FORMATION	TC	REMENT POINT P OF WELL RISER P OF PROTECTIVE (CASING		FLUSH	MOUNT UP CASING		
INITIAL DE	PTH \	8. 00		HER		WE		YES	NO	N/A
TO WA FINAL DE TO WA	PTH	10.00	FT WELL I (TOR)	44.	W2 FT	INT	EGRITY:			
DRAWDO			FT SCREE		FT		CASING			
DE	PTH	h) or x 0.65 (4-inc	GAL h}) WELL			7	COLLAR			
TOTAL \ PUR			DIAME GAL	ER	<u> </u>	<u>v</u>			, <u>L</u> ,	
PURGE DA	ATA DEPTH TO	PURGE	TEMP.	SPECIFIC CONDUCTANCE	l 511	I piec co	LIBBIDITY	l proov	PUMP	
TIME	WATER (ft)	RATE (ml/m)	(deg. c)	(ms/cm)	pH (units)	DISS. O2 (mg/L)	TURBIDITY (ntu)	(mv)	INTAKE DEPTH (ft)	COMMENTS
1120	18.98 19.04	300 300	16.5	142.6	8.51	6.05	22,5	974	49	
1200	19.03	200	17.2	124.3	7.47	6.60	29.7	2214	40	
1205	19.04	200	11.0	114.9	7.13	30	12.1	223.4	40	
12-10	19.04	200	17. 2	112.5	7.02	4.27	12.0	234.3	43	
1215	19.04	200	17.2	110.5	6.96	625	12.0	2357	40	
1220	19.04	500	17.2	110.9	6.95	6.30	8.53	236.8	40	
						-				
										, , , , , , , , , , , , , , , , , , , ,
TYPE O	NT DOCUMENT F PUMP OTECH BLADDE RISTALTIC HER			R TEFLON LINED SITY POLYETHYLENE		PE OF PUMP POLYVINYL STAINLESS OTHER	. CHLORIDE			ADDER MATERIAL NSITY POLYETHYLENE
	AL PARAMETE	RS								
	0 0 0 Metals 4-DRO er er er er er er		Nt 826 827 601 801	0 0c	P	PRESERVATIC METHOD METHOD HCL / 4 DEG 4 DEG. C 4 DEG. C H2SO4	REQUI	RED 9 nL nL mLP	SAMPLE COLLECTED	METALS DRO
	SERVATIONS					Comments	:			
PURGE WA'			NUMBER OF GALLONS GENERATED	20						
NOTES								220)	
	Λ						Ī	0		
SIGNATI IRE	. Lu	u M	land							

APPENDIX D EQUIPMENT CALIBRATION RECORDS

FIELD INSTRUMENTATION CALIBRATION RECORD AMEC Foster Wheeler
PROJECT Bosch - Ft Inn, SC DATE 2.13-17
CREW ID OR TASK ID Q1 2017 sampling Devel & JOB NUMBER 6251161022
SAMPLER SIGNATURE Livi Maula
EQUIPMENT CALIBRATION CALIBRATION INFORMATION ACCEPTANCE
WATER QUALITY METER STANDARD VALUE METER VALUE CRITERIA ** MANUFAC. 157 1.02 units +/- 10% of standard
1299
UNIT ID NO. 13.16 Redox 203 mV Redox 19.1 mV see note 1 DO
Thermometer Temperature deg. C Temperature deg. C +/- 2.0 deg. C
TURBIDITY METER TYPE 12 ach 10 NTU (low) 11.4 NTU within 0.3 NTU of
MODEL NO. 3/0Q NTU (low/med.) 3/2 NTU the standard
UNIT ID NO. 1395 NTU (med./high) 135 NTU +/- 10% of standard
Successive NTU (high) 8\3 NTU
PHOTOIONIZATION METER TYPE Backgroundppmv Zero Airppmv Meter ppmv within 5 ppmv of Zero
METER TYPE Backgroundppmv Zero Airppmv Meterppmv within 5 ppmv of Zero MODEL NO Span Gasppmv Meterppmv +/- 10% of standard
UNIT ID NO
OTHER METER TYPE see note 2
MODEL NO see note 2
UNIT ID NO see note 2
OTHER METER TYPE see note 2
MODEL NO see note 2
UNIT ID NO see note 2
MATERIALS RECORD Lot Number Calibration Fluids/
Deionized Water Source: Standard Source:
Trip Blank Water Source: Lot Numbers pH
Sample Preservatives Source: mV
Disposable Filter Type: Sp. Cond.
OtherTurb
NOTES:
* = Indicate in notes section what was used as the DO standard (i.e., based on saturation at room temperature)
** = If the meter reading is not within acceptance criteria, clean or replace probe and re-calibrate, or use a different meter if available. If project requirements
necessitate use of the Instrument, clearly document on all data sheets and log book entries that the specified parameter was not calibrated to the acceptance criteria. 1 = meter must read within specified range of the Zobell solution (usually 231 +/- 10 mv @ 25 deg C).
2 = specify acceptance criteria in the Notes section

FIELD INSTRUMENTATION CA	LIBRATION RECORD	AMEC Foster Wheeler
PROJECT Bosch - Ft Inn, SC	DATE	2.13-17
CREW ID OR TASK ID Q1 2017 sa	ampling JOB NUMBER	6251161022
SAMPLER SIGNATURE L. Mach		_
EQUIPMENT CALIBRATION	CALIBRATION INFORMATION	ACCEPTANCE
\\	IDARD VALUE METER VAL	LUE CRITERIA **
MANUFAC. 45E pH 4	6 17.0 units pH 462 7.	units +/- 10% of standard
MODEL NO. Vro Ylub Sp. Conductivity	14 13 mS/cm Sp. Conductivity 14 2 7	mS/cm +/- 10% of standard
UNIT ID NO. 1296 Redox	<u> </u>	mV see note 1
DO	mg/L * DO	mg/L +/- 10% of standard
Thermometer Temperature	deg. C Temperature 18.9	deg. C +/- 2.0 deg. C
TURBIDITY METER TYPE Hack		NTU within 0.3 NTU of
MODEL NO. 2165 Q	ع م NTU (low/med.) کی د	NTU the standard
UNIT ID NO. 1395	NTU (med./high)	
ONIT ID NO	「	NTU +/- 10% of standard
PHOTOIONIZATION		
	ppmv Zero Airppmv Meter	ppmv within 5 ppmv of Zero
	ppmv Meter	
UNIT ID NO		PP
OTHER METER TYPE		see note 2
MODEL NO		see note 2
UNIT ID NO		see note 2
OTHER METER TYPE		see note 2
MODEL NO		see note 2
UNIT ID NO		see note 2
MATERIALS RECORD	Lot Number Calibration Fluids/	
Deionized Water Source:		
Trip Blank Water Source:		
Sample Preservatives Source:	· · · · · · · · · · · · · · · · · · ·	
Disposable Filter Type:		
Other		
NOTES:		
* = Indicate in notes section what was used as the DO standard (i	in heed on esturation at room tamperature)	
** = If the meter reading is not within acceptance criteria, clean or		allable. If project requirements
necessitate use of the instrument, clearly document on all dat 1 = meter must read within specified range of the Zobell solution (ta sheets and log book entries that the specified parameter w	
2 = specify acceptance criteria in the Notes section	,, ,	

FIELD INSTRUMENTATION CALIBRATION RECORD AMEC Foster Wheeler							
PROJECT Bosch - Ft Inn, SC	DATE 2.14-17						
CREW ID OR TASK ID Q1 2017 sampling	JOB NUMBER 6251161022						
SAMPLER SIGNATURE Lun Mall							
WATER QUALITY METER MANUFAC. 15I pH 4817.0 MODEL NO. 1298 Sp. Conductivity 1413 UNIT ID NO. 1298 Redox 200 Thermometer Temperature TURBIDITY METER TYPE How MODEL NO. 21014 UNIT ID NO. 1395	units pH 45 /1 2 units +/- 10% of standard mS/cm Sp. Conductivity 12 mS/cm +/- 10% of standard mV Redox 199 mV see note 1 mg/L +/- 10% of standard deg. C Temperature 114 deg. C +/- 2.0 deg. C						
PHOTOIONIZATION METER TYPE							
MATERIALS RECORD Deionized Water Source: Trip Blank Water Source: Sample Preservatives Source: Disposable Filter Type: Other	Lot Numbers pHmv						
* = Indicate in notes section what was used as the DO standard (i.e., based on standard the matter reading is not within acceptance criteria, clean or replace probe necessitate use of the instrument, clearly document on all data sheets and 1 = meter must read within specified range of the Zobell solution (usually 231 +/2 = specify acceptance criteria in the Notes section	and re-callbrate, or use a different meter if available. If project requirements og book entries that the specified parameter was not callbrated to the acceptance criteria.						

FIELD INSTRUMENTATION CALIBRATION RECORD AMEC Foster Wheelers of the state of the	eeler
PROJECT Bosch - Ft Inn, SC DATE 2-14-17	
CREW ID OR TASK ID Q1 2017 sampling JOB NUMBER 6251161	1022
SAMPLER SIGNATURE 30th R	
WATER QUALITY METER STANDARD VALUE METER VALUE CRIT MANUFAC. pH 1/1/7 units pH 4/.09/7.04/units +/- MODEL NO. Pro Plus Sp. Conductivity 1/13 mS/cm Sp. Conductivity 1/3 19/ms/cm mS/cm +/- UNIT ID NO. 1582 Redox 2.00 mV Redox 2.00.1 mV se DO mg/L* DO 85.1 mg/L +/- Thermometer Temperature deg. C Temperature 10.9 deg. C +/- TURBIDITY METER TYPE Hack 2.00 NTU (low) 9.8 NTU with	EPTANCE TERIA ** /- 10% of standard /- 10% of standard ee note 1 /- 10% of standard /- 2.0 deg. C ithin 0.3 NTU of
1479	e standard /- 10% of standard
	ithin 5 ppmv of Zero /- 10% of standard
MODEL NO	ee note 2 ee note 2 ee note 2
MODEL NO	ee note 2 ee note 2 ee note 2
MATERIALS RECORD Lot Number Calibration Fluids/ Deionized Water Source: Standard Source: Trip Blank Water Source: Lot Numbers pH Sample Preservatives Source: mV Disposable Filter Type: Sp. Cond. Other Turb.	
NOTES: * = Indicate In notes section what was used as the DO standard (i.e., based on saturation at room temperature)	
*** = If the meter reading is not within acceptance criteria, clean or replace probe and re-calibrate, or use a different meter if available. If project require necessitate use of the instrument, clearly document on all data sheets and log book entries that the specified parameter was not calibrated to the 1 = meter must read within specified range of the Zobell solution (usually 231 +/- 10 mv @ 25 deg C). 2 = specify acceptance criteria in the Notes section	

FIELD INSTRUMENTATION CALIBRATION RECORD AMEC Foster Wheeler
PROJECT Bosch - Ft Inn, SC DATE 2.15.17
CREW ID OR TASK ID Q1 2017 sampling JOB NUMBER 6251161022
SAMPLER SIGNATURE ZOW Maulh
EQUIPMENT CALIBRATION CALIBRATION INFORMATION ACCEPTANCE WATER QUALITY METER STANDARD VALUE METER VALUE CRITERIA **
MANUFAC. 45 T pH 4.0/10 units pH 4.0 (6.98 units +/- 10% of standard MODEL NO. 7 Pro Plus Sp. Conductivity 1413 mS/cm Sp. Conductivity 1413 mS/cm +/- 10% of standard UNIT ID NO. 1298 Redox 200 mV Redox 192, 2 mV see note 1
DOmg/L * DOmg/L +/- 10% of standard Thermometer Temperaturedeg. C Temperature \frac{14}{1} \frac{1}{2} \deg. C +/- 2.0 \deg. C
MODEL NO
BOD NTU (high) 794 NTU
METER TYPE Backgroundppmv Zero Airppmv Meterppmv within 5 ppmv of Zero
MODEL NO
OTHER METER TYPE see note 2
MODEL NO see note 2 UNIT ID NO see note 2
OTHER METER TYPE see note 2 MODEL NO see note 2
WODEL NO see note 2 UNIT ID NO see note 2
MATERIALS RECORD Lot Number Calibration Fluids/
Deionized Water Source: Standard Source:
Trip Blank Water Source: Lot Numbers pH
Sample Preservatives Source: mV
Other Turb.
NOTES:
* = Indicate in notes section what was used as the DO standard (i.e., based on saturation at room temperature)
- indicate in notes section what was used as the DO standard (i.e., based on saturation at room temperature) ** = If the meter reading is not within acceptance criteria, clean or replace probe and re-calibrate, or use a different meter if available. If project requirements
necessitate use of the instrument, clearly document on all data sheets and log book entries that the specified parameter was not calibrated to the acceptance criteria. 1 = meter must read within specified range of the Zobell solution (usually 231 +/- 10 mv @ 25 deg C).
2 = specify acceptance criteria in the Notes section

EASTERN SOLUTIONS, LLC (803) 746-5180 PACKING LIST Hach 2100Q

ES#: 1395

Date: 2/9/17

Standard Items	Prepared	QC Check	Received By	Return
Hach 2100Q				and the same of th
Manual				ANTINA A CONTRACTOR ANTINO DE LA CONTRACTOR ANTINO DE
Calibration Standards (.10, 20, 100, 800)				White distance and prints in complete annual to
Sample Vials (3)			NAMES OF THE PROPERTY OF THE PARTY OF THE PA	***
Silicone Oil			Application and the second sections	Million has been specify more and property company of programs.
Cleaning Cloth				de State Communication of the
Spare Batteries				
Calibration Sticker	<u> </u>		**************************************	

Prepared By: Vy

QC Check: _ M 9

Date: 1 / 4 / 1 7

CALIBRATION LOG HACH 2100Q

Dage 9715/2016

Physical Callbraian

Battery Check

100%

Backlight

OK

Date / Time

OK

Calibration Standard	Lot#		y Calibration Calibration Reading	
10.0 NTU (Verification)	A5313	Feb-17	9.47 NTU	
20.0 NTU	A5323	Feb-17	20 NTU	
100 NTU	A5323	Feb-17	98.6 NTU	
800 NTU	A5323	Feb-17	797 NTU	
		•		

Signature:DS

Date: 02/09/2017

EASTERN SOLUTIONS, LLC (803) 746-5180 PACKING LIST YSI 556/ YSI PRO

ES#: 1298

Date: 2/9/17

Standard Items	Prepared	QC Check	Received By	Return
YSI 556/ YSI PRO			galant program garaghunda badhant sad	gamma diplomanisha da gampa dang ana da gampa na da sanara
Manual	***************************************		National Control of the Control of t	d earlywoodsy where to the distribution of the left
Quick Reference Card			gard designed hand have shall delicate the reference	majoritapi daga calipul nini di solut humun ha
Flow Cell			programme and the second of th	المهم المستحد
Spare Batteries			why simple for hypothesis the trappy products	adopting an armitecture or response to the contract of the con
Calibration Solutions (4, 7, 10, ORP, 1413)			Made And Print Service Spire A Print Service Street	
O-Ring Kit	non-transferred and transferred	4	geoglispronus vivez vivez (dente plante)	And the Control of th
Membrane Kit			- was the state of the sale of	The statement distribution of the statement of the statem
Shroud	Name of the Parks		1 de radiga de de constitución de compressiones	signaturiy adam-ba mayayayda qa Mahada
Calibration Sticker	Market Security Color Security	Market Market Street	,	

Prepared By: 5

QC Check: Lug

Date: 2/9/17

CALIBRATION LOG YSI PRO

... Stepical istumber: Ustrat0000497/UsiC 1/0/04/3

4543 Charlotte Hwy Suite 8, Lake Wylie SC 29710 Institument: YSIABRO

803-746-5180

IP\$/*1298

Physical Callibration -

Battery Check

100%

Condition

Replace Date:

2/9/2017

DO Membrane

OK

Condition

	e mala e più e suo de a recolona e secretar de subballa di Riccia.			Name and American State of the	
		pagt(C	Magniton		
Calibration Standard	Lot#	Exp. Date	Initial Reading	Temp. °C	Calibration Reading
pH 4.00	7609323	10/31/2018	4.87	22.00	4.00
pH 7.00	7610126	10/31/2018	7.20	22.00	7.00
рН 10.00	7608464	8/30/2018	10.47	22.00	10.00
		(Condinutiv	işy.Chilibiatiton		
Calibration Standard	Lot#	Exp. Date	Initial Reading	Temp. °C	Calibration Reading
1413 μs/cm	2609c89	9/30/2018	1436	22.00	1413
		· · · · · · · · · · · · · · · · · · ·			
		.tDiisenthweiliOx	ndiggillis Taggy		
Calibration Standard	inHG	mmHg	Initial Reading	Temp. °C	Calibration Reading
Saturated DO 100%		741.3	108.1%	22.00	98%
		(ยังพุทธากให้สุดั	hrodim Plorantipil.		
Calibration Standard	Lot#	Exp. Date	Initial Reading	Temp. °C	Calibration Reading
200mv	2609D38	6/30/2017	192.90	22.00	200
Fech; DS			Date:02/09/2017		

EASTERN SOLUTIONS, LLC (803) 746-5180 PACKING LIST Hach 2100Q

ES#: /479

Date: 2/13/17

Standard Items	Prepared	QC Check	Received By	Return
Hach 2100Q				And a state of the
Manual			benius de la cida de consede de desente	
Calibration Standards (.10, 20, 100, 800)			Proveniente streite en registro au p	Marine and the designation of the second
Sample Vials (3).	-		Western Printer and Control of the C	***************************************
Silicone Oil			waln's nice record along the artists	all deleted and the control of the c
Cleaning Cloth		- Andrews	process conference de la conference de l	
Spare Batteries			wedge-filt-Arity-Sovien-benderstansspran	primary and the same of the sa
Calibration Sticker		-		***

Prepared By:	Mother	Infly
QC Check: L	Ju 5	

Date: 2/13/17

CALIBRATION LOG HACH 2100Q

ES Number: 1479 SERIAL#15080C042885

Physical Calibration

Battery Check

100%

Backlight

OK

Date / Time

OK

Calibration Standard	Lot #		y Calibration all the state of
 10.0 NTU (Verification)	A6067	Jun-17	9.92 NTU
20.0 NTU	A6064	Jun-17	21.6 NTU
100 NTU	A6091	Jun-17	99.9 NTU

A6061

May-17

Signature:MAE

800 NTU

Date: 02.13.2017

799.0 NTU

EASTERN SOLUTIONS, LLC (803) 746-5180 PACKING LIST YSI 556/ YSI PRO

ES#: 1582

Date: 2/13/17

Standard Items	Prepared	QC Check	Received By	Return
YSI 556/ YSI PRO			quiden par per proprieta and market and an	Samuel and Marie and American American
Manual	Santa de la constante de la co	na sa managhi na sa na na na na	sequenty-una rana orazion for rimma	d-markey-
Quick Reference Card	V	······································	- Control Control of the Control of	mana dadhagaga da yini ah aharar mahad
Flow Cell	V		anner hör galanden på en yviste kradisk de sængler	definitely a continue of the same
Spare Batteries	1		wing almost drawn go valor and anteriors psychologists	Additional section of the section of
Calibration Solutions (4, 7, 10, ORP, 1413)		sergere construint aurignostica.	Martina de deservo de la composiçõe de l	
O-Ring Kit	1		g hydroxyd awd dawyd gwyddiaidd y ddiad	
Membrane Kit	And the state of t	······································	Supermenter addition de la restant registrare	pasadanny nipotentin Amerika
Shroud		where shift a large view of manufactures and the same of the same	njanadan da pirind miny min ma	processy about assect transfer regulate to
Calibration Sticker		Management of the Anti-Anti-Anti-Anti-Anti-Anti-Anti-Anti-		

Prepar	red By: Mathan	5. refly
QC Ch	eck: LU 9	
Date:	2/13/1	17

CALIBRATION LOG YSI PRO

4543 Charlotte Hwy Suite 8, Lake Wylie SC 29710

"Serial Number:16J103902/16H100662"

803-746-5180

Instrument: YSI PRO

ES: 1582

Physical Calibration

Battery Check

80%

DO Membrane

10/20/2016

tage and the transport of the second property of the second	ner (ce==en er (centre)er ant sucre	рнс	alibration		and the state of t
Calibration Standard	Lot#	Exp. Date	Initial Reading	Temp. °C	Calibration Reading
pH 4.00	7609323	10/30/2018	3.89	22.00	4.00
рН 7.00	7610126	10/30/2018	7.12	22.00	7.00
pH 10.00	7606293	7/30/2018	10.18	22.00	10.00
		Conductiv	ity Calibration		
Calibration Standard	Lot #	Exp. Date	Initial Reading	Temp. °C	Calibration Reading
1413 μs/cm	2609C89	9/30/2018	1283	22.00	1413
	an ann an Airthean an Airth	Dissolved Ox	ygen Calibration	- 100 miles	
Calibration Standard	inHG	mmHg	Initial Reading	Temp. °C	Calibration Reading
Saturated DO 100%	30.22	767.6	143.0%	22.00	101%
Sutarated DO 10070	JUitalia	707.0	1-4.0.70	22.00	101%

general programme and the control of	CONTRACTOR OF THE CONTRACTOR O	Oxygen Red	luction Potential	erreterior operations and ware	the second secon
Calibration Standard 200 mVolts	Lot # 2609D38	Exp. Date 6/30/2017	Initial Reading 238.00	Temp. °C 22.00	Calibration Reading 200
Tech:MAE			Date:2/13/2017		

Run & Repair LOG Alexis Peristaltic Pump

Instrument: Pegasus Alexis Peristaltic Pump Serial Number: 103144 ES 1389

BATTERY CHECK:

100%

MASTER FLEX HEAD SECURE:

OK

CABLE CHECK:

OK

	en e	79 of the SPORT STORE CONTROL OF THE SPORT O									
	PERFORMANCE RUN CHECK										
anter a description de la complete de particular des productions de la constant de particular de la complete d		- Metropolyphia en normalis producting dipoliphic vides, et a contra para service and									
	BATTERY LEVEL READING	Comments									
Zero Run Time	100.00%	VV									
10 Min Run Time	100.00%										

Signature:MAE

Date:2/13/2017

Run & Repair LOG Alexis Peristaltic Pump

Instrument: Pegasus Alexis Peristaltic Pump

Serial Number: 103152

ES 1537

BATTERY CHECK:

100% CHARGING SYSTEM:

OK

MASTER FLEX HEAD SECURE:

Zero Run Time

10 Min Run Time

OK CABLE CONNECTIONS:

OK

CABLE CHECK:

OK

PERFORMANCE RUN CHECK BATTERY LEVEL READING Comments 100.00%

Signature:MAE

Date:2/13/2017

100.00%

APPENDIX E LABORATORY REPORTS OF ANALYSIS AND CHAIN-OF-CUSTODY RECORDS

ANALYTICAL ENVIRONMENTAL SERVICES, INC.

