PROJECT CONNECT

REVISED ALTERNATIVES ANALYSIS ${ }^{1}$

This document is prepared and submitted pursuant the permitting jurisdiction of the Department of the Army, U.S. Army Corps of Engineers (USACE or Corps) under Section 404 of the Clean Water Act (CWA) and certain requirements set forth under the National Environmental Policy Act, 42 U.S.C.A. $\iint 4321$ et seq. (NEPA).

1.0 INTRODUCTION

The South Carolina Department of Commerce (Commerce) and Richland County (County) (collectively, the Applicant), for and on behalf of an economic development client of the State of South Carolina (Client), ${ }^{2}$ submits an application for a project that would result in an impact on the environment and involve the discharge of dredge and fill material into waters of the United States. Section 404 of the CWA establishes a regulatory program over such discharges, including wetlands, through issuance of Department of Army (DA) permits. The Applicant proposes to develop an approximately 2,581 -acre site to include the construction and operation of a new rail-served advanced manufacturing facility for an original equipment manufacturer (OEM) in the automotive industry, with a dedicated interstate interchange for project connectivity. The site is located partially in the unincorporated part of Richland County and partially within the corporate limits of the Town of Blythewood, South Carolina, also in Richland County (Proposed Project). This analysis is drafted to aid and assist compliance with the guidelines promulgated by the United States Environmental Protection Agency (USEPA) in conjunction with the Secretary of the Army under the authority of Section 404(b)(1) of the CWA (Guidelines) ${ }^{3}$ and NEPA.

1.1 Project Background

Commerce is an instrumentality of the State of South Carolina, whose statutory purpose, as set forth in set forth in S.C. Code Ann. §13-1-20, is to implement a statewide program for the stimulation of economic activity to develop the potentialities of the State, and enhance the economic growth and development of the State through strategic planning and coordinating activities, among other

[^0]${ }^{3} 40$ C.F.R. Part 230.
activities. The County is a body corporate and politic existing under S.C. Const. art. VIII and Title 4 of the Code of Laws of South Carolina, located in the Midlands of South Carolina. By and through the County's Economic Development Office, the County seeks to expand, diversify and sustain the local economy in Richland County by assisting companies that provide meaningful job opportunities and generate new wealth for its citizens. Client is one of the world's leading OEM companies specializing in automotive production with existing North American sister-facilities.

In accordance with Commerce's statutory authority and the County's economic development mission, for and on behalf of Client, the Applicant proposes to develop a site for the construction and operation of a new rail-served advanced manufacturing facility in the automotive industry for an OEM, with dedicated interchange access, that will take advantage of South Carolina's transportation, distribution, and logistics (TDL) cluster and initiatives. ${ }^{4}$ The Proposed Project facilities will serve as the new worldwide production site for automotive vehicles within the burgeoning electric vehicle (EV) automotive industry sector. The fully constructed facilities and support operations will allow Client to source, stage, assemble, produce, and manufacturer fully-assembled automobiles in scalable manner that meets the growing demand and needs of end-users. The Proposed Project is planned to include up to $\$ 2$ billion in private capital investment in the State and create approximately 4,900 high-wage advanced manufacturing jobs in the Midlands of South Carolina during Phase I. As subsequent phases of the project are implemented, the total permanent new jobs is expected to scale to approximately 9,800 . In addition, the Proposed Project is projected to create approximately 3,535 temporary construction-related job supported (directly or indirectly) during the construction phase, creating an additional total of $\$ 1.1$ billion in labor income growth over that period. The temporary and permanent cumulative economic impacts of the Proposed Project is estimated to be nearly $\$ 15.3$ billion by year 2029. In sum, the Proposed Project is expected to provide a significant economic impact on Richland County, the greater Columbia area, and the State of South Carolina.

The design of the Proposed Project has been developed under a master plan concept that will be constructed in phases to support existing demand, while allowing for planned expansion within the available acreage to address future growth opportunities to meet projected and new demand. The onsite work for the Proposed Project facilities is planned to be built in two or more phases. Groundclearing activities on the site have begun in non-wetland areas. Activities in the wetland areas would begin immediately upon issuance of the Section 404 permit. Construction of Phase I of the Proposed

[^1][^2]Page 2 of 97

Project would begin upon the completion of the necessary site work and is contemplated to include construction of the necessary facilities to produce EV automobiles starting in 2026. Specifically, Phase I of the Proposed Project will consist of site preparation work and the cumulative construction of 16 buildings, totaling approximately $5,250,000 / \mathrm{sf}$ in buildings to stage materials and house facilities for the production of automobiles, including assembly and finish ($1,520,000 / \mathrm{sf}$), paint ($432,480 / \mathrm{sf}$), body ($1,303,000 /$ sf), a central control building (113,660/sf), SQM2 (36,630/sf), utility (59,960/sf), truck gate/security control center $(8,925 / \mathrm{sf})$, fire station $(9,215 / \mathrm{sf})$, recycle center $(15,275 / \mathrm{sf})$, main gate/welcome center ($6,438 / \mathrm{sf}$), tank farm ($15,790 / \mathrm{sf}$), factory substation ($290,727 / \mathrm{sf}$), supplier substation ($290,725 /$ sf), outbound building ($1,344 /$ sf), battery assembly shop ($833,418 / \mathrm{sf}$), and the axle shop ($320,865 / \mathrm{sf}$). Phase I will also entail construction of attendant infrastructure, including a new interchange on I-77, interior roadways, a rail spur and rail loading areas, truck and personal vehicle (POV) parking, and stormwater detention basins.

Below is a brief description of the automotive assembly manufacturing processes that are expected to occur in certain of the aforementioned Phase I buildings:
i. Body Shop: In the body shop, parts are assembled to form the "body-in-white", including stamped parts, the front-end subassembly, the rear-end subassembly, the side frame subassembly, the underbody subassembly, the mid-and upper-body assembly, and panels. Parts are joined using welds, solder, adhesives, and rivets. At the end of the body shop process, the "body-in-white" is lifted onto a conveyor and sent to the paint shop.
ii. Paint Shop: The paint shop will be designed as a full, high volume operation to meet the Client's requirements. The maximum production rate will be 45 vehicles per hour (45 jobs per hour or 45 JPH) during the first phase of the project and an additional 45 JPH during the second phase of the project, for a throughput capacity of 90 JPH . The facility will be designed to operate up to three shifts per day with a potential production level of 470,000 vehicles annually. The paint shop will receive vehicle bodies from the body shop and will deliver coated bodies to the assembly shop. The paint shop will include the operations described below:
a. Degreasing and Pretreatment: As the first step in the coating process, all vehicle body surfaces must be cleaned and treated in degreasing and pretreatment operation to maximize paint adhesion. Vehicle bodies are cleaned with alkaline cleaners followed by water rinses. The vehicle bodies are then pre-treated in a tri-cation phosphate solution followed by additional water rinses. The pretreatment solution prepares the metal (aluminum and steel) surfaces for the subsequent coating operations. The pretreatment tanks are exhausted to vent water vapor.
b. E-Coat Tank and Oven: The first coating applied to the vehicle bodies is electrocoat primer (E-coat). Vehicle bodies are dipped into one (1) of two (2) E-coat dip tanks of the water-borne E-coat made up of mixed pigment and resin components. While the bodies are in the tank, an electrical charge is applied that assists in the adhesion of
paint solids onto all portions of the vehicle body (interior and exterior surfaces). Following the coating application, the vehicle bodies are rinsed with water to remove and recover any excess or additional coating solids. The vehicle bodies are then directed to an electric E-coat oven. The vehicle bodies are cured in the oven to prepare for the next coating application. Each E-coat process line will have two (2) electric Ecoat ovens with a capacity of 22.5 JPH .
c. PVC Deck: A polyvinyl chloride (PVC) anti-chip material is applied to the vehicle lower body to prevent paint chipping due to stones or other objects hitting the vehicle. The PVC material is a low-VOC, high-solids material that is robotically applied to the vehicle body and air dried. Following PVC application, the vehicle bodies pass through the sealer ovens.
d. Paint Sealer and Deadener Deck and Oven: The paint sealer and deadener application decks consist of several sealer application stations where various high-solids, low-VOC sealers and liquid sound deadeners are applied via manual or robotic applications. All applications are pumped directly onto the vehicle bodies (flow coating) to seal seams in the vehicle body to eliminate water or air leaks into the vehicle body. To prepare the sealer prior to topcoat application, the vehicle bodies are directed to electric sealer ovens to gel the sealers.
e. Topcoat Preparation (Workdeck): After the sealer ovens, the vehicle bodies pass to a topcoat preparation area where the vehicle surface is cleaned using emu feathers and sword brushes.
f. Topcoat Operations: Following the E-coat, sealer, and PVC operations, the vehicle bodies are directed to basecoat booths (two booths at 22.5 JPH for each line, for a total of four booths) where basecoat is applied to the vehicle body. This process unique within the industry, as no primer (guidecoat) is applied to the vehicles prior to the application of basecoat. Following the basecoat booths, the vehicles are dried in a heated flash-off zone, and then move into clearcoat booths (two booths at 22.5 JPH for each line, for a total of four booths). The materials applied to the vehicle body will be high-solids, solvent-based coatings which allow for the painting application in smaller booths. The topcoat (basecoat and clearcoat) booths will apply two (2) basecoats and one (1) clearcoat to all exterior portions of the vehicle body as well as the door, decklid, and hood openings. All paint application will be performed by robotic and bell applicators. The air passing through each of the automated paint spray application zones will pass through a dry filtration system (inherent) and will then be recirculated through the zones to minimize the need to condition air (heating/cooling) before entering the booth. At all times during production, the air passing through the active spray zones will be recirculated and a portion of the air will be directed to abatement equipment (the concentrators and RTOs). The make-up air to replace the air directed to control will be cascaded from the air supplied to the back-up zones
where available. Therefore, the air passing through all flash and back-up zones where no painting occurs is also directed to the abatement equipment. As a result, all of the VOC emissions emitted from the active spray zones as well as the VOC emitted from vehicle bodies as they pass through the flash or back-up zones will be directed to the abatement equipment. Each painting robot station will be equipped with a purge pot collection system to capture and recover paint and solvents from the application equipment during color changes and applicator cleaning operations. The vehicle bodies will then be directed to the electric topcoat ovens (two ovens for each topcoat line, for a total of four ovens) where the applied coatings will be cured. All exhaust air from the ovens will be directed to the RTOs.
g. Finesse, Rework and Heavy Repair (Workdecks): After the topcoat ovens, the vehicle bodies move to inspection areas and then finesse decks where any imperfections in the cured topcoat are lightly sanded. Further rework is completed in the designated rework line. Larger repairs are completed in a heavy repair workdeck.
h. Tutone Operations: In addition to the above described operations, a number of vehicles will receive additional coatings in the Tutone booths. Following E-coat, PVC, sealer, and topcoat operations, those vehicles slated for Tutone will receive a basecoat and Tutone application on limited portions of the vehicle, cure in a heated basecoat flash off zone, and receive a clearcoat application on limited portions of the vehicle. The Tutone process uses applicators that directly apply the coating to the vehicles without atomization or spray, resulting in nearly 100% transfer efficiency. This technology can only be used for the larger surfaces that require the Tutone coating. The air passing through each of the Tutone application zones will pass through a dry filtration system and will then be recirculated through the zones to minimize the need to condition air (heating/cooling) before entering the booth. At all times during production, air passing through the Tutone active spray zones will be recirculated and a portion will be directed to abatement equipment (the concentrators and RTOs). The make-up air to replace the air directed to control will be cascaded from the air supplied to the backup zones where available. Therefore, the air passing through the flash tunnels and back-up zones where no painting occurs is also directed to the abatement equipment. The vehicle bodies will then be directed to the Tutone oven where the applied coatings will be cured.
i. Purge Solvent: Purge solvent is used to remove coating material from application equipment. A purge solvent collection system is required to collect purge solvent from the application areas. The system then pumps the recovered solvent to the paint mix room for reuse or shipment off-site.
j. Spot Repair: If a body panel or spot requires painting prior to existing the paint shop, the vehicle is sent to spot repair. In the spot repair process, primer, basecoat, and
clearcoat are manually applied, and the coatings are cured with portable lamps within the booth.
k. Cavity Wax: After inspection and any necessary repairs, vehicle bodies are transferred to booths where cavity wax is applied to inner recesses of the vehicle bodies.

1. Paint Mix Room: Paints, reducing solvents, purge solvents, and cleaning solvents will be stored, mixed, and dispensed in the paint mix room. These materials are supplied in drums or totes and fed to closed mix tanks for viscosity adjustment. The paints are pumped through continuously circulating paint lines from the mix tanks to the application equipment.
m. Abatement Equipment: The VOC emissions from the E-coat tank and oven, topcoat booths, topcoat booths, Tutone booths, and Tutone ovens as described above will be directed to two (2) RTOs for VOC destruction as follows:
i. Booth Concentrators (2) - topcoat booths, Tutone booths
ii. RTOs (2) - E-coat oven, topcoat booths, topcoat ovens and flash off areas, Tutone booths, Tutone ovens and flash off areas

Each RTO will operate with a minimum destruction efficiency of 95%. The RTOs will be electric and will not require fuel combustion.
iii. Assembly Shop: The assembly shop is a series of conveyors where mechanical, electrical, and trim parts are installed on the painted bodies received from the paint shop. The major areas of the assembly shop operations include the floor line, trim line, chassis/battery line, and final repair. Most operations conducted in these areas do not generate any air emissions, including installation of sound-deadeners, and brake lines, as well as installation of various small parts, carpeting, seats, windows, bumpers and wheels. The air emission sources in the assembly shop are described below:
a. Windshield Installation: Windshield glazing activities include the application of primers and adhesives. A primer is used in the direct glazing process and an adhesive binds the windshield to the car body.
b. Final Repair. Final inspection may reveal damage to the painted surface. If a body panel or spot requires painting, the vehicle is sent to final repair. This repair operation differs from the repair operations in the paint shop in that it is designed to repair finished vehicles. Small spot repairs will be conducted in various areas within the assembly shop, while larger repairs will be conducted within a repair booth. In final repair, primer, basecoat, and clearcoat are applied using high volume low pressure (HVLP) spray guns. After necessary repairs have been completed, vehicles are buffed, polished and sent to staging for delivery to dealers.
c. Fluid Filling: After the installation of mechanical, electrical, and trim components, the vehicle is sent for the addition of necessary fluids. Fugitive emissions from ethanol-
based windshield washer fluid filling are exhausted through general facility ventilation and represent the only fluid filling emissions. Any other fluids have negligible vapor pressure and do not emit VOCs.

As further information on Phase I, the Proposed Project is expected to operate on three shifts, with shift one from 5:45 A.M. to 2:00 P.M., shift two from 1:45 P.M. to 10 P.M., and shift three from 9:45 P.M. to 6:00 A.M. Personal vehicle counts (POV) for each of the shifts is estimated to be 1,440 inbound, and 1,440 outbound, representing total estimated daily POV movements of 8,640 . Truck movements associated with the operation of the Proposed Project is estimate to be 334 inbound, and 334 outbound for each shift, representing total estimated daily truck movements of 2,004 . As a further general assumption, the typical commuter hours are estimate to be 10% of the facility's peaks.