February 23, 2017

Paul Johnstone AMEC E&I, Inc. 37 Villa Rd. Greenville

SC 29615

TEL: (864) 552-9624 FAX: (864) 552-9699

RE: RBTC Fountain Inn

Dear Paul Johnstone: Order No: 1702E41

Analytical Environmental Services, Inc. received 12 samples on 2/16/2017 10:15:00 AM for the analyses presented in following report.

No problems were encountered during the analyses. Additionally, all results for the associated Quality Control samples were within EPA and/or AES established limits. Any discrepancies associated with the analyses contained herein will be noted and submitted in the form of a project Case Narrative. AES' certifications are as follows:

-South Carolina Certification number 98016003 for Clean Water Act and for Solid and Hazardous Waste, effective until 6/30/17.

These results relate only to the items tested. This report may only be reproduced in full.

If you have any questions regarding these test results, please feel free to call.

Sincerely,

Ioana Pacurar

Project Manager

IDAMA) Pacurar

CHAIN OF CUSTODY

3080 Presidential Drive, Atlanta GA 30340-3704

TEL.: (770) 457-8177 / TOLL-FREE (800) 972-4889 / FAX: (770) 457-8188

Date: 2-15-17 Page _____ of _____

COMPANY:	ADDRESS: 37 Villa Re	20g '	Ste ;	901 ====				ANAL	YSIS I	REQUE	STED			Visit our website	
AMEC FW	Greenile:	SC.	2910	15										www.aesatlanta.com	
PHONE: 864-616-7002	FAX:				-			İ						to check on the status of	57
GAMPLED BY: \	SIGNATURE:				3									your results, place bottle orders, etc.	ıtaine
SAMPLED BY: Lor: Mauldin	SIGNATURE. Juni M	<u>Na</u>	ula_	7	36									bottle orders, etc.	No # of Containers
	SAMPLED		site	ix des)	Ø								<u></u>		% # 0N
# SAMPLE ID	DATE TIME	Grab	Composite	Matrix (See codes)	HI			PRESEF	RVATI	ON (See	codes)			REMARKS	
1 TB-01	2.14 1400	X		W	X										a
2 FB-01	2-14 1100	X		N	X										a
3 FB-02	2.15 1130	V		GN	x										a
4 MW.09-26	2-14 1105		<u> </u>	GN	V.										a
5 MW-09.27	2.14 1300	1		GN	시			_							a
6 MM-09-38	2.14 1400	X		BW	X										2
7 MW-09.29	2.14 1255			GW	<u> </u>								ļ		a
8 MW. 09.30	2-14 1040	X		GW											2
, MN-09.31	2.15 1115	乂		GW	V										а
10 MW.09.32	2.15 1220	X		GW	X										2
11 MW-09-26XD	2.14 1105	1		GN	x										N
12 MW-09-29 MS	2.14 1255	1		GW	X										3
13 MW-09-29 MSD	2-14 1255	く		GN	X										a
14		'													
RELINQUISHED BY: DATE/TIME:	·			DATE/TIME:	TORG	ECT NAME		PROJE		III or II of each I come		· · · · · · · · · · · · · · · · · · ·		RECEIPT	
Lori Mauldia	Fedex 2: Morfe	<u> </u>	-15-	17 1600	PROJ	RBT	<u>.</u>	Fo	un	tai.	V I	77/			26
4.	Mode	alud	,a ,c	31,5	SITE	ADDRESS:	10 d.	5111	<u>e 10</u>	39				Turnaround Time Request	
3:	3:	Clini	agarete and	~	lΥ	V4116	λ (\sim)	1.1	، د د د	\sim	_			Standard 5 Business Days 2 Business Day Rush	
			(4.0	ا (تو	SEND	REPORT T	TO: F	an	<u> </u>	Joh	15to	we.		Next Business Day Rush	
SPECIAL INSTRUCTIONS/COMMENTS:	SHIPMENT	г метно	D:		INVO	ICE TO:				······································	· • • •			Same Day Rush (auth req.)	
	OUT / /	VIA:			(IF DI	FFERENT I	FROM	ABOVE)					Other	
	CLIENT (Fedex UI	VIA:	r COUR	TED .										STATE PROGRAM (if any): 5C	
	GREYHOUND OT		7 COOK	.IEK	QUO	TE #:					PO#:			E-mail? \05 Fax? \30 DATA PACKAGE: 1 O II O III O	ıv O
SAMPLES RECEIVED AFTER 3PM OR SATURDAY ARE CONSI			T BUSINE	SS DAY, IF	diamenta de la composição	and the second second second	KED (ON COC	AES	mnetteetenik		O AS STANDA	RD TA	*	
SAMPLES ARE DISPOSED OF 30 DAYS AFTER COMPLETION							ardo c	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	TLU	*******	KOCEE	AUUTANDA	ND IT	Page 2 of 36	

Client: AMEC E&I, Inc.

Project: RBTC Fountain Inn

Project: RBTC Fountain Inn

Lab ID: 1702E41

Case Narrative

Date:

23-Feb-17

Volatile Organic Compounds Analysis by Method 8260B:

LCS-238383 recovery for Bromoform was outside control limits biased high. Target analyte was not detected in the analytical samples and data is reportable with high bias.

Samples 1702E41-004A,-005A, & -011A exhibited a positive result for the presence of residual chlorine or other oxidizing agent. The presence of free chlorine in aqueous samples can cause the formation of trihalomethanes and other possible chemical reactions.

Due to sample matrix, samples 1702E41-004A, -005A, & -011A required dilution during preparation and/or analysis resulting in elevated reporting limits.

Client: AMEC E&I, Inc. Client Sample ID: TB-01

Project Name: RBTC Fountain Inn Collection Date: 2/14/2017 2:00:00 PM

Date:

23-Feb-17

Lab ID: 1702E41-001 Matrix: Aqueous

Analyses	Resul	t Qual	MDL	Reporting Limit	Units	BatchID	DF	Date Analyzed	Analyst
TCL VOLATILE ORGANICS SY	W8260B			(5	SW5030	0B)			
1,1,1-Trichloroethane	BRL		0.30	1.0	ug/L	238383	1	02/21/2017 23:51	NP
1,1,2,2-Tetrachloroethane	BRL		0.34	1.0	ug/L	238383	1	02/21/2017 23:51	NP
1,1,2-Trichloroethane	BRL		0.43	1.0	ug/L	238383	1	02/21/2017 23:51	NP
1,1-Dichloroethane	BRL		0.43	1.0	ug/L	238383	1	02/21/2017 23:51	NP
1,1-Dichloroethene	BRL		0.40	2.0	ug/L	238383	1	02/21/2017 23:51	NP
1,2,4-Trichlorobenzene	BRL		0.39	1.0	ug/L	238383	1	02/21/2017 23:51	NP
1,2-Dibromo-3-chloropropane	BRL		0.68	1.0	ug/L	238383	1	02/21/2017 23:51	NP
1,2-Dibromoethane	BRL		0.57	1.0	ug/L	238383	1	02/21/2017 23:51	NP
1,2-Dichlorobenzene	BRL		0.45	1.0	ug/L	238383	1	02/21/2017 23:51	NP
1,2-Dichloroethane	BRL		0.37	1.0	ug/L	238383	1	02/21/2017 23:51	NP
1,2-Dichloropropane	BRL		0.35	1.0	ug/L	238383	1	02/21/2017 23:51	NP
1,3-Dichlorobenzene	BRL		0.31	1.0	ug/L	238383	1	02/21/2017 23:51	NP
1,4-Dichlorobenzene	BRL		0.33	1.0	ug/L	238383	1	02/21/2017 23:51	NP
2-Butanone	BRL		2.5	10	ug/L	238383	1	02/21/2017 23:51	NP
2-Hexanone	BRL		0.67	10	ug/L	238383	1	02/21/2017 23:51	NP
4-Methyl-2-pentanone	BRL		0.44	10	ug/L	238383	1	02/21/2017 23:51	NP
Acetone	BRL		3.6	20	ug/L	238383	1	02/21/2017 23:51	NP
Benzene	BRL		0.37	1.0	ug/L	238383	1	02/21/2017 23:51	NP
Bromodichloromethane	BRL		0.25	1.0	ug/L	238383	1	02/21/2017 23:51	NP
Bromoform	BRL		0.19	1.0	ug/L	238383	1	02/21/2017 23:51	NP
Bromomethane	BRL		0.39	1.0	ug/L	238383	1	02/21/2017 23:51	NP
Carbon disulfide	BRL		0.74	5.0	ug/L	238383	1	02/21/2017 23:51	NP
Carbon tetrachloride	BRL		0.29	2.0	ug/L	238383	1	02/21/2017 23:51	NP
Chlorobenzene	BRL		0.42	1.0	ug/L	238383	1	02/21/2017 23:51	NP
Chloroethane	BRL		0.31	1.0	ug/L	238383	1	02/21/2017 23:51	NP
Chloroform	BRL		0.20	1.0	ug/L	238383	1	02/21/2017 23:51	NP
Chloromethane	BRL		0.21	1.0	ug/L	238383	1	02/21/2017 23:51	NP
cis-1,2-Dichloroethene	BRL		0.28	1.0	ug/L	238383	1	02/21/2017 23:51	NP
cis-1,3-Dichloropropene	BRL		0.31	1.0	ug/L	238383	1	02/21/2017 23:51	NP
Cyclohexane	BRL		1.0	2.0	ug/L	238383	1	02/21/2017 23:51	NP
Dibromochloromethane	BRL		0.43	1.0	ug/L	238383	1	02/21/2017 23:51	NP
Dichlorodifluoromethane	BRL		0.15	1.0	ug/L	238383	1	02/21/2017 23:51	NP
Ethylbenzene	BRL		0.26	1.0	ug/L	238383	1	02/21/2017 23:51	NP
Freon-113	BRL		0.32	5.0	ug/L	238383	1	02/21/2017 23:51	NP
Isopropylbenzene	BRL		0.43	1.0	ug/L	238383	1	02/21/2017 23:51	NP
m,p-Xylene	BRL		0.60	1.0	ug/L	238383	1	02/21/2017 23:51	NP
Methyl acetate	BRL		0.42	2.0	ug/L	238383	1	02/21/2017 23:51	NP
Methyl tert-butyl ether	BRL		0.45	1.0	ug/L	238383	1	02/21/2017 23:51	NP
Methylcyclohexane	BRL		0.39	2.0	ug/L	238383	1	02/21/2017 23:51	NP

Qualifiers:

^{*} Value exceeds maximum contaminant level

BRL Not detected at MDL

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

NC Not confirmed

E Estimated value above quantitation range

S Spike Recovery outside limits due to matrix

J Estimated value detected below Reporting Limit

> Greater than Result value

< Less than Result value

Client: AMEC E&I, Inc. Client Sample ID: TB-01

Project Name: RBTC Fountain Inn **Collection Date:** 2/14/2017 2:00:00 PM

Lab ID:1702E41-001Matrix:Aqueous

Analyses		Result	Qual	MDL	Reporting Limit	Units	BatchID	DF	Date Analyzed	Analyst
TCL VOLATILE ORGANICS	SW8260B				(SW5030	0B)			
Methylene chloride		BRL		1.2	5.0	ug/L	238383	1	02/21/2017 23:51	NP
o-Xylene		BRL		0.18	1.0	ug/L	238383	1	02/21/2017 23:51	NP
Styrene		BRL		0.15	1.0	ug/L	238383	1	02/21/2017 23:51	NP
Tetrachloroethene		BRL		0.46	1.0	ug/L	238383	1	02/21/2017 23:51	NP
Toluene		BRL		0.39	1.0	ug/L	238383	1	02/21/2017 23:51	NP
trans-1,2-Dichloroethene		BRL		0.30	2.0	ug/L	238383	1	02/21/2017 23:51	NP
trans-1,3-Dichloropropene		BRL		0.32	2.0	ug/L	238383	1	02/21/2017 23:51	NP
Trichloroethene		BRL		0.30	1.0	ug/L	238383	1	02/21/2017 23:51	NP
Trichlorofluoromethane		BRL		0.18	1.0	ug/L	238383	1	02/21/2017 23:51	NP
Vinyl chloride		BRL		0.30	1.0	ug/L	238383	1	02/21/2017 23:51	NP
Surr: 4-Bromofluorobenzene		84.2		0	70-130	%REC	238383	1	02/21/2017 23:51	NP
Surr: Dibromofluoromethane		116		0	70-130	%REC	238383	1	02/21/2017 23:51	NP
Surr: Toluene-d8		97.8		0	70-130	%REC	238383	1	02/21/2017 23:51	NP

Qualifiers:

* Value exceeds maximum contaminant level

BRL Not detected at MDL

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

NC Not confirmed

E Estimated value above quantitation range

S Spike Recovery outside limits due to matrix

J Estimated value detected below Reporting Limit

Date:

23-Feb-17

> Greater than Result value

< Less than Result value

Narr See case narrative

Page 5 of 36

Client: AMEC E&I, Inc. Client Sample ID: FB-01

Project Name: RBTC Fountain Inn **Collection Date:** 2/14/2017 11:00:00 AM

Date:

23-Feb-17

Lab ID: 1702E41-002 Matrix: Aqueous

Analyses	Result	Qual	MDL	Reporting Limit	Units	BatchID	DF	Date Analyzed	Analyst
TCL VOLATILE ORGANICS SW826	0B			(5	SW5030	0B)			
1,1,1-Trichloroethane	BRL		0.30	1.0	ug/L	238383	1	02/22/2017 10:24	NP
1,1,2,2-Tetrachloroethane	BRL		0.34	1.0	ug/L	238383	1	02/22/2017 10:24	NP
1,1,2-Trichloroethane	BRL		0.43	1.0	ug/L	238383	1	02/22/2017 10:24	NP
1,1-Dichloroethane	BRL		0.43	1.0	ug/L	238383	1	02/22/2017 10:24	NP
1,1-Dichloroethene	BRL		0.40	2.0	ug/L	238383	1	02/22/2017 10:24	NP
1,2,4-Trichlorobenzene	BRL		0.39	1.0	ug/L	238383	1	02/22/2017 10:24	NP
1,2-Dibromo-3-chloropropane	BRL		0.68	1.0	ug/L	238383	1	02/22/2017 10:24	NP
1,2-Dibromoethane	BRL		0.57	1.0	ug/L	238383	1	02/22/2017 10:24	NP
1,2-Dichlorobenzene	BRL		0.45	1.0	ug/L	238383	1	02/22/2017 10:24	NP
1,2-Dichloroethane	BRL		0.37	1.0	ug/L	238383	1	02/22/2017 10:24	NP
1,2-Dichloropropane	BRL		0.35	1.0	ug/L	238383	1	02/22/2017 10:24	NP
1,3-Dichlorobenzene	BRL		0.31	1.0	ug/L	238383	1	02/22/2017 10:24	NP
1,4-Dichlorobenzene	BRL		0.33	1.0	ug/L	238383	1	02/22/2017 10:24	NP
2-Butanone	BRL		2.5	10	ug/L	238383	1	02/22/2017 10:24	NP
2-Hexanone	BRL		0.67	10	ug/L	238383	1	02/22/2017 10:24	NP
4-Methyl-2-pentanone	BRL		0.44	10	ug/L	238383	1	02/22/2017 10:24	NP
Acetone	35		3.6	20	ug/L	238383	1	02/22/2017 10:24	NP
Benzene	BRL		0.37	1.0	ug/L	238383	1	02/22/2017 10:24	NP
Bromodichloromethane	BRL		0.25	1.0	ug/L	238383	1	02/22/2017 10:24	NP
Bromoform	BRL		0.19	1.0	ug/L	238383	1	02/22/2017 10:24	NP
Bromomethane	BRL		0.39	1.0	ug/L	238383	1	02/22/2017 10:24	NP
Carbon disulfide	BRL		0.74	5.0	ug/L	238383	1	02/22/2017 10:24	NP
Carbon tetrachloride	BRL		0.29	2.0	ug/L	238383	1	02/22/2017 10:24	NP
Chlorobenzene	BRL		0.42	1.0	ug/L	238383	1	02/22/2017 10:24	NP
Chloroethane	BRL		0.31	1.0	ug/L	238383	1	02/22/2017 10:24	NP
Chloroform	1.1		0.20	1.0	ug/L	238383	1	02/22/2017 10:24	NP
Chloromethane	BRL		0.21	1.0	ug/L	238383	1	02/22/2017 10:24	NP
cis-1,2-Dichloroethene	BRL		0.28	1.0	ug/L	238383	1	02/22/2017 10:24	NP
cis-1,3-Dichloropropene	BRL		0.31	1.0	ug/L	238383	1	02/22/2017 10:24	NP
Cyclohexane	BRL		1.0	2.0	ug/L	238383	1	02/22/2017 10:24	NP
Dibromochloromethane	BRL		0.43	1.0	ug/L	238383	1	02/22/2017 10:24	NP
Dichlorodifluoromethane	BRL		0.15	1.0	ug/L	238383	1	02/22/2017 10:24	NP
Ethylbenzene	BRL		0.26	1.0	ug/L	238383	1	02/22/2017 10:24	NP
Freon-113	BRL		0.32	5.0	ug/L	238383	1	02/22/2017 10:24	NP
Isopropylbenzene	BRL		0.43	1.0	ug/L	238383	1	02/22/2017 10:24	NP
m,p-Xylene	BRL		0.60	1.0	ug/L	238383	1	02/22/2017 10:24	NP
Methyl acetate	BRL		0.42	2.0	ug/L	238383	1	02/22/2017 10:24	NP
Methyl tert-butyl ether	BRL		0.45	1.0	ug/L	238383	1	02/22/2017 10:24	NP
Methylcyclohexane	BRL		0.39	2.0	ug/L	238383		02/22/2017 10:24	NP

Qualifiers:

^{*} Value exceeds maximum contaminant level

BRL Not detected at MDL

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

NC Not confirmed

E Estimated value above quantitation range

S Spike Recovery outside limits due to matrix

J Estimated value detected below Reporting Limit

> Greater than Result value

< Less than Result value

Client: AMEC E&I, Inc. Client Sample ID: FB-01

Project Name: RBTC Fountain Inn **Collection Date:** 2/14/2017 11:00:00 AM

Date:

23-Feb-17

Lab ID: 1702E41-002 Matrix: Aqueous

Analyses		Result	Qual	MDL	Reporting Limit	Units	BatchID	DF	Date Analyzed	Analyst		
TCL VOLATILE ORGANICS	SW8260B	(SW5030B)										
Methylene chloride		BRL		1.2	5.0	ug/L	238383	1	02/22/2017 10:24	NP		
o-Xylene		BRL		0.18	1.0	ug/L	238383	1	02/22/2017 10:24	NP		
Styrene		BRL		0.15	1.0	ug/L	238383	1	02/22/2017 10:24	NP		
Tetrachloroethene		BRL		0.46	1.0	ug/L	238383	1	02/22/2017 10:24	NP		
Toluene		2.4		0.39	1.0	ug/L	238383	1	02/22/2017 10:24	NP		
trans-1,2-Dichloroethene		BRL		0.30	2.0	ug/L	238383	1	02/22/2017 10:24	NP		
trans-1,3-Dichloropropene		BRL		0.32	2.0	ug/L	238383	1	02/22/2017 10:24	NP		
Trichloroethene		BRL		0.30	1.0	ug/L	238383	1	02/22/2017 10:24	NP		
Trichlorofluoromethane		BRL		0.18	1.0	ug/L	238383	1	02/22/2017 10:24	NP		
Vinyl chloride		BRL		0.30	1.0	ug/L	238383	1	02/22/2017 10:24	NP		
Surr: 4-Bromofluorobenzene		84.6		0	70-130	%REC	238383	1	02/22/2017 10:24	NP		
Surr: Dibromofluoromethane		113		0	70-130	%REC	238383	1	02/22/2017 10:24	NP		
Surr: Toluene-d8		98.9		0	70-130	%REC	238383	1	02/22/2017 10:24	NP		

Qualifiers:

* Value exceeds maximum contaminant level

BRL Not detected at MDL

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

NC Not confirmed

E Estimated value above quantitation range

S Spike Recovery outside limits due to matrix

J Estimated value detected below Reporting Limit

> Greater than Result value

< Less than Result value

Narr See case narrative

Page 7 of 36

Client: AMEC E&I, Inc. Client Sample ID: FB-02

Project Name: RBTC Fountain Inn **Collection Date:** 2/15/2017 11:30:00 AM

Date:

23-Feb-17

Lab ID: 1702E41-003 Matrix: Groundwater

Analyses	Result	Qual	MDL	Reporting Limit	Units	BatchID	DF	Date Analyzed	Analys
TCL VOLATILE ORGANICS SW8260	В			(5	SW5030)B)			
1,1,1-Trichloroethane	BRL		0.30	1.0	ug/L	238383	1	02/22/2017 10:48	NP
1,1,2,2-Tetrachloroethane	BRL		0.34	1.0	ug/L	238383	1	02/22/2017 10:48	NP
1,1,2-Trichloroethane	BRL		0.43	1.0	ug/L	238383	1	02/22/2017 10:48	NP
1,1-Dichloroethane	BRL		0.43	1.0	ug/L	238383	1	02/22/2017 10:48	NP
1,1-Dichloroethene	BRL		0.40	2.0	ug/L	238383	1	02/22/2017 10:48	NP
1,2,4-Trichlorobenzene	BRL		0.39	1.0	ug/L	238383	1	02/22/2017 10:48	NP
1,2-Dibromo-3-chloropropane	BRL		0.68	1.0	ug/L	238383	1	02/22/2017 10:48	NP
1,2-Dibromoethane	BRL		0.57	1.0	ug/L	238383	1	02/22/2017 10:48	NP
1,2-Dichlorobenzene	BRL		0.45	1.0	ug/L	238383	1	02/22/2017 10:48	NP
1,2-Dichloroethane	BRL		0.37	1.0	ug/L	238383	1	02/22/2017 10:48	NP
1,2-Dichloropropane	BRL		0.35	1.0	ug/L	238383	1	02/22/2017 10:48	NP
1,3-Dichlorobenzene	BRL		0.31	1.0	ug/L	238383	1	02/22/2017 10:48	NP
1,4-Dichlorobenzene	BRL		0.33	1.0	ug/L	238383	1	02/22/2017 10:48	NP
2-Butanone	BRL		2.5	10	ug/L	238383	1	02/22/2017 10:48	NP
2-Hexanone	BRL		0.67	10	ug/L	238383	1	02/22/2017 10:48	NP
4-Methyl-2-pentanone	BRL		0.44	10	ug/L	238383	1	02/22/2017 10:48	NP
Acetone	43		3.6	20	ug/L	238383	1	02/22/2017 10:48	NP
Benzene	BRL		0.37	1.0	ug/L	238383	1	02/22/2017 10:48	NP
Bromodichloromethane	BRL		0.25	1.0	ug/L	238383	1	02/22/2017 10:48	NP
Bromoform	BRL		0.19	1.0	ug/L	238383	1	02/22/2017 10:48	NP
Bromomethane	BRL		0.39	1.0	ug/L	238383	1	02/22/2017 10:48	NP
Carbon disulfide	BRL		0.74	5.0	ug/L	238383	1	02/22/2017 10:48	NP
Carbon tetrachloride	BRL		0.29	2.0	ug/L	238383	1	02/22/2017 10:48	NP
Chlorobenzene	BRL		0.42	1.0	ug/L	238383	1	02/22/2017 10:48	NP
Chloroethane	BRL		0.31	1.0	ug/L	238383	1	02/22/2017 10:48	NP
Chloroform	1.0		0.20	1.0	ug/L	238383	1	02/22/2017 10:48	NP
Chloromethane	BRL		0.21	1.0	ug/L	238383	1	02/22/2017 10:48	NP
cis-1,2-Dichloroethene	BRL		0.28	1.0	ug/L	238383	1	02/22/2017 10:48	NP
cis-1,3-Dichloropropene	BRL		0.31	1.0	ug/L	238383	1	02/22/2017 10:48	NP
Cyclohexane	BRL		1.0	2.0	ug/L	238383	1	02/22/2017 10:48	NP
Dibromochloromethane	BRL		0.43	1.0	ug/L	238383	1	02/22/2017 10:48	NP
Dichlorodifluoromethane	BRL		0.15	1.0	ug/L	238383	1	02/22/2017 10:48	NP
Ethylbenzene	BRL		0.26	1.0	ug/L	238383	1	02/22/2017 10:48	NP
Freon-113	BRL		0.32	5.0	ug/L	238383	1	02/22/2017 10:48	NP
Isopropylbenzene	BRL		0.43	1.0	ug/L	238383	1	02/22/2017 10:48	NP
m,p-Xylene	BRL		0.60	1.0	ug/L	238383	1	02/22/2017 10:48	NP
Methyl acetate	BRL		0.42	2.0	ug/L	238383	1	02/22/2017 10:48	NP
Methyl tert-butyl ether	BRL		0.45	1.0	ug/L	238383	1	02/22/2017 10:48	NP
Methylcyclohexane	BRL		0.39	2.0	ug/L	238383	1	02/22/2017 10:48	NP

Qualifiers:

^{*} Value exceeds maximum contaminant level

BRL Not detected at MDL

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

NC Not confirmed

E Estimated value above quantitation range

S Spike Recovery outside limits due to matrix

J Estimated value detected below Reporting Limit

> Greater than Result value

< Less than Result value

Client: AMEC E&I, Inc. Client Sample ID: FB-02

Project Name: RBTC Fountain Inn **Collection Date:** 2/15/2017 11:30:00 AM

Date:

23-Feb-17

Lab ID:1702E41-003Matrix:Groundwater

Analyses		Result	Qual	MDL	Reporting Limit	Units	BatchID	DF	Date Analyzed	Analyst
TCL VOLATILE ORGANICS S	W8260B				(SW5030)B)			
Methylene chloride		BRL		1.2	5.0	ug/L	238383	1	02/22/2017 10:48	NP
o-Xylene		BRL		0.18	1.0	ug/L	238383	1	02/22/2017 10:48	NP
Styrene		BRL		0.15	1.0	ug/L	238383	1	02/22/2017 10:48	NP
Tetrachloroethene		BRL		0.46	1.0	ug/L	238383	1	02/22/2017 10:48	NP
Toluene		2.5		0.39	1.0	ug/L	238383	1	02/22/2017 10:48	NP
trans-1,2-Dichloroethene		BRL		0.30	2.0	ug/L	238383	1	02/22/2017 10:48	NP
trans-1,3-Dichloropropene		BRL		0.32	2.0	ug/L	238383	1	02/22/2017 10:48	NP
Trichloroethene		BRL		0.30	1.0	ug/L	238383	1	02/22/2017 10:48	NP
Trichlorofluoromethane		BRL		0.18	1.0	ug/L	238383	1	02/22/2017 10:48	NP
Vinyl chloride		BRL		0.30	1.0	ug/L	238383	1	02/22/2017 10:48	NP
Surr: 4-Bromofluorobenzene		84.6		0	70-130	%REC	238383	1	02/22/2017 10:48	NP
Surr: Dibromofluoromethane		116		0	70-130	%REC	238383	1	02/22/2017 10:48	NP
Surr: Toluene-d8		99.1		0	70-130	%REC	238383	1	02/22/2017 10:48	NP

Qualifiers:

* Value exceeds maximum contaminant level

BRL Not detected at MDL

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

NC Not confirmed

E Estimated value above quantitation range

S Spike Recovery outside limits due to matrix

J Estimated value detected below Reporting Limit

> Greater than Result value

< Less than Result value

Client: AMEC E&I, Inc. Client Sample ID: MW-09-26

Project Name: RBTC Fountain Inn Collection Date: 2/14/2017 11:05:00 AM

Date:

23-Feb-17

Lab ID: 1702E41-004 Matrix: Groundwater

Analyses	Result	Qual	MDL	Reporting Limit	Units	BatchID	DF	Date Analyzed	Analyst
TCL VOLATILE ORGANICS SW8260	В			(5	SW5030)B)			
1,1,1-Trichloroethane	BRL		15	50	ug/L	238383	50	02/22/2017 04:07	NP
1,1,2,2-Tetrachloroethane	BRL		17	50	ug/L	238383	50	02/22/2017 04:07	NP
1,1,2-Trichloroethane	BRL		22	50	ug/L	238383	50	02/22/2017 04:07	NP
1,1-Dichloroethane	BRL		21	50	ug/L	238383	50	02/22/2017 04:07	NP
1,1-Dichloroethene	BRL		20	100	ug/L	238383	50	02/22/2017 04:07	NP
1,2,4-Trichlorobenzene	BRL		20	50	ug/L	238383	50	02/22/2017 04:07	NP
1,2-Dibromo-3-chloropropane	BRL		34	50	ug/L	238383	50	02/22/2017 04:07	NP
1,2-Dibromoethane	BRL		29	50	ug/L	238383	50	02/22/2017 04:07	NP
1,2-Dichlorobenzene	BRL		22	50	ug/L	238383	50	02/22/2017 04:07	NP
1,2-Dichloroethane	BRL		19	50	ug/L	238383	50	02/22/2017 04:07	NP
1,2-Dichloropropane	BRL		17	50	ug/L	238383	50	02/22/2017 04:07	NP
1,3-Dichlorobenzene	BRL		15	50	ug/L	238383	50	02/22/2017 04:07	NP
1,4-Dichlorobenzene	BRL		16	50	ug/L	238383	50	02/22/2017 04:07	NP
2-Butanone	BRL		130	500	ug/L	238383	50	02/22/2017 04:07	NP
2-Hexanone	BRL		34	500	ug/L	238383	50	02/22/2017 04:07	NP
4-Methyl-2-pentanone	BRL		22	500	ug/L	238383	50	02/22/2017 04:07	NP
Acetone	BRL		180	1000	ug/L	238383	50	02/22/2017 04:07	NP
Benzene	BRL		19	50	ug/L	238383	50	02/22/2017 04:07	NP
Bromodichloromethane	BRL		12	50	ug/L	238383	50	02/22/2017 04:07	NP
Bromoform	BRL		9.7	50	ug/L	238383	50	02/22/2017 04:07	NP
Bromomethane	BRL		19	50	ug/L	238383	50	02/22/2017 04:07	NP
Carbon disulfide	BRL		37	250	ug/L	238383	50	02/22/2017 04:07	NP
Carbon tetrachloride	BRL		15	100	ug/L	238383	50	02/22/2017 04:07	NP
Chlorobenzene	BRL		21	50	ug/L	238383	50	02/22/2017 04:07	NP
Chloroethane	BRL		15	50	ug/L	238383	50	02/22/2017 04:07	NP
Chloroform	730		9.9	50	ug/L	238383	50	02/22/2017 04:07	NP
Chloromethane	BRL		11	50	ug/L	238383	50	02/22/2017 04:07	NP
cis-1,2-Dichloroethene	BRL		14	50	ug/L	238383	50	02/22/2017 04:07	NP
cis-1,3-Dichloropropene	BRL		15	50	ug/L	238383	50	02/22/2017 04:07	NP
Cyclohexane	BRL		52	100	ug/L	238383	50	02/22/2017 04:07	NP
Dibromochloromethane	BRL		22	50	ug/L	238383	50	02/22/2017 04:07	NP
Dichlorodifluoromethane	BRL		7.5	50	ug/L	238383	50	02/22/2017 04:07	NP
Ethylbenzene	BRL		13	50	ug/L	238383	50	02/22/2017 04:07	NP
Freon-113	BRL		16	250	ug/L	238383	50	02/22/2017 04:07	NP
Isopropylbenzene	BRL		21	50	ug/L	238383	50	02/22/2017 04:07	NP
m,p-Xylene	BRL		30	50	ug/L	238383	50	02/22/2017 04:07	NP
Methyl acetate	BRL		21	100	ug/L	238383		02/22/2017 04:07	NP
Methyl tert-butyl ether	BRL		22	50	ug/L	238383		02/22/2017 04:07	NP
Methylcyclohexane	BRL		20	100	ug/L	238383	50	02/22/2017 04:07	NP

Qualifiers:

^{*} Value exceeds maximum contaminant level

BRL Not detected at MDL

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

NC Not confirmed

E Estimated value above quantitation range

S Spike Recovery outside limits due to matrix

J Estimated value detected below Reporting Limit

> Greater than Result value

< Less than Result value

Client: AMEC E&I, Inc. Client Sample ID: MW-09-26

Project Name: RBTC Fountain Inn Collection Date: 2/14/2017 11:05:00 AM

Date:

23-Feb-17

Lab ID: 1702E41-004 Matrix: Groundwater

Analyses		Result	Qual	MDL	Reporting Limit	Units	BatchID	DF	Date Analyzed	Analyst		
TCL VOLATILE ORGANICS	SW8260B	(SW5030B)										
Methylene chloride		BRL		59	250	ug/L	238383	50	02/22/2017 04:07	NP		
o-Xylene		BRL		8.9	50	ug/L	238383	50	02/22/2017 04:07	NP		
Styrene		BRL		7.7	50	ug/L	238383	50	02/22/2017 04:07	NP		
Tetrachloroethene		BRL		23	50	ug/L	238383	50	02/22/2017 04:07	NP		
Toluene		BRL		20	50	ug/L	238383	50	02/22/2017 04:07	NP		
trans-1,2-Dichloroethene		BRL		15	100	ug/L	238383	50	02/22/2017 04:07	NP		
trans-1,3-Dichloropropene		BRL		16	100	ug/L	238383	50	02/22/2017 04:07	NP		
Trichloroethene		BRL		15	50	ug/L	238383	50	02/22/2017 04:07	NP		
Trichlorofluoromethane		BRL		9.0	50	ug/L	238383	50	02/22/2017 04:07	NP		
Vinyl chloride		BRL		15	50	ug/L	238383	50	02/22/2017 04:07	NP		
Surr: 4-Bromofluorobenzene		86.9		0	70-130	%REC	238383	50	02/22/2017 04:07	NP		
Surr: Dibromofluoromethane		114		0	70-130	%REC	238383	50	02/22/2017 04:07	NP		
Surr: Toluene-d8		95.1		0	70-130	%REC	238383	50	02/22/2017 04:07	NP		

Qualifiers:

* Value exceeds maximum contaminant level

BRL Not detected at MDL

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

NC Not confirmed

E Estimated value above quantitation range

S Spike Recovery outside limits due to matrix

J Estimated value detected below Reporting Limit

> Greater than Result value

< Less than Result value

Narr See case narrative

Page 11 of 36

Client: AMEC E&I, Inc. Client Sample ID: MW-09-27

Project Name: RBTC Fountain Inn **Collection Date:** 2/14/2017 1:00:00 PM

Date:

23-Feb-17

Lab ID: 1702E41-005 Matrix: Groundwater

Analyses	Result	Qual	MDL	Reporting Limit	Units	BatchID	DF	Date Analyzed	Analyst
TCL VOLATILE ORGANICS SW8260	В			(5	SW5030)B)			
1,1,1-Trichloroethane	BRL		15	50	ug/L	238383	50	02/22/2017 04:30	NP
1,1,2,2-Tetrachloroethane	BRL		17	50	ug/L	238383	50	02/22/2017 04:30	NP
1,1,2-Trichloroethane	BRL		22	50	ug/L	238383	50	02/22/2017 04:30	NP
1,1-Dichloroethane	BRL		21	50	ug/L	238383	50	02/22/2017 04:30	NP
1,1-Dichloroethene	BRL		20	100	ug/L	238383	50	02/22/2017 04:30	NP
1,2,4-Trichlorobenzene	BRL		20	50	ug/L	238383	50	02/22/2017 04:30	NP
1,2-Dibromo-3-chloropropane	BRL		34	50	ug/L	238383	50	02/22/2017 04:30	NP
1,2-Dibromoethane	BRL		29	50	ug/L	238383	50	02/22/2017 04:30	NP
1,2-Dichlorobenzene	BRL		22	50	ug/L	238383	50	02/22/2017 04:30	NP
1,2-Dichloroethane	BRL		19	50	ug/L	238383	50	02/22/2017 04:30	NP
1,2-Dichloropropane	BRL		17	50	ug/L	238383	50	02/22/2017 04:30	NP
1,3-Dichlorobenzene	BRL		15	50	ug/L	238383	50	02/22/2017 04:30	NP
1,4-Dichlorobenzene	BRL		16	50	ug/L	238383	50	02/22/2017 04:30	NP
2-Butanone	BRL		130	500	ug/L	238383	50	02/22/2017 04:30	NP
2-Hexanone	BRL		34	500	ug/L	238383	50	02/22/2017 04:30	NP
4-Methyl-2-pentanone	BRL		22	500	ug/L	238383	50	02/22/2017 04:30	NP
Acetone	BRL		180	1000	ug/L	238383	50	02/22/2017 04:30	NP
Benzene	BRL		19	50	ug/L	238383	50	02/22/2017 04:30	NP
Bromodichloromethane	BRL		12	50	ug/L	238383	50	02/22/2017 04:30	NP
Bromoform	BRL		9.7	50	ug/L	238383	50	02/22/2017 04:30	NP
Bromomethane	BRL		19	50	ug/L	238383	50	02/22/2017 04:30	NP
Carbon disulfide	BRL		37	250	ug/L	238383	50	02/22/2017 04:30	NP
Carbon tetrachloride	BRL		15	100	ug/L	238383	50	02/22/2017 04:30	NP
Chlorobenzene	BRL		21	50	ug/L	238383	50	02/22/2017 04:30	NP
Chloroethane	BRL		15	50	ug/L	238383	50	02/22/2017 04:30	NP
Chloroform	1100		9.9	50	ug/L	238383	50	02/22/2017 04:30	NP
Chloromethane	BRL		11	50	ug/L	238383	50	02/22/2017 04:30	NP
cis-1,2-Dichloroethene	BRL		14	50	ug/L	238383	50	02/22/2017 04:30	NP
cis-1,3-Dichloropropene	BRL		15	50	ug/L	238383	50	02/22/2017 04:30	NP
Cyclohexane	BRL		52	100	ug/L	238383	50	02/22/2017 04:30	NP
Dibromochloromethane	BRL		22	50	ug/L	238383	50	02/22/2017 04:30	NP
Dichlorodifluoromethane	BRL		7.5	50	ug/L	238383	50	02/22/2017 04:30	NP
Ethylbenzene	BRL		13	50	ug/L	238383	50	02/22/2017 04:30	NP
Freon-113	BRL		16	250	ug/L	238383	50	02/22/2017 04:30	NP
Isopropylbenzene	BRL		21	50	ug/L	238383	50	02/22/2017 04:30	NP
m,p-Xylene	BRL		30	50	ug/L	238383	50	02/22/2017 04:30	NP
Methyl acetate	BRL		21	100	ug/L	238383		02/22/2017 04:30	NP
Methyl tert-butyl ether	BRL		22	50	ug/L	238383		02/22/2017 04:30	NP
Methylcyclohexane	BRL		20	100	ug/L	238383	50	02/22/2017 04:30	NP