The Proposed Project also includes a new, onsite rail spur from an existing Norfolk Southern rail line to the East of U.S. Highway 21 on the Eastern border of the project site (on the East side of I-77). The proposed rail spur would cross over I-77 to the South of the new proposed Exit 26 interchange, discussed below, enter the project site to the South of the facility, looping around the Southeastern corner of the facility, and terminating in a rail yard on the Western side of the facility, servicing the batter, axel shop, and press shop buildings of the facility. A new grade separated rail crossing of a realigned U.S. Highway 21 is also proposed to avoid an at-grade crossing. The Client estimates a need for 26,752 rail car loads per year, amounting to an estimate $2-4$ train movements per day, five days a week, equaling between 520 to 1,040 train movements annually. The Client expects to source raw materials for its automotive manufacturing process domestically and internationally, including through the Port of Charleston, accomplished by a combination of truck and rail. Further, the Client expects initially to ship finished automobiles primarily domestically, through a combination of truck and rail; however, subject to demand, the Client anticipates a need to ship finished automobiles internationally as well, including through the Port of Charleston.

The remaining phases of the Proposed Project would be constructed and become operational after completion of Phase I, based on identified demand and projected growth opportunities. Specifically, the subsequent phases of the Proposed Project are projected to consist of the cumulative construction of approximately 20 additional buildings, totaling approximately $10,750,000,000 / \mathrm{sf}$ in buildings and facilities. The subsequent phases of the Proposed Project would largely mirror those constructed in Phase I, essentially doubling the production capacity of the overall facility, and would include additional facilities to house battery assembly, assembly, paint, finish, body, press shop, and finished automobile parking processes, as well as a two test tracks for finished automobiles, among other administrative buildings and features. Additional information regarding the acreages of the full project build-out, along with the space required for attendant infrastructure, is included below in Level 3 of this analysis.

Currently, there are two existing interchanges near the Proposed Project site: I-77 at U.S. Highway 21 (Exit 24) to the South, and I-77 at Blythewood Road (Exit 27) to the North. A traffic study has been conducted by cooperating State agency South Carolina Department of Transportation (SCDOT) that determines that these interchanges will not be able to process the traffic generated by the proposed development, resulting in a determination that there exists a need for a new, dedicated interchange in conjunction with the Proposed Project. A memorandum summarizing the traffic study and interchange justification is included as Exhibit A. The study determined that the existing interchanges will experience a substantial increase in traffic demand due to the Proposed Project. The proposed new interchange will be located at approximately mile marker 26 along I-77. This interchange would support future traffic demand on and off the interstate associated with the Proposed Project. The new interchange is proposed to tie into existing Community Road to the West of I-77 and to U.S. Highway 21 to the East of I-77 via construction of a new connector road. U.S. Highway 21 is proposed to be realigned to accommodate a new grade separated rail spur from an existing Norfolk Southern rail line, as discussed above, which will lead to and service the Proposed Project site. The rail spur will cross over I-77 to the South of the new proposed Exit 26 interchange. In addition, I-77 will be widened Southbound between Exits 24 and proposed Exit 26, as well as Northbound just South of Proposed Exit 26 to Exit 27. Based on its determination that a new interchange is justified and warranted, and since the submittal of the application on May 26, 2023, SCDOT has continued to evaluate multiple designs and configurations for the proposed new interchange and corresponding roadway connections to existing roads. Ultimately, SCDOT determined that, among the range of reasonable interchange alternatives considered for the Proposed Project, the Offset Interchange design was the most feasible and practicable design that met the purpose and need of the project, while limiting overall impacts to special aquatic sites. A supplemental analysis addressing the interchange concept screening process undertaken by SCDOT is included as Exhibit B. In addition, as SCDOT further evaluated different interchange designs, it also evaluated alternative locations for the connecting roadway between the interchange and U.S. Highway 21. These efforts were made for the express purpose of determining whether further avoidance and minimization impacts could be achieved through these modifications, as compared to the interchange design and connecting roadway connection originally put forward in the May 26, 2023 submission. Further avoidance and minimization was partially achieved, allowing the Applicant to avoid an additional 2.3 acres of wetlands; however, SCDOT's conclusion as to the most feasible and practicable alternative for the interchange and connecting roadway from a cost, logistics, and technology standpoint, resulted in additional impacts to streams of 119.09 linear feet. A memorandum addressing these avoidance and minimization measures is included as Exhibit C.

1.1.1 Proposed Project Area

The Proposed Project site is known as the Blythewood Industrial Site and is partially located in the corporate limits of the Town of Blythewood in Richland County, with the remainder of the acreage located in the unincorporated part of the County, both on the Western and Eastern sides of Interstate $77\left(34^{\circ} 1950 \mathrm{~N},-81.0001 \mathrm{~W}\right)$ (Property). The primary project area of the Property is approximately
bounded by Blythewood Road to the North and West, developed residential and commercial properties to the West/Southwest, commercial properties fronting on Northpoint Blvd to the South, and Community Road (which is a frontage road to Interstate 77) on the East. The Property is located approximately 0.1 miles from Exit 27 of Interstate $77,1.2$ miles from Exit 24 of Interstate 77, 74.5 miles from the Interstate 77 (Exit 9)/Interstate 85 (Exit 30) interchange, 79 miles from the Interstate 26 (Exit 169)/Interstate 95 (Exit 86) interchange, 130 miles from the Port of Charleston, 101 miles from the Inland Port Greer, and 110 miles from the Inland Port Dillon.

Today, the Property consists of two buildings on the Northern side of the Property that front on Blythewood Road; one housed the Richland County Public Works Operations for the area, and the other is formerly a Masonic Lodge, now owned by the County. Of the remainder of the Property, 968 acres are been cleared during the course of Richland County's ownership, with the remaining acreage consisting of a mix of forested property, aquatic resource features, including thirteen ponds, tributaries/streams, and wetlands, as well as other non-aquatic resources, including ephemeral drainages/swales/agricultural ditches and one detention pond. A 50 -foot buffer has been maintained around all aquatic resource features. The upland site work undertaken after the submission of the application for the project was not intended to foreclose the Corps' evaluation of the relative merits of the proposed project or in any way determine subsequent development of the site or limit its consideration of alternatives. Further, the Applicants expressly acknowledge and concede that the aforementioned land disturbance activities on the project site should and shall not prejudice your office's independent determination under NEPA regarding the viability and merits of the proposed project, the feasibility and practicability of any alternative site to the project site, or the issuance of a permit under Section 404 of the Clean Water Act. The Applicants are committed to ensuring, consistent with 40 C.F.R. $\int 1506.1$ (b), that adverse impacts to the environment on the project site are avoided during the permit review and that the project team will remain in compliance with standards required of it while the Corps undertakes its required review and analysis of the project.