Qualifiers:

^{*} Value exceeds maximum contaminant level

BRL Not detected at MDL

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

NC Not confirmed

E Estimated value above quantitation range

S Spike Recovery outside limits due to matrix

J Estimated value detected below Reporting Limit

> Greater than Result value

< Less than Result value

Client: AMEC E&I, Inc. Client Sample ID: MW-09-27

Project Name: RBTC Fountain Inn **Collection Date:** 2/14/2017 1:00:00 PM

Lab ID: 1702E41-005 Matrix: Groundwater

Analyses		Result	Qual	MDL	Reporting Limit	Units	BatchID	DF	Date Analyzed	Analys		
TCL VOLATILE ORGANICS	SW8260B	(SW5030B)										
Methylene chloride		BRL		59	250	ug/L	238383	50	02/22/2017 04:30	NP		
o-Xylene		BRL		8.9	50	ug/L	238383	50	02/22/2017 04:30	NP		
Styrene		BRL		7.7	50	ug/L	238383	50	02/22/2017 04:30	NP		
Tetrachloroethene		BRL		23	50	ug/L	238383	50	02/22/2017 04:30	NP		
Toluene		BRL		20	50	ug/L	238383	50	02/22/2017 04:30	NP		
trans-1,2-Dichloroethene		BRL		15	100	ug/L	238383	50	02/22/2017 04:30	NP		
trans-1,3-Dichloropropene		BRL		16	100	ug/L	238383	50	02/22/2017 04:30	NP		
Trichloroethene		BRL		15	50	ug/L	238383	50	02/22/2017 04:30	NP		
Trichlorofluoromethane		BRL		9.0	50	ug/L	238383	50	02/22/2017 04:30	NP		
Vinyl chloride		BRL		15	50	ug/L	238383	50	02/22/2017 04:30	NP		
Surr: 4-Bromofluorobenzene		87.9		0	70-130	%REC	238383	50	02/22/2017 04:30	NP		
Surr: Dibromofluoromethane		117		0	70-130	%REC	238383	50	02/22/2017 04:30	NP		
Surr: Toluene-d8		97.3		0	70-130	%REC	238383	50	02/22/2017 04:30	NP		

Qualifiers:

* Value exceeds maximum contaminant level

BRL Not detected at MDL

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

NC Not confirmed

E Estimated value above quantitation range

S Spike Recovery outside limits due to matrix

J Estimated value detected below Reporting Limit

Date:

23-Feb-17

> Greater than Result value

< Less than Result value

Client: AMEC E&I, Inc. Client Sample ID: MW-09-28

Project Name: RBTC Fountain Inn **Collection Date:** 2/14/2017 2:00:00 PM

Date:

23-Feb-17

Lab ID: 1702E41-006 Matrix: Groundwater

Analyses	Result	Qual	MDL	Reporting Limit	Units	BatchID	DF	Date Analyzed	Analyst
TCL VOLATILE ORGANICS SW8260	В			(5	SW5030	0B)			
1,1,1-Trichloroethane	BRL		0.30	1.0	ug/L	238383	1	02/22/2017 05:16	NP
1,1,2,2-Tetrachloroethane	BRL		0.34	1.0	ug/L	238383	1	02/22/2017 05:16	NP
1,1,2-Trichloroethane	BRL		0.43	1.0	ug/L	238383	1	02/22/2017 05:16	NP
1,1-Dichloroethane	BRL		0.43	1.0	ug/L	238383	1	02/22/2017 05:16	NP
1,1-Dichloroethene	BRL		0.40	2.0	ug/L	238383	1	02/22/2017 05:16	NP
1,2,4-Trichlorobenzene	BRL		0.39	1.0	ug/L	238383	1	02/22/2017 05:16	NP
1,2-Dibromo-3-chloropropane	BRL		0.68	1.0	ug/L	238383	1	02/22/2017 05:16	NP
1,2-Dibromoethane	BRL		0.57	1.0	ug/L	238383	1	02/22/2017 05:16	NP
1,2-Dichlorobenzene	BRL		0.45	1.0	ug/L	238383	1	02/22/2017 05:16	NP
1,2-Dichloroethane	BRL		0.37	1.0	ug/L	238383	1	02/22/2017 05:16	NP
1,2-Dichloropropane	BRL		0.35	1.0	ug/L	238383	1	02/22/2017 05:16	NP
1,3-Dichlorobenzene	BRL		0.31	1.0	ug/L	238383	1	02/22/2017 05:16	NP
1,4-Dichlorobenzene	BRL		0.33	1.0	ug/L	238383	1	02/22/2017 05:16	NP
2-Butanone	BRL		2.5	10	ug/L	238383	1	02/22/2017 05:16	NP
2-Hexanone	BRL		0.67	10	ug/L	238383	1	02/22/2017 05:16	NP
4-Methyl-2-pentanone	BRL		0.44	10	ug/L	238383	1	02/22/2017 05:16	NP
Acetone	BRL		3.6	20	ug/L	238383	1	02/22/2017 05:16	NP
Benzene	0.40	J	0.37	1.0	ug/L	238383	1	02/22/2017 05:16	NP
Bromodichloromethane	BRL		0.25	1.0	ug/L	238383	1	02/22/2017 05:16	NP
Bromoform	BRL		0.19	1.0	ug/L	238383	1	02/22/2017 05:16	NP
Bromomethane	BRL		0.39	1.0	ug/L	238383	1	02/22/2017 05:16	NP
Carbon disulfide	BRL		0.74	5.0	ug/L	238383	1	02/22/2017 05:16	NP
Carbon tetrachloride	BRL		0.29	2.0	ug/L	238383	1	02/22/2017 05:16	NP
Chlorobenzene	BRL		0.42	1.0	ug/L	238383	1	02/22/2017 05:16	NP
Chloroethane	BRL		0.31	1.0	ug/L	238383	1	02/22/2017 05:16	NP
Chloroform	2.7		0.20	1.0	ug/L	238383	1	02/22/2017 05:16	NP
Chloromethane	BRL		0.21	1.0	ug/L	238383	1	02/22/2017 05:16	NP
cis-1,2-Dichloroethene	BRL		0.28	1.0	ug/L	238383	1	02/22/2017 05:16	NP
cis-1,3-Dichloropropene	BRL		0.31	1.0	ug/L	238383	1	02/22/2017 05:16	NP
Cyclohexane	BRL		1.0	2.0	ug/L	238383	1	02/22/2017 05:16	NP
Dibromochloromethane	BRL		0.43	1.0	ug/L	238383	1	02/22/2017 05:16	NP
Dichlorodifluoromethane	BRL		0.15	1.0	ug/L	238383	1	02/22/2017 05:16	NP
Ethylbenzene	BRL		0.26	1.0	ug/L	238383	1	02/22/2017 05:16	NP
Freon-113	BRL		0.32	5.0	ug/L	238383	1	02/22/2017 05:16	NP
Isopropylbenzene	BRL		0.43	1.0	ug/L	238383	1	02/22/2017 05:16	NP
m,p-Xylene	BRL		0.60	1.0	ug/L	238383	1	02/22/2017 05:16	NP
Methyl acetate	BRL		0.42	2.0	ug/L	238383	1	02/22/2017 05:16	NP
Methyl tert-butyl ether	BRL		0.45	1.0	ug/L	238383	1	02/22/2017 05:16	NP
Methylcyclohexane	BRL		0.39	2.0	ug/L	238383	1	02/22/2017 05:16	NP

Qualifiers:

^{*} Value exceeds maximum contaminant level

BRL Not detected at MDL

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

NC Not confirmed

E Estimated value above quantitation range

S Spike Recovery outside limits due to matrix

J Estimated value detected below Reporting Limit

> Greater than Result value

< Less than Result value

Client: AMEC E&I, Inc. Client Sample ID: MW-09-28

Project Name: RBTC Fountain Inn **Collection Date:** 2/14/2017 2:00:00 PM

Lab ID: 1702E41-006 Matrix: Groundwater

Analyses		Result	Qual	MDL	Reporting Limit	Units	BatchID	DF	Date Analyzed	Analyst		
TCL VOLATILE ORGANICS S	SW8260B	(SW5030B)										
Methylene chloride		2.2	J	1.2	5.0	ug/L	238383	1	02/22/2017 05:16	NP		
o-Xylene		BRL		0.18	1.0	ug/L	238383	1	02/22/2017 05:16	NP		
Styrene		BRL		0.15	1.0	ug/L	238383	1	02/22/2017 05:16	NP		
Tetrachloroethene		1.7		0.46	1.0	ug/L	238383	1	02/22/2017 05:16	NP		
Toluene		1.7		0.39	1.0	ug/L	238383	1	02/22/2017 05:16	NP		
trans-1,2-Dichloroethene		BRL		0.30	2.0	ug/L	238383	1	02/22/2017 05:16	NP		
trans-1,3-Dichloropropene		BRL		0.32	2.0	ug/L	238383	1	02/22/2017 05:16	NP		
Trichloroethene		BRL		0.30	1.0	ug/L	238383	1	02/22/2017 05:16	NP		
Trichlorofluoromethane		BRL		0.18	1.0	ug/L	238383	1	02/22/2017 05:16	NP		
Vinyl chloride		BRL		0.30	1.0	ug/L	238383	1	02/22/2017 05:16	NP		
Surr: 4-Bromofluorobenzene		87.4		0	70-130	%REC	238383	1	02/22/2017 05:16	NP		
Surr: Dibromofluoromethane		113		0	70-130	%REC	238383	1	02/22/2017 05:16	NP		
Surr: Toluene-d8		99.8		0	70-130	%REC	238383	1	02/22/2017 05:16	NP		

Qualifiers:

* Value exceeds maximum contaminant level

BRL Not detected at MDL

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

NC Not confirmed

E Estimated value above quantitation range

S Spike Recovery outside limits due to matrix

J Estimated value detected below Reporting Limit

Date:

23-Feb-17

> Greater than Result value

< Less than Result value

Narr See case narrative

Page 15 of 36

Client: AMEC E&I, Inc. Client Sample ID: MW-09-29

Project Name: RBTC Fountain Inn **Collection Date:** 2/14/2017 12:55:00 PM

Date:

23-Feb-17

Lab ID: 1702E41-007 Matrix: Groundwater

Analyses	Result	Qual	MDL	Reporting Limit	Units	BatchID	DF	Date Analyzed	Analyst
TCL VOLATILE ORGANICS SW82601	В			(5	SW5030	0B)			
1,1,1-Trichloroethane	BRL		0.30	1.0	ug/L	238383	1	02/22/2017 05:39	NP
1,1,2,2-Tetrachloroethane	BRL		0.34	1.0	ug/L	238383	1	02/22/2017 05:39	NP
1,1,2-Trichloroethane	BRL		0.43	1.0	ug/L	238383	1	02/22/2017 05:39	NP
1,1-Dichloroethane	BRL		0.43	1.0	ug/L	238383	1	02/22/2017 05:39	NP
1,1-Dichloroethene	BRL		0.40	2.0	ug/L	238383	1	02/22/2017 05:39	NP
1,2,4-Trichlorobenzene	BRL		0.39	1.0	ug/L	238383	1	02/22/2017 05:39	NP
1,2-Dibromo-3-chloropropane	BRL		0.68	1.0	ug/L	238383	1	02/22/2017 05:39	NP
1,2-Dibromoethane	BRL		0.57	1.0	ug/L	238383	1	02/22/2017 05:39	NP
1,2-Dichlorobenzene	BRL		0.45	1.0	ug/L	238383	1	02/22/2017 05:39	NP
1,2-Dichloroethane	BRL		0.37	1.0	ug/L	238383	1	02/22/2017 05:39	NP
1,2-Dichloropropane	BRL		0.35	1.0	ug/L	238383	1	02/22/2017 05:39	NP
1,3-Dichlorobenzene	BRL		0.31	1.0	ug/L	238383	1	02/22/2017 05:39	NP
1,4-Dichlorobenzene	BRL		0.33	1.0	ug/L	238383	1	02/22/2017 05:39	NP
2-Butanone	BRL		2.5	10	ug/L	238383	1	02/22/2017 05:39	NP
2-Hexanone	BRL		0.67	10	ug/L	238383	1	02/22/2017 05:39	NP
4-Methyl-2-pentanone	BRL		0.44	10	ug/L	238383	1	02/22/2017 05:39	NP
Acetone	BRL		3.6	20	ug/L	238383	1	02/22/2017 05:39	NP
Benzene	BRL		0.37	1.0	ug/L	238383	1	02/22/2017 05:39	NP
Bromodichloromethane	BRL		0.25	1.0	ug/L	238383	1	02/22/2017 05:39	NP
Bromoform	BRL		0.19	1.0	ug/L	238383	1	02/22/2017 05:39	NP
Bromomethane	BRL		0.39	1.0	ug/L	238383	1	02/22/2017 05:39	NP
Carbon disulfide	BRL		0.74	5.0	ug/L	238383	1	02/22/2017 05:39	NP
Carbon tetrachloride	BRL		0.29	2.0	ug/L	238383	1	02/22/2017 05:39	NP
Chlorobenzene	BRL		0.42	1.0	ug/L	238383	1	02/22/2017 05:39	NP
Chloroethane	BRL		0.31	1.0	ug/L	238383	1	02/22/2017 05:39	NP
Chloroform	BRL		0.20	1.0	ug/L	238383	1	02/22/2017 05:39	NP
Chloromethane	BRL		0.21	1.0	ug/L	238383	1	02/22/2017 05:39	NP
cis-1,2-Dichloroethene	BRL		0.28	1.0	ug/L	238383	1	02/22/2017 05:39	NP
cis-1,3-Dichloropropene	BRL		0.31	1.0	ug/L	238383	1	02/22/2017 05:39	NP
Cyclohexane	BRL		1.0	2.0	ug/L	238383	1	02/22/2017 05:39	NP
Dibromochloromethane	BRL		0.43	1.0	ug/L	238383	1	02/22/2017 05:39	NP
Dichlorodifluoromethane	BRL		0.15	1.0	ug/L	238383	1	02/22/2017 05:39	NP
Ethylbenzene	BRL		0.26	1.0	ug/L	238383	1	02/22/2017 05:39	NP
Freon-113	BRL		0.32	5.0	ug/L	238383	1	02/22/2017 05:39	NP
Isopropylbenzene	BRL		0.43	1.0	ug/L	238383	1	02/22/2017 05:39	NP
m,p-Xylene	BRL		0.60	1.0	ug/L	238383	1	02/22/2017 05:39	NP
Methyl acetate	BRL		0.42	2.0	ug/L	238383	1	02/22/2017 05:39	NP
Methyl tert-butyl ether	BRL		0.45	1.0	ug/L	238383	1	02/22/2017 05:39	NP
Methylcyclohexane	BRL		0.39	2.0	ug/L	238383	1	02/22/2017 05:39	NP

Qualifiers:

^{*} Value exceeds maximum contaminant level

BRL Not detected at MDL

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

NC Not confirmed

E Estimated value above quantitation range

S Spike Recovery outside limits due to matrix

J Estimated value detected below Reporting Limit

> Greater than Result value

< Less than Result value

Client: AMEC E&I, Inc. Client Sample ID: MW-09-29

Project Name: RBTC Fountain Inn **Collection Date:** 2/14/2017 12:55:00 PM

Lab ID: 1702E41-007 Matrix: Groundwater

Analyses		Result	Qual	MDL	Reporting Limit	Units	BatchID	DF	Date Analyzed	Analyst
TCL VOLATILE ORGANICS	SW8260B				(SW5030)B)			
Methylene chloride		BRL		1.2	5.0	ug/L	238383	1	02/22/2017 05:39	NP
o-Xylene		BRL		0.18	1.0	ug/L	238383	1	02/22/2017 05:39	NP
Styrene		BRL		0.15	1.0	ug/L	238383	1	02/22/2017 05:39	NP
Tetrachloroethene		BRL		0.46	1.0	ug/L	238383	1	02/22/2017 05:39	NP
Toluene		BRL		0.39	1.0	ug/L	238383	1	02/22/2017 05:39	NP
trans-1,2-Dichloroethene		BRL		0.30	2.0	ug/L	238383	1	02/22/2017 05:39	NP
trans-1,3-Dichloropropene		BRL		0.32	2.0	ug/L	238383	1	02/22/2017 05:39	NP
Trichloroethene		BRL		0.30	1.0	ug/L	238383	1	02/22/2017 05:39	NP
Trichlorofluoromethane		BRL		0.18	1.0	ug/L	238383	1	02/22/2017 05:39	NP
Vinyl chloride		BRL		0.30	1.0	ug/L	238383	1	02/22/2017 05:39	NP
Surr: 4-Bromofluorobenzene		83.4		0	70-130	%REC	238383	1	02/22/2017 05:39	NP
Surr: Dibromofluoromethane		116		0	70-130	%REC	238383	1	02/22/2017 05:39	NP
Surr: Toluene-d8		99		0	70-130	%REC	238383	1	02/22/2017 05:39	NP

Qualifiers:

* Value exceeds maximum contaminant level

BRL Not detected at MDL

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

NC Not confirmed

E Estimated value above quantitation range

S Spike Recovery outside limits due to matrix

J Estimated value detected below Reporting Limit

> Greater than Result value

< Less than Result value

Narr See case narrative Page 17 of 36

Date:

23-Feb-17

Client: AMEC E&I, Inc. Client Sample ID: MW-09-30

Project Name: RBTC Fountain Inn **Collection Date:** 2/14/2017 10:40:00 AM

Date:

23-Feb-17

Lab ID: 1702E41-008 Matrix: Groundwater

Analyses	Result	Qual	MDL	Reporting Limit	Units	BatchID	DF	Date Analyzed	Analyst
TCL VOLATILE ORGANICS SW826)B			(5	SW5030)B)			
1,1,1-Trichloroethane	BRL		0.30	1.0	ug/L	238383	1	02/22/2017 06:02	NP
1,1,2,2-Tetrachloroethane	BRL		0.34	1.0	ug/L	238383	1	02/22/2017 06:02	NP
1,1,2-Trichloroethane	BRL		0.43	1.0	ug/L	238383	1	02/22/2017 06:02	NP
1,1-Dichloroethane	BRL		0.43	1.0	ug/L	238383	1	02/22/2017 06:02	NP
1,1-Dichloroethene	BRL		0.40	2.0	ug/L	238383	1	02/22/2017 06:02	NP
1,2,4-Trichlorobenzene	BRL		0.39	1.0	ug/L	238383	1	02/22/2017 06:02	NP
1,2-Dibromo-3-chloropropane	BRL		0.68	1.0	ug/L	238383	1	02/22/2017 06:02	NP
1,2-Dibromoethane	BRL		0.57	1.0	ug/L	238383	1	02/22/2017 06:02	NP
1,2-Dichlorobenzene	BRL		0.45	1.0	ug/L	238383	1	02/22/2017 06:02	NP
1,2-Dichloroethane	BRL		0.37	1.0	ug/L	238383	1	02/22/2017 06:02	NP
1,2-Dichloropropane	BRL		0.35	1.0	ug/L	238383	1	02/22/2017 06:02	NP
1,3-Dichlorobenzene	BRL		0.31	1.0	ug/L	238383	1	02/22/2017 06:02	NP
1,4-Dichlorobenzene	BRL		0.33	1.0	ug/L	238383	1	02/22/2017 06:02	NP
2-Butanone	BRL		2.5	10	ug/L	238383	1	02/22/2017 06:02	NP
2-Hexanone	BRL		0.67	10	ug/L	238383	1	02/22/2017 06:02	NP
4-Methyl-2-pentanone	BRL		0.44	10	ug/L	238383	1	02/22/2017 06:02	NP
Acetone	BRL		3.6	20	ug/L	238383	1	02/22/2017 06:02	NP
Benzene	BRL		0.37	1.0	ug/L	238383	1	02/22/2017 06:02	NP
Bromodichloromethane	BRL		0.25	1.0	ug/L	238383	1	02/22/2017 06:02	NP
Bromoform	BRL		0.19	1.0	ug/L	238383	1	02/22/2017 06:02	NP
Bromomethane	BRL		0.39	1.0	ug/L	238383	1	02/22/2017 06:02	NP
Carbon disulfide	BRL		0.74	5.0	ug/L	238383	1	02/22/2017 06:02	NP
Carbon tetrachloride	BRL		0.29	2.0	ug/L	238383	1	02/22/2017 06:02	NP
Chlorobenzene	BRL		0.42	1.0	ug/L	238383	1	02/22/2017 06:02	NP
Chloroethane	BRL		0.31	1.0	ug/L	238383	1	02/22/2017 06:02	NP
Chloroform	BRL		0.20	1.0	ug/L	238383	1	02/22/2017 06:02	NP
Chloromethane	BRL		0.21	1.0	ug/L	238383	1	02/22/2017 06:02	NP
cis-1,2-Dichloroethene	BRL		0.28	1.0	ug/L	238383	1	02/22/2017 06:02	NP
cis-1,3-Dichloropropene	BRL		0.31	1.0	ug/L	238383	1	02/22/2017 06:02	NP
Cyclohexane	BRL		1.0	2.0	ug/L	238383	1	02/22/2017 06:02	NP
Dibromochloromethane	BRL		0.43	1.0	ug/L	238383	1	02/22/2017 06:02	NP
Dichlorodifluoromethane	BRL		0.15	1.0	ug/L	238383	1	02/22/2017 06:02	NP
Ethylbenzene	BRL		0.26	1.0	ug/L	238383	1	02/22/2017 06:02	NP
Freon-113	BRL		0.32	5.0	ug/L	238383	1	02/22/2017 06:02	NP
Isopropylbenzene	BRL		0.43	1.0	ug/L	238383	1	02/22/2017 06:02	NP
m,p-Xylene	BRL		0.60	1.0	ug/L	238383	1	02/22/2017 06:02	NP
Methyl acetate	BRL		0.42	2.0	ug/L	238383	1	02/22/2017 06:02	NP
Methyl tert-butyl ether	BRL		0.45	1.0	ug/L	238383	1	02/22/2017 06:02	NP
Methylcyclohexane	BRL		0.39	2.0	ug/L	238383		02/22/2017 06:02	NP