The Property is bisected by Locklier Road, which traverses the site on a Southwest to Northeast directional. Zoning for the parcels comprising the Property currently varies, although the majority of the parcels are zoned industrial, and applications for rezoning the remainder of the parcels are currently under consideration by the appropriate governmental bodies; the Applicant expects all parcels comprising the build site of the Property to be appropriately zoned in advance of any permit issuance. The overall acreage of the Property is approximately 2,581 acres, with the primary project area comprised of twenty-seven (27) tracts: TMS Nos. R12500-02-06, consisting of 237.56 acres; R12500-03-01, consisting of 287.63 acres; R12600-03-20, consisting of 30 acres; R12600-03-23, consisting of 80.77 acres; R15000-01-01, consisting of 4.48 acres; R15000-02-27, consisting of 466.02 acres; R15004-01-01, consisting of 90.48 acres; R15004-01-02, consisting of 1.99 acres; R15005-0101, consisting of 107.99 acres; R15006-01-01, consisting of 178.04 acres; R15007-01-01, consisting of 41.56 acres; R15008-01-01, consisting of 97.5 acres; R15100-01-04, consisting of 27.54 acres; R15100-01-06, consisting of 117.76 acres; R15100-01-07, consisting of 80.73 acres; R15100-02-01, consisting
of 4.3 acres; R15100-03-01, consisting of 18.84 acres; R15100-03-02, consisting of 9.65 acres; R15100-03-03, consisting of 17.02 acres; R15100-03-04, consisting of 62.03 acres; R15100-03-05, consisting of 11.79 acres; R15100-03-06, consisting of 1.93 acres; R15100-03-07, consisting of 14.5 acres; R15100-03-08, consisting of 5.93 acres; R15101-01-01, consisting of 14.69 acres; R15101-01-02, consisting of 3.2 acres; R15106-01-01, consisting of 102.12 acres. ${ }^{5}$ The construction limits of the planned development of the Proposed Project would comprise approximately 1,633 acres of the overall Property, with the remaining acreage consisting of avoided special aquatic sites and additional upland areas. Comprehensive due diligence consisting of wetlands, environmental, geotechnical, and archaeological studies has been performed for the Property, including a Cultural Resource Identification Survey, Boundary Survey, Protected Species Assessment, Preliminary Geotechnical Exploration, Phase 1 Environmental Site Assessment (ESA), and a Wetlands Delineation by S\&ME. Overall, the Property consists of approximately 2,384.193 acres of uplands and 196.807 acres of aquatic resources, comprised of approximately 146.215 acres of jurisdictional wetlands (between 119 wetland features), approximately 43.203 acres of non-wetland ponds (between 13 separate pond features), approximately 70,037 linear feet of streams, and approximately 9,472 linear feet of nonaquatic resources consisting of agricultural ditches and ephemeral swales (across 24 separate features). Of the approximately 1,633 acres identified as the limits of disturbance, the Proposed Project calls for 23,599 linear feet of permanent fill impacts to onsite streams, 30 linear feet of permanent clearing impacts to onsite streams, 3,043 linear feet of morphological impacts to onsite streams, 9,019 linear feet of pipe impacts to onsite streams, 38.219 acres of permanent fill impacts to non-wetland ponds, 60.649 acres of permanent fill impacts to jurisdictional wetlands, 0.317 acres of temporary excavation/permanent clearing impacts to jurisdictional wetlands, and 8.742 acres of permanent clearing impacts to jurisdictional wetlands.

The Property is located in the northern portion of Richland County and is approximately 0.75 -mile southwest of the town of Blythewood. Richland County, which covers approximately 772 square miles, is bounded by Fairfield County to the north, Kershaw County to the northeast, Sumter County to the east, Calhoun County to the south, and Lexington County to the west. The Property is to the South and East of Blythewood Road, approximately 0.75 miles Southwest of the City of Blythewood. Locklier Road, which bisects the project area, is currently in the process of being abandoned. The majority of the project area is located in the Sand Hills region (physiographic province) of South Carolina, with the remainder of the acreage located in the Piedmont region of the State, both of which are characterized in this area by rolling hills of rough, sandy soil (Kovacik and Winberry 1989).

Topography in the project area ranges from 370 feet above mean sea level (AMSL) in the Southern portion of the Property, to 560 feet AMSL along Blythewood Road at the Northern boundary of the Property. The project area is located within the Broad River drainage basin, and the Lower Broad River (03050106), Crane Creek-Broad River (03050106-07), and Beasley Creek (03050106-07-05)

[^3]watersheds. The Broad River drainage basin covers approximately 3,800 square miles (South Carolina Department of Natural Resources 2013). Beasley Creek flows through the Southwestern portion of the site, ultimately flowing into Crane Creek and traveling Southwest into the Broad River approximately 12.4 miles Southwest of the Property.

Soils on the Property consist of well drained Fuquay sand, moderately well drained Blanton sand, excessively drained Lakeland sand, and somewhat excessively drained Troup coarse sand (United States Department of Agriculture Web Soil Survey, Accessed May 6, 2022). Vegetation in the project area consists mainly of mixed pine and hardwood. Disturbances in the Proposed Project area include buildings, roadways, buried utilities, and dumping of trash and household goods.

The climate of Richland County is characterized as humid and subtropical. The average daily temperatures range from $56^{\circ} \mathrm{F}$ in Winter to $93^{\circ} \mathrm{F}$ in Summer. Precipitation is relatively evenly distributed throughout the year, averaging 47 inches annually. Rainfall is adequate for most crops during the peak-growing season of April through October. The average growing season is 229 days which is adequate for most crops (USDA 2006).

1.2 The USACE Authority and Scope of Analysis

1.2.1 Section 404 of the Clean Water Act

The Applicant understands that the Proposed Project is subject to the jurisdiction of the USACE under Section 404 of the CWA based on the contemplated placement and discharge of dredged or fill material into navigable waters and/or wetlands of the United States. The USACE administers the Section 404 program on behalf of the Secretary of the Army. The USEPA has the authority to determine the scope of Section 404 jurisdiction, has issued Guidelines on the discharge of dredged or fill material, and will generally prohibit a discharge if it determines under Section 404 that a discharge will result in unacceptable adverse effects on municipal water supplies, shellfish beds and fishery areas, wildlife, or recreational areas. The USEPA can exercise its Section 404(c) authority to veto the issuance of a Section 404 Permit of the USACE.

The USACE's review of the Proposed Project includes a determination of compliance with the Guidelines contained in 40 C.F.R. Part 230, including review of four specific requirements:

- 40 C.F.R. $\mathbb{2 3 0 . 1 0 (a) : ~ A n ~ e v a l u a t i o n ~ o f ~ a l t e r n a t i v e s ~ t o ~ t h e ~ P r o p o s e d ~ P r o j e c t ~ t o ~ d e t e r m i n e ~}$ whether there is a practicable alternative to the proposed discharge that would have less adverse impact on the aquatic ecosystem than of the Proposed Project, so long as the alternative does not have other significant adverse environmental consequences. The alternative identified by this test is referred to as the least environmentally damaging practicable alternative, or the LEDPA.
- 40 C.F.R. $\mathbb{2 3 0 . 1 0 (b) : ~ W h e t h e r ~ t h e ~ d i s c h a r g e ~ w o u l d ~ v i o l a t e ~ a n y ~ a p p l i c a b l e ~ s t a t e ~ w a t e r ~}$ quality standards, Section 307 of the CWA, the Endangered Species Act (ESA), or federal laws concerning marine sanctuaries.
- 40 C.F.R. $\mathbb{2 3 0 . 1 0 (c) : ~ W h e t h e r ~ t h e ~ d i s c h a r g e ~ w o u l d ~ c a u s e ~ o r ~ c o n t r i b u t e ~ t o ~ s i g n i f i c a n t ~}$ degradation of waters of the United States.
- 40 C.F.R. $\$ 230.10(d)$: Whether appropriate and practicable steps have been taken that will minimize potential adverse impacts of the discharge on the aquatic ecosystem.

Evaluation of a proposed project under all four of the requirements set forth in the Guidelines constitutes a determination of compliance with Section 404(b)(1).

The Corps' regulations also address the relationship between the Corps and state and local land use planning agencies. The regulations expressly state that "the primary responsibility for determining zoning and local land use matters rest with state and local and tribal authorities." 33 C.F.R. \S 320.4(j)(2). The regulations direct that upon compliance with the Corps' rules and other applicable federal law, in the absence of "overriding national factors of the public interest" that may be revealed during a permit application, a permit "will be generally issued following receipt of a favorable state determination." 33 C.F.R. $\int 320.4(\mathrm{j})(4)$. While making a compliance determination, the Corps may gather information sufficient to support and make its decisions by soliciting comments from other federal, tribal, state, and local resource agencies and the public. Notwithstanding, the Corps is solely responsible for reaching a decision on the merits of the permit application, including a determination of the overall and basic project purpose, the extent of the alternatives analysis, which alternatives are practicable, the LEDPA, the amount and type of mitigation that is to be required, and all other aspects of the decision-making process.

1.2.2 National Environmental Policy Act

According to the Guidelines, the alternatives analysis required in a NEPA evaluation is similar to that conducted under the Section 404(b)(1):

For actions subject to NEPA, where the Corps of Engineers is the permitting agency, the analysis of alternatives required for NEPA environmental documents, including supplemental Corps NEPA documents, will in most cases provide the information for the evaluation of alternatives under these Guidelines.

40 C.F.R. $\int 230.10(\mathrm{a})(4)$. Additionally, USACE program literature has recognized that "Districts should not conduct or document separate alternatives analyses for NEPA and the 404(b)(1) Guidelines." See USACE, Standard Operating Procedures for the USACE's Regulatory Program (July 2009) (USACE SOP).

To meet the requirements of the Guidelines under the USACE's regulatory program, as well as satisfy the alternative requirements under NEPA, alternatives were developed to achieve the LEDPA, and the Applicant submits that no additional alternatives are necessary as part of the USACE's Guidelines evaluation process of the Proposed Project.

1.3 Practicable Alternatives Framework (40 C.F.R. § 230.10 (a))

The Applicant is informed that the USACE's analysis of practicable alternatives is found in the Guidelines. The first requirement of the Guidelines provides:
(a) Except as provided under Section 404(b)(2), no discharge of dredged or fill material shall be permitted if there is a practicable alternative to the proposed discharge which would have less adverse impact on the aquatic ecosystem, so long as the alternative does not have other significant adverse environmental consequences.
(1) For the purpose of this requirement, practicable alternatives include, but are not limited to:
(i) Activities which do not involve a discharge of dredged or fill material into the waters of the United States or ocean waters;
(ii) Discharges of dredged or fill material at other locations in waters of the United States or ocean waters;
(2) An alternative is practicable if it is available and capable of being done after taking into consideration cost, existing technology, and logistics in light of overall project purposes. If it is otherwise a practicable alternative, an area not presently owned by the applicant which could reasonably be obtained, utilized, expanded or managed in order to fulfill the basic purpose of the proposed activity may be considered.
(3) Where the activity associated with a discharge which is proposed for a special aquatic site (as defined in subpart E) ${ }^{6}$ does not require access or proximity to or siting within the special aquatic site in question to fulfill its basic purpose (i.e., is not "water dependent'), practicable alternatives that do not involve special aquatic sites are presumed to be available, unless clearly demonstrated otherwise. In addition, where a

[^4]discharge is proposed for a special aquatic site, all practicable alternatives to the proposed discharge which do not involve a discharge into a special aquatic site are presumed to have less adverse impact on the aquatic ecosystem, unless clearly demonstrated otherwise.

1.4 Guidelines (40 C.F.R. § 230.10(a)).

As provided above, the Guidelines prohibit the discharge of dredged or fill material in a special aquatic site unless it can be shown that there is no practicable alternative which would have less adverse impact on the aquatic ecosystem. A practicable alternative is subject to reasonable interpretation; however, the Guidelines generally define a practicable alternative as one that is "available and capable of being done after taking into consideration cost, existing technology, and logistics in light of overall project purposes." 40 C.F.R. § 230.10(a)(2).

Under subsection (a)(3), an initial determination must be made by the USACE with respect to whether the proposed discharges are "water dependent." The Guidelines provide that, when an activity associated with the discharge of dredged or fill material in a special aquatic site does not require access or proximity to that special aquatic site to fulfill its basic purpose, the activity is not "water dependent." A determination by the USACE that a proposed discharge is not water dependent carries with it two inherent presumptions that must be rebutted by a successful applicant.

The first presumption is that practicable alternatives that do not include impacts to special aquatic sites exist and are available to the applicant. It is thus incumbent upon the applicant to clearly demonstrate otherwise. The determination of water dependency by the USACE is preceded by a clear understanding of the purpose of the Proposed Project, both the "overall project purpose" and the "basic purpose". After evaluating the water dependency of a proposed project, the USACE must then consider the full range of practicable alternatives that are capable of achieving the overall project purpose.

The second inherent presumption created by a non-water dependency determination is that all practicable alternatives (not including the proposed discharge) which do not involve a discharge of dredged or fill material into a special aquatic site (wetland), are presumed as having less of an adverse impact on the aquatic ecosystem than the proposed discharge, unless clearly demonstrated otherwise.

The evaluation of practicable alternatives in this analysis is based on the range of reasonable alternatives set forth below. This process was developed and implemented in a manner cognizant of the requirements of the Guidelines and NEPA. See USACE (Jax. Dist.), Information for Preparing an Alternatives Analysis Under Section 404 (June 2014); USACE (Sav. Dist.), Guidelines For Preparation of Analysis of Section 404 Permit Applications Pursuant to the Section 404(B)(1) Guidelines of The Clean Water Act (40 C.F.R., Section 230). Thus, the alternatives analysis forms the basis from which the USACE will identify practicable alternatives and determine whether the Applicant's Proposed Project is the LEDPA.

[^5]Page 14 of 97

2.0 Project Purpose

Establishing the underlying purpose and need for a project is a key initial step in the USACE's process of evaluating the Proposed Project's compliance with the Guidelines. USACE regulations establish a three-part process for developing the official purpose of a project. As described below, one statement is provided by the applicant, and the other two are determined by the USACE:

- The Applicant develops and clearly states an overall purpose and need in the application to the USACE;
- The USACE determines the "basic" purpose of the project, which informs the conclusion as to whether the project is water dependent under Section 404(b)(1) of the CWA; and
- The USACE determines the "overall" purpose of the project.

These three statements of the Proposed Project's purpose and need form the basis by which the USACE will evaluate the compliance of the Proposed Project with the Guidelines, including the range of practicable alternatives. These statements are also used as part of the analysis required under NEPA. Although the three statements were developed to meet distinct objectives within the USACE's evaluation of the Proposed Project's compliance with the Guidelines, it is expected that the alternatives analysis will overlap with and may, in most cases, provide the information required for the evaluation of alternatives under NEPA. Additionally, while consideration may be given to the Applicant's pronouncement of the Proposed Project's basic and overall purpose, the USACE is the ultimate arbiter of that conclusion and is entitled to determine the final statements without undue influence of the Applicant's views.

2.1 The Applicant's Purpose and Need

An applicant's stated purpose and need is an expression of the underlying goals for a proposed project. The USACE takes an applicant's purpose and need into account when determining the USACE's overall purpose. Mindful of those considerations, the Applicant respectfully submits that the purpose and need of the Proposed Project is as follows.

> South Carolina has built a global reputation for its ability to attract an impressive roster of automotive OEM companies to do business in the state. Home to nearly 500 automotive-related companies and suppliers that employ over 72,000 people, South Carolina has a strong, rapidly growing automotive industry with worldwide brands. In short, we build things in South Carolina, and have the aptitude and skill level imperative for successful manufacturing operations. Many of the world's most wellknown automotive brands call South Carolina home because they know that its workforce is skilled and builds vehicles and component parts with quality, loyalty and pride.