Qualifiers:

Narr See case narrative

^{*} Value exceeds maximum contaminant level

BRL Not detected at MDL

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

NC Not confirmed

E Estimated value above quantitation range

S Spike Recovery outside limits due to matrix

J Estimated value detected below Reporting Limit

> Greater than Result value

< Less than Result value

Client: AMEC E&I, Inc. Client Sample ID: MW-09-30

Project Name: RBTC Fountain Inn **Collection Date:** 2/14/2017 10:40:00 AM

Date:

23-Feb-17

Lab ID: 1702E41-008 Matrix: Groundwater

Analyses	Result	Qual	MDL	Reporting Limit	Units	BatchID	DF	Date Analyzed	Analyst
TCL VOLATILE ORGANICS SW8260H	3			(SW5030)B)			
Methylene chloride	2.0	J	1.2	5.0	ug/L	238383	1	02/22/2017 06:02	NP
o-Xylene	BRL		0.18	1.0	ug/L	238383	1	02/22/2017 06:02	NP
Styrene	BRL		0.15	1.0	ug/L	238383	1	02/22/2017 06:02	NP
Tetrachloroethene	BRL		0.46	1.0	ug/L	238383	1	02/22/2017 06:02	NP
Toluene	BRL		0.39	1.0	ug/L	238383	1	02/22/2017 06:02	NP
trans-1,2-Dichloroethene	BRL		0.30	2.0	ug/L	238383	1	02/22/2017 06:02	NP
trans-1,3-Dichloropropene	BRL		0.32	2.0	ug/L	238383	1	02/22/2017 06:02	NP
Trichloroethene	BRL		0.30	1.0	ug/L	238383	1	02/22/2017 06:02	NP
Trichlorofluoromethane	BRL		0.18	1.0	ug/L	238383	1	02/22/2017 06:02	NP
Vinyl chloride	BRL		0.30	1.0	ug/L	238383	1	02/22/2017 06:02	NP
Surr: 4-Bromofluorobenzene	83.4		0	70-130	%REC	238383	1	02/22/2017 06:02	NP
Surr: Dibromofluoromethane	112		0	70-130	%REC	238383	1	02/22/2017 06:02	NP
Surr: Toluene-d8	98.7		0	70-130	%REC	238383	1	02/22/2017 06:02	NP

Qualifiers:

* Value exceeds maximum contaminant level

BRL Not detected at MDL

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

NC Not confirmed

E Estimated value above quantitation range

S Spike Recovery outside limits due to matrix

J Estimated value detected below Reporting Limit

> Greater than Result value

< Less than Result value

Narr See case narrative

Page 19 of 36

Client: AMEC E&I, Inc. Client Sample ID: MW-09-31

Project Name: RBTC Fountain Inn Collection Date: 2/15/2017 11:15:00 AM

Date:

23-Feb-17

Lab ID: 1702E41-009 Matrix: Groundwater

Analyses	Result	Qual	MDL	Reporting Limit	Units	BatchID	DF	Date Analyzed	Analyst
TCL VOLATILE ORGANICS SW826	0B			(5	SW5030	0B)			
1,1,1-Trichloroethane	BRL		0.30	1.0	ug/L	238383	1	02/22/2017 06:25	NP
1,1,2,2-Tetrachloroethane	BRL		0.34	1.0	ug/L	238383	1	02/22/2017 06:25	NP
1,1,2-Trichloroethane	BRL		0.43	1.0	ug/L	238383	1	02/22/2017 06:25	NP
1,1-Dichloroethane	BRL		0.43	1.0	ug/L	238383	1	02/22/2017 06:25	NP
1,1-Dichloroethene	BRL		0.40	2.0	ug/L	238383	1	02/22/2017 06:25	NP
1,2,4-Trichlorobenzene	BRL		0.39	1.0	ug/L	238383	1	02/22/2017 06:25	NP
1,2-Dibromo-3-chloropropane	BRL		0.68	1.0	ug/L	238383	1	02/22/2017 06:25	NP
1,2-Dibromoethane	BRL		0.57	1.0	ug/L	238383	1	02/22/2017 06:25	NP
1,2-Dichlorobenzene	BRL		0.45	1.0	ug/L	238383	1	02/22/2017 06:25	NP
1,2-Dichloroethane	BRL		0.37	1.0	ug/L	238383	1	02/22/2017 06:25	NP
1,2-Dichloropropane	BRL		0.35	1.0	ug/L	238383	1	02/22/2017 06:25	NP
1,3-Dichlorobenzene	BRL		0.31	1.0	ug/L	238383	1	02/22/2017 06:25	NP
1,4-Dichlorobenzene	BRL		0.33	1.0	ug/L	238383	1	02/22/2017 06:25	NP
2-Butanone	BRL		2.5	10	ug/L	238383	1	02/22/2017 06:25	NP
2-Hexanone	BRL		0.67	10	ug/L	238383	1	02/22/2017 06:25	NP
4-Methyl-2-pentanone	BRL		0.44	10	ug/L	238383	1	02/22/2017 06:25	NP
Acetone	BRL		3.6	20	ug/L	238383	1	02/22/2017 06:25	NP
Benzene	BRL		0.37	1.0	ug/L	238383	1	02/22/2017 06:25	NP
Bromodichloromethane	BRL		0.25	1.0	ug/L	238383	1	02/22/2017 06:25	NP
Bromoform	BRL		0.19	1.0	ug/L	238383	1	02/22/2017 06:25	NP
Bromomethane	BRL		0.39	1.0	ug/L	238383	1	02/22/2017 06:25	NP
Carbon disulfide	BRL		0.74	5.0	ug/L	238383	1	02/22/2017 06:25	NP
Carbon tetrachloride	BRL		0.29	2.0	ug/L	238383	1	02/22/2017 06:25	NP
Chlorobenzene	BRL		0.42	1.0	ug/L	238383	1	02/22/2017 06:25	NP
Chloroethane	BRL		0.31	1.0	ug/L	238383	1	02/22/2017 06:25	NP
Chloroform	1.1		0.20	1.0	ug/L	238383	1	02/22/2017 06:25	NP
Chloromethane	BRL		0.21	1.0	ug/L	238383	1	02/22/2017 06:25	NP
cis-1,2-Dichloroethene	BRL		0.28	1.0	ug/L	238383	1	02/22/2017 06:25	NP
cis-1,3-Dichloropropene	BRL		0.31	1.0	ug/L	238383	1	02/22/2017 06:25	NP
Cyclohexane	BRL		1.0	2.0	ug/L	238383	1	02/22/2017 06:25	NP
Dibromochloromethane	BRL		0.43	1.0	ug/L	238383	1	02/22/2017 06:25	NP
Dichlorodifluoromethane	BRL		0.15	1.0	ug/L	238383	1	02/22/2017 06:25	NP
Ethylbenzene	BRL		0.26	1.0	ug/L	238383	1	02/22/2017 06:25	NP
Freon-113	BRL		0.32	5.0	ug/L	238383	1	02/22/2017 06:25	NP
Isopropylbenzene	BRL		0.43	1.0	ug/L	238383	1	02/22/2017 06:25	NP
m,p-Xylene	BRL		0.60	1.0	ug/L	238383	1	02/22/2017 06:25	NP
Methyl acetate	BRL		0.42	2.0	ug/L	238383	1	02/22/2017 06:25	NP
Methyl tert-butyl ether	BRL		0.45	1.0	ug/L	238383	1	02/22/2017 06:25	NP
Methylcyclohexane	BRL		0.39	2.0	ug/L	238383	1	02/22/2017 06:25	NP

Qualifiers:

Narr See case narrative

Page 20 of 36

^{*} Value exceeds maximum contaminant level

BRL Not detected at MDL

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

NC Not confirmed

E Estimated value above quantitation range

S Spike Recovery outside limits due to matrix

J Estimated value detected below Reporting Limit

> Greater than Result value

< Less than Result value

Client: AMEC E&I, Inc. Client Sample ID: MW-09-31

Project Name: RBTC Fountain Inn Collection Date: 2/15/2017 11:15:00 AM

Date:

23-Feb-17

Lab ID: 1702E41-009 Matrix: Groundwater

Analyses		Result	Qual	MDL	Reporting Limit	Units	BatchID	DF	Date Analyzed	Analyst
TCL VOLATILE ORGANICS S	W8260B				(SW5030)B)			
Methylene chloride		BRL		1.2	5.0	ug/L	238383	1	02/22/2017 06:25	NP
o-Xylene		BRL		0.18	1.0	ug/L	238383	1	02/22/2017 06:25	NP
Styrene		BRL		0.15	1.0	ug/L	238383	1	02/22/2017 06:25	NP
Tetrachloroethene		BRL		0.46	1.0	ug/L	238383	1	02/22/2017 06:25	NP
Toluene		BRL		0.39	1.0	ug/L	238383	1	02/22/2017 06:25	NP
trans-1,2-Dichloroethene		BRL		0.30	2.0	ug/L	238383	1	02/22/2017 06:25	NP
trans-1,3-Dichloropropene		BRL		0.32	2.0	ug/L	238383	1	02/22/2017 06:25	NP
Trichloroethene		BRL		0.30	1.0	ug/L	238383	1	02/22/2017 06:25	NP
Trichlorofluoromethane		BRL		0.18	1.0	ug/L	238383	1	02/22/2017 06:25	NP
Vinyl chloride		BRL		0.30	1.0	ug/L	238383	1	02/22/2017 06:25	NP
Surr: 4-Bromofluorobenzene		85.5		0	70-130	%REC	238383	1	02/22/2017 06:25	NP
Surr: Dibromofluoromethane		114		0	70-130	%REC	238383	1	02/22/2017 06:25	NP
Surr: Toluene-d8		100		0	70-130	%REC	238383	1	02/22/2017 06:25	NP

Qualifiers:

* Value exceeds maximum contaminant level

BRL Not detected at MDL

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

NC Not confirmed

E Estimated value above quantitation range

S Spike Recovery outside limits due to matrix

J Estimated value detected below Reporting Limit

> Greater than Result value

Less than Result value

Narr See case narrative

Page 21 of 36

Client: AMEC E&I, Inc. Client Sample ID: MW-09-32

Project Name: RBTC Fountain Inn Collection Date: 2/15/2017 12:20:00 PM

Date:

23-Feb-17

Lab ID: 1702E41-010 Matrix: Groundwater

Analyses	Result	Qual	MDL	Reporting Limit	Units	BatchID	DF	Date Analyzed	Analyst
TCL VOLATILE ORGANICS SW8260	В			(5	SW5030)B)			
1,1,1-Trichloroethane	BRL		0.30	1.0	ug/L	238383	1	02/22/2017 06:48	NP
1,1,2,2-Tetrachloroethane	BRL		0.34	1.0	ug/L	238383	1	02/22/2017 06:48	NP
1,1,2-Trichloroethane	BRL		0.43	1.0	ug/L	238383	1	02/22/2017 06:48	NP
1,1-Dichloroethane	BRL		0.43	1.0	ug/L	238383	1	02/22/2017 06:48	NP
1,1-Dichloroethene	BRL		0.40	2.0	ug/L	238383	1	02/22/2017 06:48	NP
1,2,4-Trichlorobenzene	BRL		0.39	1.0	ug/L	238383	1	02/22/2017 06:48	NP
1,2-Dibromo-3-chloropropane	BRL		0.68	1.0	ug/L	238383	1	02/22/2017 06:48	NP
1,2-Dibromoethane	BRL		0.57	1.0	ug/L	238383	1	02/22/2017 06:48	NP
1,2-Dichlorobenzene	BRL		0.45	1.0	ug/L	238383	1	02/22/2017 06:48	NP
1,2-Dichloroethane	BRL		0.37	1.0	ug/L	238383	1	02/22/2017 06:48	NP
1,2-Dichloropropane	BRL		0.35	1.0	ug/L	238383	1	02/22/2017 06:48	NP
1,3-Dichlorobenzene	BRL		0.31	1.0	ug/L	238383	1	02/22/2017 06:48	NP
1,4-Dichlorobenzene	BRL		0.33	1.0	ug/L	238383	1	02/22/2017 06:48	NP
2-Butanone	BRL		2.5	10	ug/L	238383	1	02/22/2017 06:48	NP
2-Hexanone	BRL		0.67	10	ug/L	238383	1	02/22/2017 06:48	NP
4-Methyl-2-pentanone	BRL		0.44	10	ug/L	238383	1	02/22/2017 06:48	NP
Acetone	BRL		3.6	20	ug/L	238383	1	02/22/2017 06:48	NP
Benzene	BRL		0.37	1.0	ug/L	238383	1	02/22/2017 06:48	NP
Bromodichloromethane	BRL		0.25	1.0	ug/L	238383	1	02/22/2017 06:48	NP
Bromoform	BRL		0.19	1.0	ug/L	238383	1	02/22/2017 06:48	NP
Bromomethane	BRL		0.39	1.0	ug/L	238383	1	02/22/2017 06:48	NP
Carbon disulfide	BRL		0.74	5.0	ug/L	238383	1	02/22/2017 06:48	NP
Carbon tetrachloride	BRL		0.29	2.0	ug/L	238383	1	02/22/2017 06:48	NP
Chlorobenzene	BRL		0.42	1.0	ug/L	238383	1	02/22/2017 06:48	NP
Chloroethane	BRL		0.31	1.0	ug/L	238383	1	02/22/2017 06:48	NP
Chloroform	BRL		0.20	1.0	ug/L	238383	1	02/22/2017 06:48	NP
Chloromethane	BRL		0.21	1.0	ug/L	238383		02/22/2017 06:48	NP
cis-1,2-Dichloroethene	BRL		0.28	1.0	ug/L	238383	1	02/22/2017 06:48	NP
cis-1,3-Dichloropropene	BRL		0.31	1.0	ug/L	238383		02/22/2017 06:48	NP
Cyclohexane	BRL		1.0	2.0	ug/L	238383	1	02/22/2017 06:48	NP
Dibromochloromethane	BRL		0.43	1.0	ug/L	238383	1	02/22/2017 06:48	NP
Dichlorodifluoromethane	BRL		0.15	1.0	ug/L	238383	1	02/22/2017 06:48	NP
Ethylbenzene	BRL		0.26	1.0	ug/L	238383	1	02/22/2017 06:48	NP
Freon-113	BRL		0.32	5.0	ug/L	238383	1	02/22/2017 06:48	NP
Isopropylbenzene	BRL		0.43	1.0	ug/L	238383	1	02/22/2017 06:48	NP
m,p-Xylene	BRL		0.60	1.0	ug/L	238383	1	02/22/2017 06:48	NP
Methyl acetate	BRL		0.42	2.0	ug/L	238383	1	02/22/2017 06:48	NP
Methyl tert-butyl ether	BRL		0.42	1.0	ug/L	238383		02/22/2017 06:48	NP
Methylcyclohexane	BRL		0.43	2.0	ug/L ug/L	238383		02/22/2017 06:48	NP

Qualifiers:

Narr See case narrative

^{*} Value exceeds maximum contaminant level

BRL Not detected at MDL

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

NC Not confirmed

E Estimated value above quantitation range

S Spike Recovery outside limits due to matrix

J Estimated value detected below Reporting Limit

> Greater than Result value

< Less than Result value

Client: AMEC E&I, Inc. Client Sample ID: MW-09-32

Project Name: RBTC Fountain Inn Collection Date: 2/15/2017 12:20:00 PM

Date:

23-Feb-17

Lab ID: 1702E41-010 Matrix: Groundwater

Analyses	Result	Qual	MDL	Reporting Limit	Units	BatchID	DF	Date Analyzed	Analyst
TCL VOLATILE ORGANICS SW820	50B			(SW5030)B)			
Methylene chloride	1.7	J	1.2	5.0	ug/L	238383	1	02/22/2017 06:48	NP
o-Xylene	BRL		0.18	1.0	ug/L	238383	1	02/22/2017 06:48	NP
Styrene	BRL		0.15	1.0	ug/L	238383	1	02/22/2017 06:48	NP
Tetrachloroethene	30		0.46	1.0	ug/L	238383	1	02/22/2017 06:48	NP
Toluene	BRL		0.39	1.0	ug/L	238383	1	02/22/2017 06:48	NP
trans-1,2-Dichloroethene	BRL		0.30	2.0	ug/L	238383	1	02/22/2017 06:48	NP
trans-1,3-Dichloropropene	BRL		0.32	2.0	ug/L	238383	1	02/22/2017 06:48	NP
Trichloroethene	BRL		0.30	1.0	ug/L	238383	1	02/22/2017 06:48	NP
Trichlorofluoromethane	BRL		0.18	1.0	ug/L	238383	1	02/22/2017 06:48	NP
Vinyl chloride	BRL		0.30	1.0	ug/L	238383	1	02/22/2017 06:48	NP
Surr: 4-Bromofluorobenzene	87.7		0	70-130	%REC	238383	1	02/22/2017 06:48	NP
Surr: Dibromofluoromethane	114		0	70-130	%REC	238383	1	02/22/2017 06:48	NP
Surr: Toluene-d8	101		0	70-130	%REC	238383	1	02/22/2017 06:48	NP

Qualifiers:

* Value exceeds maximum contaminant level

BRL Not detected at MDL

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

NC Not confirmed

E Estimated value above quantitation range

S Spike Recovery outside limits due to matrix

J Estimated value detected below Reporting Limit

> Greater than Result value

< Less than Result value

Narr See case narrative

Page 23 of 36

Client: AMEC E&I, Inc. Client Sample ID: MW-09-26XD

Project Name: RBTC Fountain Inn **Collection Date:** 2/14/2017 11:05:00 AM

Date:

23-Feb-17

Lab ID:1702E41-011Matrix:Groundwater

Analyses	Result	Qual	MDL	Reporting Limit	Units	BatchID	DF	Date Analyzed	Analyst
TCL VOLATILE ORGANICS SW8260	В			(5	SW5030)B)			
1,1,1-Trichloroethane	BRL		15	50	ug/L	238383	50	02/22/2017 04:53	NP
1,1,2,2-Tetrachloroethane	BRL		17	50	ug/L	238383	50	02/22/2017 04:53	NP
1,1,2-Trichloroethane	BRL		22	50	ug/L	238383	50	02/22/2017 04:53	NP
1,1-Dichloroethane	BRL		21	50	ug/L	238383	50	02/22/2017 04:53	NP
1,1-Dichloroethene	BRL		20	100	ug/L	238383	50	02/22/2017 04:53	NP
1,2,4-Trichlorobenzene	BRL		20	50	ug/L	238383	50	02/22/2017 04:53	NP
1,2-Dibromo-3-chloropropane	BRL		34	50	ug/L	238383	50	02/22/2017 04:53	NP
1,2-Dibromoethane	BRL		29	50	ug/L	238383	50	02/22/2017 04:53	NP
1,2-Dichlorobenzene	BRL		22	50	ug/L	238383	50	02/22/2017 04:53	NP
1,2-Dichloroethane	BRL		19	50	ug/L	238383	50	02/22/2017 04:53	NP
1,2-Dichloropropane	BRL		17	50	ug/L	238383	50	02/22/2017 04:53	NP
1,3-Dichlorobenzene	BRL		15	50	ug/L	238383	50	02/22/2017 04:53	NP
1,4-Dichlorobenzene	BRL		16	50	ug/L	238383	50	02/22/2017 04:53	NP
2-Butanone	BRL		130	500	ug/L	238383	50	02/22/2017 04:53	NP
2-Hexanone	BRL		34	500	ug/L	238383	50	02/22/2017 04:53	NP
4-Methyl-2-pentanone	BRL		22	500	ug/L	238383	50	02/22/2017 04:53	NP
Acetone	BRL		180	1000	ug/L	238383	50	02/22/2017 04:53	NP
Benzene	BRL		19	50	ug/L	238383	50	02/22/2017 04:53	NP
Bromodichloromethane	BRL		12	50	ug/L	238383	50	02/22/2017 04:53	NP
Bromoform	BRL		9.7	50	ug/L	238383	50	02/22/2017 04:53	NP
Bromomethane	BRL		19	50	ug/L	238383	50	02/22/2017 04:53	NP
Carbon disulfide	BRL		37	250	ug/L	238383	50	02/22/2017 04:53	NP
Carbon tetrachloride	BRL		15	100	ug/L	238383	50	02/22/2017 04:53	NP
Chlorobenzene	BRL		21	50	ug/L	238383	50	02/22/2017 04:53	NP
Chloroethane	BRL		15	50	ug/L	238383	50	02/22/2017 04:53	NP
Chloroform	700		9.9	50	ug/L	238383	50	02/22/2017 04:53	NP
Chloromethane	BRL		11	50	ug/L	238383	50	02/22/2017 04:53	NP
cis-1,2-Dichloroethene	BRL		14	50	ug/L	238383	50	02/22/2017 04:53	NP
cis-1,3-Dichloropropene	BRL		15	50	ug/L	238383	50	02/22/2017 04:53	NP
Cyclohexane	BRL		52	100	ug/L	238383	50	02/22/2017 04:53	NP
Dibromochloromethane	BRL		22	50	ug/L	238383	50	02/22/2017 04:53	NP
Dichlorodifluoromethane	BRL		7.5	50	ug/L	238383	50	02/22/2017 04:53	NP
Ethylbenzene	BRL		13	50	ug/L	238383	50	02/22/2017 04:53	NP
Freon-113	BRL		16	250	ug/L	238383	50	02/22/2017 04:53	NP
Isopropylbenzene	BRL		21	50	ug/L	238383		02/22/2017 04:53	NP
m,p-Xylene	BRL		30	50	ug/L	238383		02/22/2017 04:53	NP
Methyl acetate	BRL		21	100	ug/L	238383		02/22/2017 04:53	NP
Methyl tert-butyl ether	BRL		22	50	ug/L	238383		02/22/2017 04:53	NP
Methylcyclohexane	BRL		20	100	ug/L	238383		02/22/2017 04:53	NP

Qualifiers:

Narr See case narrative

^{*} Value exceeds maximum contaminant level

BRL Not detected at MDL

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

NC Not confirmed

E Estimated value above quantitation range

S Spike Recovery outside limits due to matrix

J Estimated value detected below Reporting Limit

> Greater than Result value

< Less than Result value

Client: AMEC E&I, Inc. Client Sample ID: MW-09-26XD

Project Name: RBTC Fountain Inn **Collection Date:** 2/14/2017 11:05:00 AM

Date:

23-Feb-17

Lab ID:1702E41-011Matrix:Groundwater

Analyses		Result	Qual	MDL	Reporting Limit	Units	BatchID	DF	Date Analyzed	Analyst
TCL VOLATILE ORGANICS	SW8260B				(SW5030)B)			
Methylene chloride		BRL		59	250	ug/L	238383	50	02/22/2017 04:53	NP
o-Xylene		BRL		8.9	50	ug/L	238383	50	02/22/2017 04:53	NP
Styrene		BRL		7.7	50	ug/L	238383	50	02/22/2017 04:53	NP
Tetrachloroethene		BRL		23	50	ug/L	238383	50	02/22/2017 04:53	NP
Toluene		BRL		20	50	ug/L	238383	50	02/22/2017 04:53	NP
trans-1,2-Dichloroethene		BRL		15	100	ug/L	238383	50	02/22/2017 04:53	NP
trans-1,3-Dichloropropene		BRL		16	100	ug/L	238383	50	02/22/2017 04:53	NP
Trichloroethene		BRL		15	50	ug/L	238383	50	02/22/2017 04:53	NP
Trichlorofluoromethane		BRL		9.0	50	ug/L	238383	50	02/22/2017 04:53	NP
Vinyl chloride		BRL		15	50	ug/L	238383	50	02/22/2017 04:53	NP
Surr: 4-Bromofluorobenzene		85.7		0	70-130	%REC	238383	50	02/22/2017 04:53	NP
Surr: Dibromofluoromethane		117		0	70-130	%REC	238383	50	02/22/2017 04:53	NP
Surr: Toluene-d8		98		0	70-130	%REC	238383	50	02/22/2017 04:53	NP

Qualifiers:

* Value exceeds maximum contaminant level

BRL Not detected at MDL

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

NC Not confirmed

E Estimated value above quantitation range

S Spike Recovery outside limits due to matrix

J Estimated value detected below Reporting Limit

> Greater than Result value

< Less than Result value

Narr See case narrative

Page 25 of 36

Client: AMEC E&I, Inc. Client Sample ID: MW-09-29

Project Name: RBTC Fountain Inn **Collection Date:** 2/14/2017 12:55:00 PM

Date:

23-Feb-17

Lab ID:1702E41-012Matrix:Groundwater

Analyses	Result	Qual	MDL	Reporting Limit	Units	BatchID	DF	Date Analyzed	Analyst
TCL VOLATILE ORGANICS SW82601	3			(5	SW5030)B)			
1,1,1-Trichloroethane	BRL		0.30	1.0	ug/L	238383	1	02/21/2017 15:55	NP
1,1,2,2-Tetrachloroethane	BRL		0.34	1.0	ug/L	238383	1	02/21/2017 15:55	NP
1,1,2-Trichloroethane	BRL		0.43	1.0	ug/L	238383	1	02/21/2017 15:55	NP
1,1-Dichloroethane	BRL		0.43	1.0	ug/L	238383	1	02/21/2017 15:55	NP
1,1-Dichloroethene	BRL		0.40	2.0	ug/L	238383	1	02/21/2017 15:55	NP
1,2,4-Trichlorobenzene	BRL		0.39	1.0	ug/L	238383	1	02/21/2017 15:55	NP
1,2-Dibromo-3-chloropropane	BRL		0.68	1.0	ug/L	238383	1	02/21/2017 15:55	NP
1,2-Dibromoethane	BRL		0.57	1.0	ug/L	238383	1	02/21/2017 15:55	NP
1,2-Dichlorobenzene	BRL		0.45	1.0	ug/L	238383	1	02/21/2017 15:55	NP
1,2-Dichloroethane	BRL		0.37	1.0	ug/L	238383	1	02/21/2017 15:55	NP
1,2-Dichloropropane	BRL		0.35	1.0	ug/L	238383	1	02/21/2017 15:55	NP
1,3-Dichlorobenzene	BRL		0.31	1.0	ug/L	238383	1	02/21/2017 15:55	NP
1,4-Dichlorobenzene	BRL		0.33	1.0	ug/L	238383	1	02/21/2017 15:55	NP
2-Butanone	BRL		2.5	10	ug/L	238383	1	02/21/2017 15:55	NP
2-Hexanone	BRL		0.67	10	ug/L	238383	1	02/21/2017 15:55	NP
4-Methyl-2-pentanone	BRL		0.44	10	ug/L	238383	1	02/21/2017 15:55	NP
Acetone	BRL		3.6	20	ug/L	238383	1	02/21/2017 15:55	NP
Benzene	BRL		0.37	1.0	ug/L	238383	1	02/21/2017 15:55	NP
Bromodichloromethane	BRL		0.25	1.0	ug/L	238383	1	02/21/2017 15:55	NP
Bromoform	BRL		0.19	1.0	ug/L	238383	1	02/21/2017 15:55	NP
Bromomethane	BRL		0.39	1.0	ug/L	238383	1	02/21/2017 15:55	NP
Carbon disulfide	BRL		0.74	5.0	ug/L	238383	1	02/21/2017 15:55	NP
Carbon tetrachloride	BRL		0.29	2.0	ug/L	238383	1	02/21/2017 15:55	NP
Chlorobenzene	BRL		0.42	1.0	ug/L	238383	1	02/21/2017 15:55	NP
Chloroethane	BRL		0.31	1.0	ug/L	238383	1	02/21/2017 15:55	NP
Chloroform	BRL		0.20	1.0	ug/L	238383	1	02/21/2017 15:55	NP
Chloromethane	BRL		0.21	1.0	ug/L	238383	1	02/21/2017 15:55	NP
cis-1,2-Dichloroethene	BRL		0.28	1.0	ug/L	238383	1	02/21/2017 15:55	NP
cis-1,3-Dichloropropene	BRL		0.31	1.0	ug/L	238383	1	02/21/2017 15:55	NP
Cyclohexane	BRL		1.0	2.0	ug/L	238383	1	02/21/2017 15:55	NP
Dibromochloromethane	BRL		0.43	1.0	ug/L	238383	1	02/21/2017 15:55	NP
Dichlorodifluoromethane	BRL		0.15	1.0	ug/L	238383	1	02/21/2017 15:55	NP
Ethylbenzene	BRL		0.26	1.0	ug/L	238383	1	02/21/2017 15:55	NP
Freon-113	BRL		0.32	5.0	ug/L	238383	1	02/21/2017 15:55	NP
Isopropylbenzene	BRL		0.43	1.0	ug/L	238383	1	02/21/2017 15:55	NP
m,p-Xylene	BRL		0.60	1.0	ug/L	238383	1	02/21/2017 15:55	NP
Methyl acetate	BRL		0.42	2.0	ug/L	238383	1	02/21/2017 15:55	NP
Methyl tert-butyl ether	BRL		0.45	1.0	ug/L	238383	1	02/21/2017 15:55	NP
Methylcyclohexane	BRL		0.39	2.0	ug/L	238383	1	02/21/2017 15:55	NP

Qualifiers:

Narr See case narrative

^{*} Value exceeds maximum contaminant level

BRL Not detected at MDL

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

NC Not confirmed

E Estimated value above quantitation range

S Spike Recovery outside limits due to matrix

J Estimated value detected below Reporting Limit

> Greater than Result value

< Less than Result value

Client: AMEC E&I, Inc. Client Sample ID: MW-09-29

Project Name: RBTC Fountain Inn **Collection Date:** 2/14/2017 12:55:00 PM

Lab ID: 1702E41-012 Matrix: Groundwater

Analyses		Result	Qual	MDL	Reporting Limit	Units	BatchID	DF	Date Analyzed	Analyst
TCL VOLATILE ORGANICS S	SW8260B				(SW5030	0B)			
Methylene chloride		BRL		1.2	5.0	ug/L	238383	1	02/21/2017 15:55	NP
o-Xylene		BRL		0.18	1.0	ug/L	238383	1	02/21/2017 15:55	NP
Styrene		BRL		0.15	1.0	ug/L	238383	1	02/21/2017 15:55	NP
Tetrachloroethene		BRL		0.46	1.0	ug/L	238383	1	02/21/2017 15:55	NP
Toluene		BRL		0.39	1.0	ug/L	238383	1	02/21/2017 15:55	NP
trans-1,2-Dichloroethene		BRL		0.30	2.0	ug/L	238383	1	02/21/2017 15:55	NP
trans-1,3-Dichloropropene		BRL		0.32	2.0	ug/L	238383	1	02/21/2017 15:55	NP
Trichloroethene		BRL		0.30	1.0	ug/L	238383	1	02/21/2017 15:55	NP
Trichlorofluoromethane		BRL		0.18	1.0	ug/L	238383	1	02/21/2017 15:55	NP
Vinyl chloride		BRL		0.30	1.0	ug/L	238383	1	02/21/2017 15:55	NP
Surr: 4-Bromofluorobenzene		85.5		0	70-130	%REC	238383	1	02/21/2017 15:55	NP
Surr: Dibromofluoromethane		113		0	70-130	%REC	238383	1	02/21/2017 15:55	NP
Surr: Toluene-d8		99.1		0	70-130	%REC	238383	1	02/21/2017 15:55	NP

Qualifiers:

* Value exceeds maximum contaminant level

BRL Not detected at MDL

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

NC Not confirmed

E Estimated value above quantitation range

S Spike Recovery outside limits due to matrix

J Estimated value detected below Reporting Limit

> Greater than Result value

< Less than Result value

Narr See case narrative Page 27 of 36

Date:

23-Feb-17

SUMMARY OF ANALYTES DETECTED

Date: 23-Feb-17

Analyses		Result	Qual	MDL	Reporting Limit	Units	BatchID	Dilution Factor
Client Sample ID: Collection Date:	FB-01 2/14/2017 11:00:00 AM				Lab ID: Matrix:	1702E41-002 Aqueous		
TCL VOLATILE OR	GANICS SW8260B				(SW5030B)	•		
Acetone		35		3.6	20	ug/L	238383	1
Chloroform		1.1		0.20	1.0	ug/L	238383	1
Toluene		2.4		0.39	1.0	ug/L	238383	1
Client Sample ID: Collection Date:	FB-02 2/15/2017 11:30:00 AM				Lab ID: Matrix:	1702E41-003 Groundwater		
TCL VOLATILE OR					(SW5030B)			
Acetone		43		3.6	20	ug/L	238383	1
Chloroform		1.0		0.20	1.0	ug/L	238383	1
Toluene		2.5		0.39	1.0	ug/L	238383	1
Client Sample ID: Collection Date:	MW-09-26 2/14/2017 11:05:00 AM				Lab ID: Matrix:	1702E41-004 Groundwater		
	RGANICS SW8260B				(SW5030B)	Groundwater		
Chloroform		730		9.9	50	ug/L	238383	50
Client Sample ID: Collection Date:	MW-09-27 2/14/2017 1:00:00 PM				Lab ID: Matrix:	1702E41-005 Groundwater		
	2/14/2017 1.00.00 PM RGANICS SW8260B				(SW5030B)	Groundwater		
Chloroform	10/11/105 5 W 0200B	1100		9.9	50	ug/L	238383	50
Client Sample ID:	MW-09-28				Lab ID:	1702E41-006		
Collection Date:	2/14/2017 2:00:00 PM				Matrix:	Groundwater		
TCL VOLATILE OR	RGANICS SW8260B				(SW5030B)			
Chloroform		2.7		0.20	1.0	ug/L	238383	1
Tetrachloroethene		1.7		0.46	1.0	ug/L	238383	1
Toluene		1.7		0.39	1.0	ug/L	238383	1
Client Sample ID: Collection Date:	MW-09-31 2/15/2017 11:15:00 AM				Lab ID: Matrix:	1702E41-009 Groundwater		
TCL VOLATILE OR	GANICS SW8260B				(SW5030B)			
Chloroform		1.1		0.20	1.0	ug/L	238383	1
Client Sample ID:	MW-09-32				Lab ID:	1702E41-010		
Collection Date:	2/15/2017 12:20:00 PM				Matrix:	Groundwater		
TCL VOLATILE OR	GANICS SW8260B				(SW5030B)			
Tetrachloroethene		30		0.46	1.0	ug/L	238383	1
Client Sample ID: Collection Date:	MW-09-26XD 2/14/2017 11:05:00 AM				Lab ID: Matrix:	1702E41-011 Groundwater		
TCL VOLATILE OR	GANICS SW8260B				(SW5030B)			
Chloroform		700		9.9	50	ug/L	238383	50
BRL Below re H Holding ti N Analyte no B Analyte de	eeds maximum contaminant level porting limit mes for preparation or analysis exceeded at NELAC certified tected in the associated method blank in Result value	ı		:	Less than Result value	ts due to matrix	Page 28 of 36	

SAMPLE/COOLER RECEIPT CHECKLIST

1. Client Name:				AES Work Order Numbe	r:
2. Carrier: FedEx UPS USPS Client Courier Other					
	Yes	No	N/A	Details	Comments
3. Shipping container/cooler received in good condition?			1	damaged leaking other	
4. Custody seals present on shipping container?	_				
5. Custody seals intact on shipping container?					
6. Temperature blanks present?					
Cooler temperature(s) within limits of 0-6°C2 [See item 13 and 14 for	-			Cooling initiated for recently collected samples / ice	
7. temperature recordings.]				present	
8. Chain of Custody (COC) present?					
9. Chain of Custody signed, dated, and timed when relinquished and receive	:d?				
10. Sampler name and/or signature on COC?					
11. Were all samples received within holding time?					
12. TAT marked on the COC?	-			If no TAT indicated, proceeded with standard TAT per Te	erms & Conditions.
					-
13. Cooler 1 Temperature °C Cooler 2 Temperature Cooler 5 Temperature	!		°C	Cooler 3 Temperature °C Coole	er 4 Temperature°C
Cooler 5 Temperature °C Cooler 6 Temperature			C		8 Temperature °C
			_		
15. Comments:					
				Leartifu that I have es	ampleted sections 1 15 (detect initials)
				i certify that i have co	mpleted sections 1-15 (dated initials).
	Yes	No	N/A	Details	Comments
16. Were sample containers intact upon receipt?					
17. Custody seals present on sample containers?					
18. Custody seals intact on sample containers?					
19. Do sample container labels match the COC?				incomplete info illegible	
·				no label Other	
20. Are analyses requested indicated on the COC?					
21. Were all of the samples listed on the COC received?				samples received but not listed on COC	
21. We'le all of the samples listed on the COC received:				samples listed on COC not received	
22. Was the sample collection date/time noted?					
23. Did we receive sufficient sample volume for indicated analyses?					
24. Were samples received in appropriate containers?					
25. Were VOA samples received without headspace (< 1/4" bubble)?					
26. Were trip blanks submitted?				listed on COC not listed on COC	
27. Comments:					
<u> </u>					
				·	empleted sections 16-27 (dated initials).
	Yes	No	N/A	Details	Comments
28. Have containers needing chemical preservation been checked?					
29. Containers meet preservation guidelines?					
30. Was pH adjusted?					

Estimated value detected below Reporting Limit

Rpt Lim Reporting Limit

Client: AMEC E&I, Inc.

ANALYTICAL QC SUMMARY REPORT

Date:

23-Feb-17

Project Name: RBTC Fountain Inn **Workorder:** 1702E41

BatchID: 238383

R RPD outside limits due to matrix

Page 30 of 36

Sample ID: MB-238383 SampleType: MBLK	Client ID: TestCode: TC	L VOLATILE ORGA	NICS SW82601	3	Uni Bat	ts: ug/L chID: 238383	•	Date: 02/2 lysis Date: 02/2		Run No: 336880 Seq No: 7357069
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit Qual
1,1,1-Trichloroethane	BRL	1.0						26.01		
1,1,2,2-Tetrachloroethane	BRL	1.0						20.17		
1,1,2-Trichloroethane	BRL	1.0						23.38		
1,1-Dichloroethane	BRL	1.0						21.91		
1,1-Dichloroethene	BRL	2.0						18.33		
1,2,4-Trichlorobenzene	BRL	1.0						17.69		
1,2-Dibromo-3-chloropropane	BRL	1.0						22.28		
1,2-Dibromoethane	BRL	1.0						23.82		
1,2-Dichlorobenzene	BRL	1.0						22.79		
1,2-Dichloroethane	BRL	1.0						25.77		
1,2-Dichloropropane	BRL	1.0						21.97		
1,3-Dichlorobenzene	BRL	1.0						21.54		
1,4-Dichlorobenzene	BRL	1.0						21.67		
2-Butanone	BRL	10						36.04		
2-Hexanone	BRL	10						38.53		
4-Methyl-2-pentanone	BRL	10						37.81		
Acetone	BRL	20						52.88		
Benzene	BRL	1.0						20.74		
Bromodichloromethane	BRL	1.0						26.48		
Bromoform	BRL	1.0						32.38		
Bromomethane	BRL	1.0						28.19		
Carbon disulfide	BRL	5.0						34.26		
Carbon tetrachloride	BRL	2.0						28.38		
Chlorobenzene	BRL	1.0						23.18		
Chloroethane	BRL	1.0						23.08		
Chloroform	BRL	1.0						22.38		
Chloromethane	BRL	1.0						20.84		
Qualifiers: > Greater than Result v	value		< Less	than Result value			B A	analyte detected in the as	sociated method	blank
BRL Below reporting limi	t		E Estim	ated (value above quantita	ation range)		Н І	Holding times for prepara	tion or analysis e	xceeded

N Analyte not NELAC certified

S Spike Recovery outside limits due to matrix

Client: AMEC E&I, Inc.

ANALYTICAL QC SUMMARY REPORT

Date:

23-Feb-17

BatchID: 238383

Project Name: RBTC Fountain Inn Workorder: 1702E41

Sample ID: MB-238383 SampleType: MBLK	Client ID: TestCode: TC	L VOLATILE ORGA	NICS SW82601	3	Uni Bat	its: ug/L chID: 238383		Date: 02/21 ysis Date: 02/21		Run No: 336880 Seq No: 7357069
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit Qual
cis-1,2-Dichloroethene	BRL	1.0						19.14		
cis-1,3-Dichloropropene	BRL	1.0						24.02		
Cyclohexane	BRL	2.0						17.30		
Dibromochloromethane	BRL	1.0						28.37		
Dichlorodifluoromethane	BRL	1.0						16.98		
Ethylbenzene	BRL	1.0						20.82		
Freon-113	BRL	5.0						24.51		
Isopropylbenzene	BRL	1.0						19.87		
m,p-Xylene	BRL	1.0						42.72		
Methyl acetate	BRL	2.0						20.95		
Methyl tert-butyl ether	BRL	1.0						19.71		
Methylcyclohexane	BRL	2.0						20.51		
Methylene chloride	BRL	5.0						24.69		
o-Xylene	BRL	1.0						19.29		
Styrene	BRL	1.0						21.78		
Tetrachloroethene	BRL	1.0						23.65		
Toluene	BRL	1.0						20.09		
trans-1,2-Dichloroethene	BRL	2.0						20.48		
trans-1,3-Dichloropropene	BRL	2.0						22.60		
Trichloroethene	BRL	1.0						20.96		
Trichlorofluoromethane	BRL	1.0						28.47		
Vinyl chloride	BRL	1.0						20.30		
Surr: 4-Bromofluorobenzene	42.98	0	50.00		86.0	70	130	51.34		
Surr: Dibromofluoromethane	57.55	0	50.00		115	70	130	51.87		
Surr: Toluene-d8	48.39	0	50.00		96.8	70	130	49.13		

Qualifiers:

Greater than Result value

BRL Below reporting limit

J Estimated value detected below Reporting Limit

Rpt Lim Reporting Limit

< Less than Result value

E Estimated (value above quantitation range)

N Analyte not NELAC certified

S Spike Recovery outside limits due to matrix

B Analyte detected in the associated method blank

H Holding times for preparation or analysis exceeded

R RPD outside limits due to matrix

Page 31 of 36

AMEC E&I, Inc. **Client:**

ANALYTICAL OC SUMMARY REPORT

Date:

23-Feb-17

BatchID: 238383

Project Name: RBTC Fountain Inn Workorder: 1702E41

Sample ID: LCS-238383 Client ID: Run No: 336880 Units: ug/L Prep Date: 02/21/2017 TestCode: TCL VOLATILE ORGANICS SW8260B SampleType: LCS BatchID: 238383 Analysis Date: 02/21/2017 Seq No: 7357046 SPK value SPK Ref Val %REC Low Limit High Limit RPD Ref Val Analyte Result **RPT Limit** %RPD RPD Limit Oual 1,1,1-Trichloroethane 61.32 1.0 50.00 123 70 130 26.01 1.0 97.5 48.77 50.00 70 130 20.17 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 60.46 1.0 50.00 121 70 130 23.38 1.1-Dichloroethane 1.0 50.00 102 70 21.91 51.01 130 1,1-Dichloroethene 47.90 2.0 50.00 95.8 60 140 18.33 1.0 17.69 1,2,4-Trichlorobenzene 56.62 50.00 113 70 130 1,2-Dibromo-3-chloropropane 58.55 1.0 50.00 117 70 130 22.28 1.2-Dibromoethane 55.59 1.0 50.00 111 70 130 23.82 1.0 1.2-Dichlorobenzene 53.11 50.00 106 70 130 22.79 1.2-Dichloroethane 63.59 1.0 50.00 127 70 130 25.77 1.0 102 1,2-Dichloropropane 51.00 50.00 70 130 21.97 1.0 101 70 21.54 1.3-Dichlorobenzene 50.48 50.00 130 1,4-Dichlorobenzene 49.63 1.0 50.00 99.3 70 130 21.67 Benzene 1.0 50.00 100 20.74 50.09 70 130 Bromodichloromethane 1.0 70 26.48 58.09 50.00 116 130 Bromoform 76.15 1.0 50.00 152 70 130 32.38 S Carbon tetrachloride 2.0 28.38 63.05 50.00 126 70 130 Chlorobenzene 52.15 1.0 50.00 104 70 130 23.18 Chloroform 1.0 109 70 54.69 50.00 130 22.38 cis-1,2-Dichloroethene 49.07 1.0 50.00 98.1 70 130 19.14 cis-1,3-Dichloropropene 62.59 1.0 50.00 125 70 24.02 130 Dibromochloromethane 61.76 1.0 50.00 124 70 130 28.37 Ethylbenzene 50.30 1.0 50.00 101 70 130 20.82 Isopropylbenzene 47.82 1.0 50.00 95.6 70 130 19.87 1.0 100.0 104 70 42.72 m,p-Xylene 104.2 130 5.0 24.69 Methylene chloride 52.84 50.00 106 70 130 1.0 19.29 o-Xylene 51.96 50.00 104 70 130

Qualifiers:

> Greater than Result value

BRL Below reporting limit

Estimated value detected below Reporting Limit

Rpt Lim Reporting Limit

Less than Result value

Estimated (value above quantitation range)

Analyte not NELAC certified

Spike Recovery outside limits due to matrix

B Analyte detected in the associated method blank

Holding times for preparation or analysis exceeded

R RPD outside limits due to matrix

Page 32 of 36

Below reporting limit

Rpt Lim Reporting Limit

Estimated value detected below Reporting Limit

Client: AMEC E&I, Inc.

Project Name: RBTC Fountain Inn

ANALYTICAL QC SUMMARY REPORT

Date:

23-Feb-17

Workorder: 1702E41

BatchID: 238383

H Holding times for preparation or analysis exceeded

Page 33 of 36

R RPD outside limits due to matrix

Sample ID: LCS-238383 Sample Type: LCS	Client ID: TestCode:	TCL VOLATILE ORGA	NICS SW82601	3	Uni Bat	its: ug/L chID: 238383		Date: 02/2 1 alysis Date: 02/2 1		Run No: 336880 Seq No: 7357046
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit Qua
Styrene	56.15	1.0	50.00		112	70	130	21.78		
Tetrachloroethene	48.54	1.0	50.00		97.1	70	130	23.65		
Toluene	52.15	1.0	50.00		104	70	130	20.09		
rans-1,2-Dichloroethene	45.97	2.0	50.00		91.9	70	130	20.48		
rans-1,3-Dichloropropene	60.73	2.0	50.00		121	70	130	22.60		
Trichloroethene	50.54	1.0	50.00		101	70	130	20.96		
Vinyl chloride	64.75	1.0	50.00		130	70	130	20.30		
Surr: 4-Bromofluorobenzene	50.41	0	50.00		101	70	130	51.34		
Surr: Dibromofluoromethane	55.39	0	50.00		111	70	130	51.87		
Surr: Toluene-d8	50.92	0	50.00		102	70	130	49.13		
Sample ID: 1702E41-012AMS SampleType: MS		MW-09-29 TCL VOLATILE ORGA	NICS SW82601	3	Uni Bat	its: ug/L chID: 238383		Date: 02/21 alysis Date: 02/21		Run No: 336880 Seq No: 7359283
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit Qua
1,1,1-Trichloroethane	70.88	1.0	50.00		142	72.2	142			
1,1,2,2-Tetrachloroethane	46.24	1.0	50.00		92.5	69.5	127			
1,1,2-Trichloroethane	62.18	1.0	50.00		124	75.4	127			
1,1-Dichloroethane	58.02	1.0	50.00		116	64.4	128			
1,1-Dichloroethene	61.69	2.0	50.00		123	64.3	149			
1,2,4-Trichlorobenzene	51.35	1.0	50.00		103	62.3	123			
1,2-Dibromo-3-chloropropane	53.38	1.0	50.00		107	58.9	131			
1,2-Dibromoethane	53.59	1.0	50.00		107	70.8	134			
1,2-Dichlorobenzene	53.86	1.0	50.00		108	66.8	125			
1,2-Dichloroethane	66.15	1.0	50.00		132	71.9	139			
1,2-Dichloropropane	53.58	1.0	50.00		107	73.2	126			
1,3-Dichlorobenzene	52.73	1.0	50.00		105	69.7	123			
,4-Dichlorobenzene	51.76	1.0	50.00		104	66.8	126			
Qualifiers: > Greater than Result val	lue		< Less	than Result value			В	Analyte detected in the ass	sociated method b	olank

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

N Analyte not NELAC certified

Client: AMEC E&I, Inc.

ANALYTICAL QC SUMMARY REPORT

Date:

23-Feb-17

BatchID: 238383

Project Name: RBTC Fountain Inn Workorder: 1702E41

Sample ID: 1702E41-012AMS SampleType: MS	Client ID: M' TestCode: TC	W-09-29 L VOLATILE ORGA	NICS SW8260E	1	Uni Bat	its: ug/L chID: 238383		Date: 02/21 lysis Date: 02/21		Run No: 336880 Seq No: 7359283	
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit Qu	ual
Benzene	57.34	1.0	50.00		115	71.6	132				
Bromodichloromethane	60.67	1.0	50.00		121	71.8	133				
Bromoform	72.82	1.0	50.00		146	58.2	132			S	S
Carbon tetrachloride	90.27	2.0	50.00		181	61.8	142			S	S
Chlorobenzene	56.32	1.0	50.00		113	73.1	126				
Chloroform	60.46	1.0	50.00		121	70.1	133				
cis-1,2-Dichloroethene	52.80	1.0	50.00		106	71.4	136				
cis-1,3-Dichloropropene	52.46	1.0	50.00		105	65.9	128				
Dibromochloromethane	61.23	1.0	50.00		122	63.8	134				
Ethylbenzene	59.20	1.0	50.00		118	81.2	130				
Isopropylbenzene	55.01	1.0	50.00		110	66	127				
m,p-Xylene	120.8	1.0	100.0		121	76	139				
Methylene chloride	53.77	5.0	50.00		108	68.4	135				
o-Xylene	58.88	1.0	50.00		118	76.8	137				
Styrene	61.99	1.0	50.00		124	70.1	128				
Tetrachloroethene	63.88	1.0	50.00		128	69.1	133				
Toluene	62.17	1.0	50.00		124	72.5	135				
trans-1,2-Dichloroethene	54.94	2.0	50.00		110	62.4	132				
trans-1,3-Dichloropropene	60.27	2.0	50.00		121	69.7	137				
Trichloroethene	60.45	1.0	50.00		121	70.2	132				
Vinyl chloride	79.38	1.0	50.00		159	55.9	136			9	S
Surr: 4-Bromofluorobenzene	52.77	0	50.00		106	70	130				
Surr: Dibromofluoromethane	56.64	0	50.00		113	70	130				
Surr: Toluene-d8	51.67	0	50.00		103	70	130				

Qualifiers:

Greater than Result value

BRL Below reporting limit

Estimated value detected below Reporting Limit

Rpt Lim Reporting Limit

Less than Result value

E Estimated (value above quantitation range)

N Analyte not NELAC certified

S Spike Recovery outside limits due to matrix

B Analyte detected in the associated method blank

H Holding times for preparation or analysis exceeded

R RPD outside limits due to matrix

Page 34 of 36

Client: AMEC E&I, Inc.

ANALYTICAL QC SUMMARY REPORT

Date:

23-Feb-17

BatchID: 238383

Project Name: RBTC Fountain Inn Workorder: 1702E41

Sample ID: 1702E41-012AMSD SampleType: MSD	Client ID: M' TestCode: TC	W-09-29 L VOLATILE ORGA	NICS SW82601	3	Uni Bat	its: ug/L chID: 238383		Date: 02/21 lysis Date: 02/21		Run No: 33688 Seq No: 73592	
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit	Qual
1,1,1-Trichloroethane	67.22	1.0	50.00		134	72.2	142	70.88	5.30	20	
1,1,2,2-Tetrachloroethane	46.22	1.0	50.00		92.4	69.5	127	46.24	0.043	20	
1,1,2-Trichloroethane	61.01	1.0	50.00		122	75.4	127	62.18	1.90	20	
1,1-Dichloroethane	56.63	1.0	50.00		113	64.4	128	58.02	2.42	20	
1,1-Dichloroethene	60.73	2.0	50.00		121	64.3	149	61.69	1.57	30.8	
1,2,4-Trichlorobenzene	55.90	1.0	50.00		112	62.3	123	51.35	8.48	36.8	
1,2-Dibromo-3-chloropropane	53.61	1.0	50.00		107	58.9	131	53.38	0.430	20	
1,2-Dibromoethane	55.08	1.0	50.00		110	70.8	134	53.59	2.74	20	
1,2-Dichlorobenzene	55.54	1.0	50.00		111	66.8	125	53.86	3.07	20	
1,2-Dichloroethane	64.96	1.0	50.00		130	71.9	139	66.15	1.82	20	
1,2-Dichloropropane	53.32	1.0	50.00		107	73.2	126	53.58	0.486	20	
1,3-Dichlorobenzene	53.82	1.0	50.00		108	69.7	123	52.73	2.05	20	
1,4-Dichlorobenzene	52.73	1.0	50.00		105	66.8	126	51.76	1.86	20	
Benzene	56.51	1.0	50.00		113	71.6	132	57.34	1.46	20.7	
Bromodichloromethane	59.98	1.0	50.00		120	71.8	133	60.67	1.14	20	
Bromoform	72.16	1.0	50.00		144	58.2	132	72.82	0.910	20	S
Carbon tetrachloride	89.42	2.0	50.00		179	61.8	142	90.27	0.946	20	S
Chlorobenzene	57.07	1.0	50.00		114	73.1	126	56.32	1.32	26.6	
Chloroform	59.11	1.0	50.00		118	70.1	133	60.46	2.26	20	
cis-1,2-Dichloroethene	52.91	1.0	50.00		106	71.4	136	52.80	0.208	20	
cis-1,3-Dichloropropene	53.06	1.0	50.00		106	65.9	128	52.46	1.14	20	
Dibromochloromethane	61.88	1.0	50.00		124	63.8	134	61.23	1.06	20	
Ethylbenzene	60.23	1.0	50.00		120	81.2	130	59.20	1.72	20	
Isopropylbenzene	57.67	1.0	50.00		115	66	127	55.01	4.72	20	
m,p-Xylene	122.2	1.0	100.0		122	76	139	120.8	1.15	20	
Methylene chloride	53.95	5.0	50.00		108	68.4	135	53.77	0.334	20	
o-Xylene	59.62	1.0	50.00		119	76.8	137	58.88	1.25	20	

Qualifiers:

Greater than Result value

BRL Below reporting limit

J Estimated value detected below Reporting Limit

Rpt Lim Reporting Limit

< Less than Result value

E Estimated (value above quantitation range)

N Analyte not NELAC certified

S Spike Recovery outside limits due to matrix

B Analyte detected in the associated method blank

H Holding times for preparation or analysis exceeded

R RPD outside limits due to matrix

Page 35 of 36

Client: AMEC E&I, Inc.

ANALYTICAL QC SUMMARY REPORT

Date:

23-Feb-17

Project Name: RBTC Fountain Inn Workorder: 1702E41

BatchID: 238383

Sample ID: 1702E41-012AMSD		MW-09-29			Uni	ts: ug/L	Prep	Date: 02/21	/2017	Run No: 33688	0
SampleType: MSD	TestCode:	TCL VOLATILE ORGA	NICS SW82601	3	Bat	chID: 238383	Ana	lysis Date: 02/21	/2017	Seq No: 73592	84
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit	Qual
Styrene	61.67	1.0	50.00		123	70.1	128	61.99	0.518	20	
Tetrachloroethene	63.73	1.0	50.00		127	69.1	133	63.88	0.235	20	
Toluene	60.41	1.0	50.00		121	72.5	135	62.17	2.87	23.2	
trans-1,2-Dichloroethene	52.87	2.0	50.00		106	62.4	132	54.94	3.84	20	
trans-1,3-Dichloropropene	59.42	2.0	50.00		119	69.7	137	60.27	1.42	20	
Trichloroethene	58.73	1.0	50.00		117	70.2	132	60.45	2.89	27.7	
Vinyl chloride	80.08	1.0	50.00		160	55.9	136	79.38	0.878	20	S
Surr: 4-Bromofluorobenzene	51.66	0	50.00		103	70	130	52.77	0	0	
Surr: Dibromofluoromethane	56.46	0	50.00		113	70	130	56.64	0	0	
Surr: Toluene-d8	49.99	0	50.00		100.0	70	130	51.67	0	0	

Qualifiers: Greater than Result value

> BRL Below reporting limit

Rpt Lim Reporting Limit

Estimated value detected below Reporting Limit

Less than Result value

E Estimated (value above quantitation range)

N Analyte not NELAC certified

S Spike Recovery outside limits due to matrix

B Analyte detected in the associated method blank

H Holding times for preparation or analysis exceeded

R RPD outside limits due to matrix

Page 36 of 36

APPENDIX F DATA VALIDATION REPORT

DATA VALIDATION REPORT REMEDIAL INVESTIGATION ADDENDUM SAMPLING RBTC FOUNTAIN INN

1.0 INTRODUCTION

Groundwater samples were collected during sampling completed in February 2017 at the Robert Bosch Tool Corporation Fountain Inn Facility located in Fountain Inn, South Carolina. The samples were analyzed by Analytical Environmental Services, Inc. (AES) in Atlanta, Georgia. A summary of the sample delivery group (SDG) and field samples included in this review is contained in Table 1. Samples reviewed in this report were analyzed for the following USEPA SW-846 (USEPA, 1996) method:

Volatile Organic Compounds (VOCs) in water by USEPA Method 8260B

Sample results were submitted from AES in one sample delivery group (SDG): 1702E41.

Sample results were validated using general procedures in the USEPA National Data Validation Guidelines (USEPA, 2010; USEPA, 2016). Project data quality criteria for the VOC analyses are identified based on laboratory quality control (QC) goals and the professional judgment of the project chemist. The laboratory QC limits were used during data validation. A Level II validation was performed on 100 percent of the laboratory analysis data. During the Level II validation the major quality assurance (QA)/QC indicators of analytical data quality are reviewed, but review of calculations and raw laboratory data is not included. QC data checks are completed using QC summary forms provided in the laboratory packages. The following parameters are checked during the Level II review:

- laboratory narrative
- sample chain of custody/sample condition upon receipt form
- sample preservation
- QC blanks (method, rinse, field, and trip)
- laboratory control sample (LCS) results
- matrix spike and matrix spike duplicate (MS/MSD) sample results
- surrogate recovery
- field replicate sample results
- sample results summary
- verification of electronic data deliverable (EDD) results

Validation reason codes are applied to the results to document the reason for necessary data qualification. Data validation qualifiers were added to results if associated quality control data did not meet goals in the validation guidelines or project work plan. The following data quality flags shown below are generally used to qualify data that did not meet project specific QC goals.

- J Estimated value
- R Unusable
- U Undetected
- UJ Undetected and reporting limit is estimated

2.0 VALIDATION OBSERVATION AND ACTIONS

The results are interpreted to be usable as reported by the laboratory.