With a high concentration of engineering talent and cluster of automotive companies, South Carolina has become one of the nation's most dynamic regions for automotive production and research. A key component to that relationship is South Carolina's ability to offer a highly skilled workforce who are trained in advanced manufacturing and engineering. One such vital workforce cluster in the State is considered the Midlands area of South Carolina, ${ }^{7}$ which offers access to skilled labor, training, and educational opportunities, a fully-developed TDL cluster of infrastructure, centrallylocated access to all areas of the State, as well as an abundance of available properties for industrial and manufacturing development. In particular, Midlands Technical College, located in Columbia, offers a variety of relevant programs in its School of Advanced Manufacturing and Skilled Trades. These include, for example, degrees in Automotive Technology, Mechatronics, and Production. In addition, the Central Carolina Technical College (CCTC), located in Sumter, opened its Advanced Manufacturing Technology Training Center, a state-of-the-art industrial training and education center that offers classes and degrees in Mechatronics Technology, Engineering Graphics Technology, and Machining and CNC Technology. The University of South Carolina also offers a variety of bachelor's, masters, and doctoral programs in engineering and computing. These trade and advanced degree schools work collaboratively with the advanced manufacturers and suppliers to offer new technologies that further advance our automotive industry.

The relationship between the automotive industry and South Carolina continues to grow and evolve almost daily, and the EV automotive sector is one of the primary areas of growth and opportunity within the industry. Battery-powered transportation is increasingly finding South Carolina to be good fit for production, assembly, and innovation. As the world pivots toward electric vehicles, South Carolina has an opportunity to become a leader in this sector in the future. A combination of factors has led to steadily increasing growth in the EV market. Increased demand for low emission commuting, along with government policies setting targets for emission reductions and the introduction of subsidies and tax rebates designed to support long range, zero emission vehicles have compelled automobile manufacturers to bring new and ever-advancing EVs to the market around the world. Increased investments by governments across the globe to develop EV charging stations and Hydrogen fueling stations, along with incentives offered to buyers, has created opportunities for OEMs to expand their revenue stream and facilitate efficient production and assembly of EV vehicles. The EV market in North America for local sales and exports is growing due to the government initiatives and increased performance in the passenger vehicle segment. For example, the US government invested 5 billion dollars in 2017 alone to

[^6]promote EV infrastructure, including charging stations. After a decade of rapid growth, in 2020, the global EV capacity hit the 10 million mark, a 43% increase over 2019, representing a 1% share passenger vehicle sales. Battery EVs accounted for twothirds of new EV registrations and two-thirds of the overall EV capacity in 2020. And in November 2021, the US government announced an ambitious 50% electrification target for new cars by 2030, supported by the announcement of the installation of 500,000 charging points to help increase consumer confidence.

Moreover, the cost of EV batteries and production, one of the most expensive components of an EV vehicle, has been decreasing during the past decade due to technological advancements and the production of EV batteries on a mass scale in large volumes. In 2010, the price of an EV battery was approximately $\$ 1,100$ per kWh. However, by 2021, the price fell to approximately $\$ 120$ per kWh . The prices of EV batteries are expected to fall to approximately $\$ 60$ per kWh by 2030 , which would significantly reduce the prices of EVs, making them cheaper than conventional internal combustion engine vehicles.

Consequently, the Applicant respectfully submits that the need for the Proposed Project is demonstrated by the growing market requirements for the efficient production and assembly of EV automobiles. The foregoing demand would be met by a site with the minimum primary characteristics and criteria for the Proposed Project in the Midlands of South Carolina, including sufficient contiguous acreage to locate the size and scale of the necessary facilities to fulfill the above-stated purpose and need of Client, direct access to an interstate within the area's existing TDL cluster, immediate onsite or adjacent rail access to a Class I rail carrier, and a site that is located within a combined 180 miles of both Interstate 85 and Interstate 95. The corresponding purpose of the Proposed Project is to develop and operate a new railserved advanced manufacturing facility in the automotive industry, with direct interchange access to an interstate, to support the Client's continued implementation of its electromobility plans in the burgeoning EV automotive sector and meet the needs of end-users. The use of a master plan development for the Proposed Project will allow Client to meet existing demand in the short-term, while providing much needed operational flexibility to innovate with new products, explore vertical integration opportunities, and meet expected and potential demand and growth in the future.

Under NEPA regulations, alternatives to be evaluated must be reasonable. The Guidelines also require evaluation of practicable alternatives. The Corps uses the overall project purpose to identify the range of potential alternatives that will be evaluated. If an alternative does not meet the applicant's need, as determined by the Corps, it may be rejected from further consideration.

The Corps' regulatory guidelines further provide:
[T]he applicant's needs, and the type of project being proposed should be considered. The overall project purpose should be specific enough to define the applicant's needs, but not so restrictive as to constrain the range of alternatives that must be considered under the 404(b)(1) guidelines.

USACE SOP.

In consideration of the above criteria, the Applicant respectfully submits that the overall purpose of the Proposed Project is:

> To develop the Blythewood Industrial Site by locating, building, and operating a new rail-served advanced manufacturing facility, with new dedicated interchange access, in the automotive industry for an OEM to service the burgeoning EV automotive sector, based on the sufficiency of its acreage to meet current and anticipated demand within the area's existing TDL cluster and location within 180 combined miles of both Interstate 85 and Interstate 95.

As further provided above, the Guidelines require that the USACE determine whether a project is water dependent. Water dependent means that the project by its very nature requires access or proximity to, or siting within, a special aquatic site to fulfill its "basic purpose." The Guidelines prohibit the discharge of dredged or fill material in special aquatic sites unless it can be shown that there is no practicable alternative which would have less adverse impact on the aquatic ecosystem. For both water dependent and non-water dependent discharges, all practicable alternatives to the proposed discharge which do not involve a discharge into a special aquatic site are presumed to have less adverse impact on the aquatic ecosystem, unless clearly demonstrated otherwise. A practicable alternative is subject to reasonable interpretation; however, the Guidelines generally define a practicable alternative as one that is "available and capable of being done after taking into consideration cost, existing technology, and logistics in light of overall project purposes." 40 C.F.R. $\$$ 230.10(a)(2).

In addition to the overall project purpose, the Applicant respectfully submits that the basic purpose of the discharges of dredged or fill material associated with the Proposed Project is:

To develop an advanced manufacturing facility and its attendant infrastructure, including a dedicated interchange to the site.

Based on the standard used by the USACE, the Proposed Project is not water dependent. Accordingly, as a part of the alternatives analysis contained herein, the application will rebut the presumptions described above.

3.0 Alternatives Development

Based on the requirements imposed under NEPA, regulations developed by the CEQ, and the USACE, the Applicant initially considered all available alternatives for the Proposed Project. ${ }^{8}$ The goal of this process is to identify and consider the broadest range of possible alternatives, working to narrow the scope of alternatives to the range of reasonable and practicable alternatives that could meet the overall purpose of the Proposed Project. Through the process of developing the purpose and need, the Applicant applied the basic project concepts to the full array of available alternatives in order to guide the identification of a "reasonable range" of alternatives as required by NEPA. Under NEPA, reasonable alternatives include those that are practical or feasible from a technical and economic standpoint and using common sense, rather than simply desirable from the standpoint of the applicant. 46 Fed. Reg. 18026 (March 23, 1981).

In identifying and developing this list of alternatives, ${ }^{\text {, }}$ the Applicant considered and included alternatives falling within the following categories:

- The proposed alternative;
- Alternatives that would involve no construction and therefore no discharges of dredged or fill material into the waters of the United States (such as the "no action" alternative);
- Alternative offsite locations, including those that might involve less adverse impact to waters of the United States;
- Alternatives which might result in less adverse impact to waters of the United States, including modifications to the alignments, site layouts, or design options in the physical layout and operation of the project to reduce the number of impacts to the waters of the United States; and

[^7][^8]Page 19 of 97

- Alternatives that would involve greater adverse impact to waters of the United States but avoid or minimize other significant adverse environmental consequences.

The range of reasonable alternatives identified in the initial NEPA analysis (through application of the above purpose and need to the full panoply of alternatives) screened out unreasonable alternatives resulting in the reasonable alternatives addressed in the Level 1 analysis.

In addition to meeting the initial "reasonability" requirement under NEPA, the Guidelines impose further restrictions and deliberation on practicability considerations related to the range of reasonable alternatives. Under the Guidelines, the USACE typically only considers those alternatives that are available to the applicant and meet the overall purpose. ${ }^{10}$ In support of the identified alternatives, the Applicant is providing documentation that demonstrates that the proposed location and configuration is necessary in order to achieve the project purpose and need with the least environmentally damaging design.

Once the appropriate range of reasonable alternatives is identified, the Applicant conducted the practicability analysis of the project alternatives in three levels:

1. Level 1 Analysis is a refined screening process employed to evaluate certain identified reasonable alternatives with respect to consistency with the Proposed Project's purpose and need as well as the overall project purpose.
2. Level 2 Analysis reviews those alternatives that are not screened out during Level 1 Analysis and employs the more rigorous practicability standards under the Guidelines, including, where applicable:
a. Availability;
b. Cost;
c. Technological considerations, including the state of existing technology to be utilized for the project;
d. Logistical considerations, including infrastructure assessments and requirements; and
e. Environmental, social, historical, and cultural impacts.
[^9][^10]Page 20 of 97

The goal of the Level 2 Analysis is to identify the preferred site location of the Proposed Project.
3. Level 3 Analysis reviews different site designs of the Proposed Project at the preferred site location. Taking into consideration all of the above, the goal of Level 3 Analysis is to provide sufficient information from which the USACE can identify the LEDPA.

4.0 Identification of Alternatives

4.1 Proposed Project Criteria

In furtherance of the purpose and need of the Proposed Project, the Applicant has developed certain initial minimum criteria necessary to achieve that purpose and satisfy those needs identified by Client and discussed herein, as well as fulfills Commerce's statutory purpose set out in S.C. Code Ann. §13-$1-20$ and the County's economic development mission. In developing these criteria, the Applicant seeks to fulfill Client's vision of developing and operating new rail-served advanced manufacturing facility to service the burgeoning EV automotive sector, that will allow Client to source, stage, assemble, produce, and manufacturer fully-assembled automobiles in scalable manner that meets the growing demand and needs of end-users.

To achieve that purpose, the Applicant determined that the Proposed Project site must have a minimum of 1,000 acres of contiguous, developable acreage to locate approximately 16 Million/sf of buildings onsite through a master plan phased development, along with attendant parking and site infrastructure for the planned development, along with sufficient additional acreage to afford Client flexibility to meet future growth opportunities, demand of end-users, as well as expanded or new market segments, should market conditions dictate further investment in the future. The Proposed Project further requires a location within one (1) mile of an interstate, providing access to the State's TDL cluster, that has direct onsite or adjacent rail access to a Class I rail carrier, and is located within 180 combined miles of both Interstate 85 and Interstate 95.

In consideration of the foregoing, the Applicant determined that the Proposed Project requires, at a minimum, a site that meets the following primary characteristics and criteria:

- Minimum of 1,000 acres of contiguous, developable acreage sufficient to locate approximately 16 Million/sf of buildings onsite, along with attendant parking and site infrastructure, as well as sufficient additional acreage to provide flexibility within the impact site to meet future growth opportunities should market conditions dictate further investment in the future; ${ }^{11}$

[^11]- Adjacent to or direct localized access within 1 mile of an interstate; ${ }^{12}$
- Direct onsite or adjacent rail access to a Class I rail carrier; ${ }^{13}$ and
- Located within a combined 180 miles of both Interstates 85 and 95. ${ }^{14}$

In addition to the foregoing list of primary characteristics and criteria considered to be the minimum requirements for an eligible alternative, the Applicant, in consultation with the Client, also evaluated each compliant site alternative with respect to secondary considerations applicable to the fulfillment of the purpose and need of the Proposed Project. These secondary considerations, listed below and discussed in-depth in Level 2 of this analysis with respect to each site alternative meeting the primary characteristics and criteria, were used to further evaluate the viability and practicability of the Proposed Project on qualifying site:
consideration, thereby making this alternatives analysis more complete and comprehensive. While 1,000 acres would not meet the purpose and need of the project, given that such a reduction in facility size would render the project incapable of accommodating a second phase deemed critical to the client, the selected tract size reflects the Applicant's effort to consider all alternatives for the project site, while also being mindful of the minimum requirements and parameters of the client to accommodate the desired facility footprint for the planned development and requisite infrastructure, which represents existing and forecasted demand, while providing sufficient acreage to flexibly allow for future growth opportunities to meet new demand.
${ }^{12}$ Nearby access to an interstate is crucial for the efficient just-in-time delivery of OEM component parts for production, assembly, and further transportation of assembled automobiles to end-users.
${ }^{13}$ It is expected that a portion of the automotive component parts for manufacturing and assembly, as well as fully assembled automobiles for shipment, will arrive by and be shipped from the site via rail. Having existing onsite or adjacent rail access via a dedicated and fully-integrated rail spur ensures cost-effectiveness to clients and shippers and provides logistical efficiencies for incoming and outgoing transportation of products, reduces truck traffic on already-overburdened roads, increases accessibility for regional manufacturers and distributors, and provides additional access points throughout the Country, including to the Port of Charleston for international shipment, over a Class I's mainline.
${ }^{14}$ It is expected that component parts for production and assembly at the Proposed Project will arrive, and produced automobiles will be shipped to end-users, via a number of transportation methods, including by interstate. An ideal location to stage such a facility would be one that is also located centrally to the established North/South and East/West transportation corridors along the East Coast. For the purposes of this analysis and establishing an optimal radius, a location which is equidistant from both Interstate 85 and Interstate 95 is preferred. Close proximity to the State's existing automotive and TDL cluster is required for the efficient just-in-time delivery of component parts for production, as well as further delivery of produced automobiles to endusers in order to meet the growing demand and needs of EV production schedules. At the suggestion of USEPA in its July 31, 2023, comment letter, the Applicant has updated the mileage parameters associated with the Client's preferred location equidistant from both Interstate 85 and Interstate 95 to a combined 180 miles, adding the previous distances of 90 miles for each, in order to reflect the situation where an alternative site is in close proximity to one of the two interstates, but more than 90 miles away from the other. The result of this update, as shown below, is that four additional alternative sites were carried forward to Level 2 of this alternatives analysis for more in-depth review consistent with secondary characteristics and criteria identified by the Applicant.