2.1 VOCs in Water

Results were reported for VOCs by Method 8260. During the Level II review, the data quality indicators listed below were reviewed. Checks that included validation actions are marked with an asterisk (*) and discussed in the following sections.

- laboratory narrative
- sample chain of custody/sample receipt records
- sample preservation
- holding times
- QC Blanks
- LCS results
- MS/MSD sample results
- surrogate recovery
- field replicate result
- sample result reporting
- verification of EDD results

Validation actions required are presented in each section.

Holding Times

The VOC samples were analyzed within the required holding time.

Sample Preservation

The samples were received at the laboratory preserved with hydrochloric acid (HCl) to a pH of 2 standard units (s.u.) and cooled to 6°C +/- 2°C. The laboratory narrative indicates that residual chlorine or another oxidizing agent was present in samples MW-09-26, MW-09-26 XD (duplicate of MW-09-26), and MW-09-27. The presence of free chlorine in aqueous samples can cause formation of trihalomethanes and other chemical reactions when preserved with HCL. These three samples had detections of chloroform, which is a trihalomethane. Therefore, this detection of chloroform could be a byproduct of residual chlorine in the groundwater and HCL preservation. Potable water was used for the drilling fluid of these deep, cased wells. The pH of the water in these wells was elevated (10-13 s.u.) during sampling. It's possible that some of the drilling fluid seeped through the casing into the formation during installation of the well and resulted in residual chlorine being captured during sampling.

QC Blanks

QC blanks for VOCs include method blanks, field blanks, rinse blanks, and/or trip blanks. Any result less than 5 times (10 times for common contaminants such as methylene chloride and acetone) the concentration detected in the method blank was considered a possible laboratory artifact. Any result less than 5 times (10 times for common contaminants) the concentration detected in the field blank, rinse blank, and/or trip blank was considered a possible field artifact. Rinse blanks were not collected. The trip blank was non-detect.

Acetone and toluene were detected in field blanks, but the associated concentrations in site samples were non-detect ("U" flagged), so data qualification was not required. However, chloroform was detected in samples MW-09-28 and MW-09-31 at concentrations less than 5 times the field blank concentration (5.5 micrograms per liter [μ g/L] and 5.0 μ g/L, respectively). Therefore, the chloroform concentrations in these two samples were qualified as non-detect and flagged "U".

LCS Results

One LCS sample was analyzed in the analytical sequences. In this LCS analysis (LCS-238383), the target compound recovery was outside limits for bromoform, but this compound was not detected in associated samples so data qualification was not required.

MS/MSD Sample Results

MS/MSD performance indicates matrix effects of the sample on the target compounds and/or analytes analyzed. Some of the MS/MSD samples were performed on non-project samples. No discussion of MS/MSDs is necessary for non-project samples since no qualification would be applied to project samples based on recoveries that are outside of recovery limits. The following project MS or MS/MSD samples were analyzed:

An MS/MSD was performed on project sample MW-09-29; recoveries were outside QC limits (high) for bromoform, carbon tetrachloride, and toluene. However, since bromoform, carbon tetrachloride, and toluene were not detected in the parent sample, data qualification was not required.

Field Duplicates Results

Field duplicates for VOCs were collected on one sample: MW-09-26/MW-09-26XD. Field duplicate precision, expressed as Relative Percent Difference (RPD), is evaluated for results detected above the reporting limit in both the parent and duplicate samples.

VOCs were detected in the parent/duplicate samples MW-09-26/MW-09-26XD. RPDs were less than 30 percent, meeting field duplicate precision requirements.

3.0 SUMMARY

The data are usable with the qualification identified for the results associated with:

Chloroform ("U" flagged) in samples MW-09-28 and MW-09-31.

References:

U.S. Environmental Protection Agency (USEPA), 1996. "Test Methods for Evaluating Solid Waste"; Laboratory Manual Physical/Chemical Methods; Office of Solid Waste and Emergency Response; Washington, DC; SW-846; November 1986; Revision 4 -December 1996.

U.S. Environmental Protection Agency (USEPA), 2010. "USEPA Contract Laboratory Program National Functional Guidelines for Superfund Inorganic Data Review"; Office of Superfund Remediation and Technology Innovation; EPA-540-R-10-011; January 2010.

U.S. Environmental Protection Agency (USEPA), 2016. "USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review"; Office of Superfund Remediation and Technology Innovation; EPA-540/R-2016-002; September 2016.

Prepared by/Date: <u>Lynne Clem 4/6/17</u> Checked by/Date: <u>Terrell Parker 4/14/2017</u>

TABLE 1 SUMMARY OF SAMPLES AND ANALYTICAL PARAMETERS DATA VALIDATION REPORT REMEDIAL INVESTIGATION ADDENDUM SAMPLES RBTC-FOUNTAIN INN FACILITY SOUTH CAROLINA

Boring	Sample ID	Date	Parameters	Methods	SDG
Ground Water Sar	mples				
MW-09-26	MW-09-26	2/14/2017	VOCs	8260B	1702E41
10100-09-26	MW-09-26XD	2/14/2017	VOCs	8260B	1702E41
MW-09-27	MW-09-27	2/14/2017	VOCs	8260B	1702E41
MW-09-28	MW-09-28	2/14/2017	VOCs	8260B	1702E41
MW-09-29	MW-09-29 (a)	2/14/2017	VOCs	8260B	1702E41
MW-09-30	MW-09-30	2/14/2017	VOCs	8260B	1702E41
MW-09-31	MW-09-31	2/15/2017	VOCs	8260B	1702E41
MW-09-32	MW-09-32	2/15/2017	VOCs	8260B	1702E41
QUALITY CONTRO	OL SAMPLES				
	TB-01	2/14/2017	VOCs	8260B	1702E41
	FB-01	2/14/2017	VOCs	8260B	1702E41
	FB-02	2/15/2017	VOCs	8260B	1702E41

Notes:

(a) This sample was selected for matrix spike/matrix spike duplicate (MS/MSD) analyses (VOCs).

Samples were analyzed by Analytical Environmental Services, Inc. (AES) laboratory located in Atlanta, Georgia.

SDG = Sample Delivery Group

VOCs = Volatile Organic Compounds

XD = Field Duplicate Sample

Prepared by/Date: <u>LWC 4-6-17</u> Checked by/Date: <u>JTP 4-12-17</u>

TABLE 2 VALIDATION QUALIFIER SUMMARY REMEDIAL INVESTIGATION ADDENDUM RBTC-FOUNTAIN INN FACILITY SOUTH CAROLINA

MA [·]	TRIX	SAMPLE ID	SAMPLE DATE	SDG_ID	METHOD	PARAMETER	UNITS	LAB RESULT	LAB QUALIFIER	VALIDATION RESULT	VALIDATION QUALIFIER	REASON CODE
\	W	MW-09-28	2/14/2017	1702E41	8260	Chloroform	μg/L	2.7		2.7	U	BL2
\	W	MW-09-31	2/15/2017	1702E41	8260	Chloroform	μg/L	1.1		1.1	U	BL2

Notes:

Laboratory qualifiers that did not change as a result of the data validation are not shown on this table.

BL2 - Concentration in sample less than 5 times (10 times for common contaminants) concentration in rinse blank or trip blank sample.

U - not detected, value is the detection limit

W - Water

μg/L - microgram per liter

Prepared by / Date: <u>LWC 4/13/17</u> Checked by / Date: <u>JTP 4/14/17</u>

Relative Percent Differenc (RPD) on Groundwater Field Duplicate Samples - Remedial Investigation Addendum Former Vermont Bosch Site Fountain Inn, Souh Carolina AMEC Foster Wheeler Project 6251161022.01.03

		MW-09-26	MW-09-26XD	
Constituents	Units	2/14/2017	2/14/2017	RPD
Chloroform	μg/L	730	700	4.2

Notes:

μg/L = micrograms per liter

Prepared By/Date: <u>L. Clem 4/6/2017</u> Checked By/Date: <u>T. Parker 4/12/17</u>

DATA VALIDATION RECORD

Method SW8260B for VOCs

Project Name and No: RBTC Fountain Inn; 6251161022.01.03

Laboratory and SDG: Analytical Environmental Services, Inc. (AES), 1702E41

Data Validation Level: II

Date: 4/6/2017

Reviewer: L. Clem Senior Reviewer: T. Parker 4/14/2017

Samples Reviewed: MW-09-26, MW-09-26XD, MW-09-27, MW-09-28, MW-09-29, MW-

09-29 MS/MSD, MW-09-30, MW-09-31, MW-09-32, FB-01, FB-02, and TB-01.

1. Case Narrative and COC review

Case Narrative (pg. 3 of data package) and COC (pg. 2 of data package) present for all samples in this SDG.

2. Sample Collection, Preservation (Preserved with Hydrochloric Acid (HCI); Cool to 4 °C), Holding time (14 days)

Samples analyzed for VOCs preserved with HCl; cooler temp 4.6°C, per "Sample/Cooler Receipt Checklist" pg. 29 of Summary. Samples collected: 2/14/17, 2/15/17; Samples Prepped and Analyzed: 2/21/17, 2/22/17.

3. Instrument Tuning

Not required for Level II.

4. Instrument Calibration

Not required for Level II.

5. QC Blanks

Method Blanks:

Pgs. 30-31, 2/21/17, MB-238383, No detects

Field Blank

FB-01, 2/14/17, pgs. 6-7, Acetone=35 μ g/L x 10=350 μ g/L, Chloroform=1.1 μ g/L x 5=5.5 μ g/L, Toluene=2.4 μ g/L x 5= 12.

Acetone and toluene were not detected in the associated samples – no flags.

Associated Samples
MW-09-28Compound
ChloroformConcentration
2.7Flag U (BL2)
U at 2.7

FB-02, 2/15/17, pgs. 8-9, Acetone=43 μ g/L x 10=430 μ g/L, Chloroform=1.0 μ g/L x 5=5.0 μ g/L, Toluene=2.5 μ g/L x 5= 12.5.

Acetone and toluene were not detected in the associated samples – no flags.

Associated Samples	Compound	<u>Concentration</u>	Flag U (BL2)
MW-09-31	Chloroform	1.1	U at 1.1

Rinse Blank

Rinse Blank not included in this SDG.

Trip Blank

TB-01, pgs. 4-5, No detects.

6. Laboratory Control Sample (LCS) Results (Lab limits)

LCS-238383, pgs. 32-33,

<u>Compound</u> <u>LCS % Rec</u> <u>Flag</u> <u>Reason Code</u> Bromoform 152 none not detected

7. Internal Standards (50 - 200 %)

Not required for Level II.

8. Surrogate Recovery (70-128%)

All surrogates within lab limits.

9. Field Duplicate Precision (< 30 %)

MW-09-29/ MW-09-29XD

Compound	<u>Sample</u>	<u>Duplicate</u>	<u>RPD</u>	<u>Flag</u>
Chloroform	730	700	4.2	none

10. Matrix Spike/Matrix spike Duplicate (MS/MSD) (55.9-149 %/RPD ≤ 20-36.8 %)

Pgs. 33-36, 1702E41-012AMS/1702E41-012AMSD, project sample MW-09-29.

Compound	MS%Rec	MSD%Rec	%RPD Flag	Reason Code	
Bromoform	146	144	0.91 none	not detected	
Carbon Tetrachloride	181	179	0.946 none	not detected	
Vinyl Chloride	159	160	0.878 none	not detected	

11. Raw Calculations

Not required for Level II

Method SW8260B Checklist SDG: 1702E41 RBTC Fountain Inn 4-6-2017

12. Electronic Data Review

Ten percent of the EDD results for VOCs (samples MW-09-28, MW-09-32) were compared to the laboratory data report to confirm accuracy of the EDD. Results listed in summary package were confirmed in the EDD.

APPENDIX G DISPOSAL MANIFESTS

1-00-16H

GENERATOR INFO	RMATION	CUSTOME	CUSTOMER/BILLING INFORMATION						
Generator Name: RBT0	C	Billing Name:	Billing Name: A&D Environmental Services (SC), LLC						
Address: 800 Woodside	Ave	Address:	1741 Calk	s Ferry Rd					
City: Fourisin inn	County: Lexington	City: Le	exington	Oc	serty:				
State: SC	Zips: 29644	State: St	C		Zip: 29073				
Site Location (if different	<u>}</u> :	••••••							
Republic Services Approval #	Description of Waste	Vaiume/V	Velght	Expiration Date	Container Type				
3115176285	Soil	71910		7/31/2017	1 1 7 7/4 3				
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				<b>5</b>				
			~`\~`\X.	<b>†</b>					
	ch sadiomal sheet if necessary			<del></del>	J				
Authorized Agent Name	TRANSPOR	Signature FER INFORMATION	······································		Osta Deliverac				
Transporter Name: A&D	Environmental Services (SC), LL		859735						
~~~~~	iks Ferry Road		Trock Number: 10114-						
City: Lexington	c Coonly: Lexingion	Phone Number	or:	ã03.957.9175	*****				
State: SC	Zip: <u>29073</u>								
Legatify no hazardous wa	sie or other regulated substance	was knowingly introduc	ed to the	wasie while in n	ly custody. The				
waste transported in this	vehicle is the waste identified ab	(A)			l e esta.				
	4404,00- ^j		<u> </u>		3-26				
Authorižed Ageát Name	p9000000000000000000000000000000000000	Signature()\	0/0-1/0040400000000000000000000000000000	100446000000000000000000000000000000000	Daté Delivered				
	DISPOSALS	ITE INFORMATION							
e Name: <u>Republic Servi</u>	pes-Union County Reginal Landfi	Lhereby acknowledge re-	oeipt of the	above described	resteriois				
ldress: <u>866 Wilddat Ro</u>	oed	Name (print or Type):			and promperhease and rie of				
Cily. <u>Enorse</u>	County:	Signature:	CQ	$()$ c_					
State: SC	7160 70005	***************************************			_				
	Zip: <u>29335</u>	Date Received	V c	21-1	No.				

the second second second

833.8 WIE OUTCKET # UPSTATE REGIONAL MSW LANDFILL 864-969-4460 1068423 ೮೮೩೬ 868 Wildcat Road -Enores, SC 29935 WEIGHMASTER Tonya S. CUSTOMER GOOTZE DATE/1988 05 4/26/17 C:18 pm DATE THE OWY 17 2:18 pm A & D SMVIROMMENTAL SERVICES - NO REES VERROLE asbils20yb P.O. BOX 464 CONTAINER HIGH POINT, NO. 27281 REPERENCE 42517-1 Contract:3115176085 Generator: RBTC erl of lading THECHNO SCALE IN GROSS WEIGHT 52,800 MET TOWS 7.57 TAPE COT TARE WEIGHT INVOICE 37,660 MET WEIGHT 15,140 QTV. UKST DESCRIPTION XX38 EXTENSION 742 2000 20.96 Tracking (MY 88-CONT 8031 Origin: GREENVILLE CO (\$20)1009 10

The undersigned individual aligning this decument on behalf of Customer acknowledges that he or she has must and understande the series and conditions on the reverse side and that he or she has the sufficility to sign this decument on behalf of the customer.

88-5042098 (07/12)

SIGNATURE

CARBOMET

CHANGE

CHECKS

A on Environmental Services

	A&l	D Er	iviron	menta	I Service:	5	Bill of L	.aair	19 / M	ateri	ai Wann	est	
A&D Job	Np: 20	7	Generato	r ID Number		Page 1 of		134-77	50	Trackir	16231		
Generat	or's Name	e ånd Ma	ailing Addre	- Jay			or's site address	(if differ	rent from m	ailing add	iress)		
			1/0	1. and	Side Ave	v							
			CO	with it	Thu S	59 29	644						
Tran	sporter	1 M 2 [Compar	y Name			ental Service	es. Inc			US EPA ID No:	NCD98623222	
	· · · · · · · · · · · · · · · · · · ·			-			.,,			US EPA ID No: SCD987596331			
	sporter esignated F		Compar	ny Name Designated Fac		Designated Facil	ental Service		ated Facility			ted Facility	
	vironmen		1	vironmental	A&D En	vironmental	A&D I	Environi	nental	- 1	D Environment	tal	
Services 2718 Hw	i, Inc. harrie Ro	ad	Services 3149 Lea	•		s (SC), LLC entwood Stre		ces (SC) Calks Fe	, LLC erry Road	- 1	rvices (SC), LL0 5 B South Main		
	e, NC 272		Buriingt	on, NC 2721	5 High Po	int, NC 27260	Lexin	gton, SC		Ma	uldin, SC 2966		
336-434- NCD9862			336-229- NCR000		336-882 NCR000			57-9175 8759833	:1		3-967-3500 :R000765677		
HM		lous Mate			d Description (if app		No.	Туре	QTY	Wt/Vol	Profile Number	er	
	1			•									
	/	101) Res	rulate	ed Nate	rial	-	TT	500	6			
											,		
				um Product	s for Recycle		No.	Type	QTY	Wt/Vol	Profile Number		
X X		, Diesel fu	uel, 3, III (No.1,2,4,5 o	· 6/ 3 III		ERG# 128 ERG# 128				-			
X		, Gasoline		0), 3, 111		ERG# 128				1			
Х			m Oil, 3, III			ERG# 128							
	T	Т=	T =		rsai Waste Lamps, B				cycle		nman Nama	Diagrapasav	
Ж	No. Type Est. Wt. Count Shipping Name and RQ, UN2809, Mercury contained								ERG# 172	Common Name Mercury Containing Articles		Discrepancy	
X					RQ, UN2809, M	lercury, 8, III		E	RG# 172		Mercury		
X							phenyls, solid, 9, II		RG# 171 RG# 154		pt PCB Lamp Ballasts Lead Acid Batteries	3	
X		-				UN2800, Batteries, wet, nonspillable, 8, III ERG# 154 UN2794, Batteries, wet, filled with acid, 8, III ERG# 154				Lead Acid Batteries			
Х					UN2795, Batter	UN2795, Batteries, wet, filled with alkali, 8, III					Wet NiCad Batteries Lithium Batteries Alkaline Batteries		
<u> Х</u> Х		ļ											
$\frac{\hat{x}}{x}$					UN3028, Batteries, di					 	NiCad Batteries		
					Universal Waste Lam						cent lamps 4' or <		
					Universal Waste Lam		d per 49 CFR 173.164(e)			cent lamps 4' or > ar/U-tube lamps			
						iversal Waste Lamps (Not DOT-Regulated per 49 CFR 173.164(e)				Co			
					Universal Waste Lamps (Not DOT-Regulated per 49 CFR 173.164(e) Universal Waste Lamps (Not DOT-Regulated per 49 CFR 173.164(e)				Shattershield HID/MV/UV Lamps				
					Universal Waste Lam	 		~~~		Incandescent Lamps			
				Non-PCB Light Ballasts for Recycle (Not DOT-Regulated)					Non-PCB Light Ballasts				
	i- ONdid				Electronic Equ d materials are properly c		cle (Not DOT-Regu		d and are in a		Electronics	appording to the	
applicable	regulations of	of the Depai	rtment of Transo	ortation, I furthe	r certify that none of the m	naterials described	above are a hazardou	us waste as	defined by EP	A 40CFR Pa	t 261 or any applicab	le state law, and	
uniess spe Generator's/G		·		ontain less than	1,000 ppm total halogens	Signature	Quantiliable levels (2)	opin) or PCI	os as delined b	y EFA 40 GF	Month	Day Year	
10	P. N			, 1m, 1	(P.		K., M	va 6	۲,		INC	104117	
ransporter 1	Printed/Tv	<u>∖</u> QUU\U\ voed Nan⊛	60 MM	CFN, a	gest In Boc	Signature	10VAL	i Come			Month	Day Year	
1	6715	. [1			1 6 1	luce ()		- Janes		· Vec	10117	
ransporter 2	And the second	~~ <u>~</u>	JCQ	w bo		Signature	CEPS CI	<u>illure</u>	rja		<u>し</u> い Month	Day Year	
		,											
iscrepancy !	Indication /	Additional	Information:								Month	Day Year	
		fication: I I	hereby acknow	wledge receipt	of the materials covere		st except for any di	iscrepanc	y indicated ab	oove.			
rinted/Type	d Name	-	1	r:11 -1	1-	Signature	/	/,)	11/2	#	Month	Day Year	
	ما	ar da	70 11	1, 1101	1	1//	1001 m (100)		. VNIN	Z	しつり	10016 111	
			<u> </u>	1110	1		O CONCI	1/1/2		<u></u>	07	07 11	