- Located in the Midlands of South Carolina; ; ${ }^{15}$
- Direct interstate frontage allowing for a dedicated interchange; ${ }^{16}$
- Located within 15 miles of an area with a skilled workforce having access to adequate education and training;, ${ }^{17}$
${ }^{15}$ In discussions with the State evaluating the viability of locating the Proposed Project in South Carolina, the client expressed a strong preference for locating the Proposed Project in the Midlands, given its central location, proximity to the Columbia metropolitan statistical area, and lack of an existing advanced automotive manufacturing facility that would compete with the client from a labor-pool perspective. In addition, as a co-applicant for the Proposed Project, Richland County has a vested interest in securing projects in the Midlands generally, and Richland County specifically. Further, a location in the Midlands allows the Client to take advantage of the area's high concentration of engineering and skilled labor talent and also offers access to skilled labor, training, and educational opportunities, including Midlands Technical College, CCTC, and the University of South Carolina, which offer trade and advanced degree schools working collaboratively with the advanced manufacturers and suppliers to offer new technologies that further advance the State's automotive industry. The area's deep talent pool and educational programs has allowed the Midlands to become a dynamic region for advanced manufacturing and research.
${ }^{16}$ Direct access, such as a dedicated interchange, is important for logistical and transportation reasons as well as marketability for brand identity with a location and facility adjacent to and visible from an interstate. See, e.g., Dean J. Uminski, A Step-by-Step Guide to a More Strategic Site Selection Approach (2013) ("For a manufacturing site, for example, ... highway access would be critical for both incoming raw materials and outgoing finished product. Lack of access would effectively rule out a site, regardless of any tax considerations or other incentives."); Ed McCallum, What's Driving Automotive Assembly Plant Locations?, Business Facilities (July 2004) ("An interstate-quality highway with dual access to [the] future site is highly desirable. For the site itself, redundant access on high quality secondary roads is important in the event the interstate is temporarily blocked.").
${ }^{17}$ South Carolina's ReadySC program provides significant workforce training and development for almost any location in South Carolina. Labor profiles for various counties and metropolitan statistical areas (MSAs), combined with the close proximity of technical colleges participating in ReadySC provide the metric for the availability of a skilled workforce for the Proposed Project. In light of the number of workers required, only the larger MSAs could accommodate the labor need based on the critical mass of population necessary to generate a workforce profile based on volume. Further, certain areas of the State offer a trade and advanced degree schools that work collaboratively with the advanced manufacturers and suppliers to provide curriculums in new technologies that further advance the State's automotive industry. Finally, commute time for workers is a significant factor in the Client's desired location in the Midlands, both for access to labor and worker health and well-being. Studies conducted site selectors and the U.S. Department of Commerce have found that the location of a manufacturing facility is a fundamental consideration for workers when selecting a job opportunity, with the daily commute playing a key role in recruiting and retaining qualified employees. See Deloitte, Competing for talent: Recasting perceptions of manufacturing; https://www2.deloitte.com/us/en/insights/industry/manufacturing/competing-for-manufacturingtalent.html. To address this issue, many "companies [including the Client,] have tried to better match people with their preferred locations, recognizing it's easier to hire and retain employees when they don't have to relocate." Id. Mindful of these issues, the Client sought a location in the Midlands in close proximity to an MSA, establishing an appropriate radius for the purposes of its selection of a site as being a desired maximum commute mileage of 15 miles from the nearest MSA.

[^12]Page 23 of 97

- Located within 145 miles of the Port of Charleston and the Inland Ports in Greer and Dillon, respectively; ${ }^{18}$ and
- Immediate access to required utilities. ${ }^{19}$

5.0 Range of Alternatives

The goal of providing a list of alternatives that satisfy some or all of the above primary characteristics and criteria established by the Applicant is to disclose and evaluate potential impacts that may result from the proposed project and to evaluate the proposed alternative's ability to fulfill the project purpose and need consistent with criteria provided. The Applicant arrived at its preferred alternative after conducting stages of increasingly thorough analysis, while balancing the environmental impacts with economic, technological, and logistical concerns.

A location of sufficient size along the I-77 corridor with immediate access to I-77 and the interstate transportation system of the State, that provides direct onsite or adjacent rail access to a Class I rail carrier, and is in close proximity to both I-85 and I-95, are foundational to achieving the purpose and need of the Proposed Project. As counties adjust and plan for the economic benefits and development, county land use plans have been updated to identify strategic employment areas for industrial development. In addition, many counties have instituted incentives to better compete in the State's booming manufacturing and industrial sectors. The importance of locating manufacturing/industrial development projects in strategic employment areas that are consistent with the land-use and zoning goals of the region continues to increase.

Accounting for the identified regional need and the efficiencies achieved by locating these types of developments in identified areas, in addition to the county incentives, the Applicant undertook a comprehensive search for appropriately-sized and located parcels, in addition to industrial/megasites which the Applicant has previously vetted for economic development, throughout the State. Development in these areas and within these locational bands is extremely attractive for the type of

[^13][^14]Page 24 of 97
project proposed by the Applicant, given the ease of access to South Carolina's TDL clusters and initiatives, and existing infrastructure, including utilities.

As a starting point, the Applicant established the initial search area, or Area of Interest (AOI), as the entire State, consistent with Commerce's statutory authority and mission to implement a statewide program for the stimulation of economic activity and development potentialities for the State of Carolina. Next, using the above-identified primary characteristics and criteria for the Project, the Applicant compiled a list of all parcels within the AOI that are a minimum of 1,000 acres, as well as previously-vetted economic development sites within the State that are a minimum of 1,000 acres. This initial search parameter returned a list of 994 individual parcels and sites. A map depicting this search overlay on the AOI, along with a list of properties that were returned by these criteria, is included as Exhibit D.

Next, the Applicant evaluated each of the returned parcels and sites for proximity to the State's TDL infrastructure; specifically, those parcels and sites within a 1 -mile drive time radius of an interstate. The addition of this interstate proximity component to the search overlay narrowed the list of 1,000plus acre parcels to 64 individual parcels and sites. A map depicting the interstate proximity search overlay parameter on the AOI, along with a list of the properties that were returned by this criterion, is included as Exhibit E.

Next, the Applicant evaluated each of the 64 returned parcels and sites for the existence of onsite or adjacent access to a Class I rail carrier. The addition of this rail proximity component to the search overlay narrowed the list of 64 alternatives to 30 individual parcels and sites. A map depicting the rail proximity search overlay parameter on the AOI, along with a list of the properties that were returned by this criterion, is included as Exhibit F.

Finally, the Applicant evaluated each of the 31 parcels independently to determine the status of its development, i.e., whether each parcel is currently vacant or fully developed. As shown in Exhibit G, 13 of the identified 30 parcels and sites were deemed not to be practicable alternatives given their state of development (i.e., already developed), or their status or proximity to development or activities which otherwise render them undevelopable (i.e., conservation land, terminal facility, airport facility, school, or park). The remaining 17 parcels, including the preferred Proposed Project site, were deemed on the surface to at least warrant closer consideration and inspection amongst the range of reasonable alternatives. A depiction of each of the 17 site alternatives comprising the range of reasonable alternatives is included as Exhibit G.

The following list provides a narrative explanation of the range of 17 reasonable alternatives identified by the Applicant for consideration for the location of Proposed Project, as well as the No-Action Alternative, along with a short, descriptive identification of each alternative:

5.1 No-Action

The Proposed Project is not constructed.

5.2 Blythewood Industrial Site Alternative Site 1 (Proposed Project Site) (Blythewood, SC 29016)

a. Tax Map IDs: R12500-02-06 (237.56 acres); R12500-03-01 (287.63 acres); R12600-03-20 (30 acres); R12600-03-23 (80.77 acres); R15000-01-01 (4.48 acres); R15000-0227 (466.02 acres); R15004-01-01 (90.48 acres); R15004-01-02 (1.99 acres); R15005-0101 (107.99 acres); R15006-01-01 (178.04 acres); R15007-01-01 (41.56 acres); R15008-01-01 (97.5 acres); R15100-01-04 (27.54 acres); R15100-01-06 (117.76 acres); R15100-01-07 (80.73 acres); R15100-02-01 (4.3 acres); R15100-03-01 (18.84 acres); R15100-03-02 (9.65 acres); R15100-03-03 (17.02 acres); R15100-03-04 (62.03 acres); R15100-03-05 (11.79 acres); R15100-03-06 (1.93 acres); R15100-03-07 (14.5 acres); R15100-03-08 (5.93 acres); R15101-01-01 (14.69 acres); R15101-01-02 (3.2 acres); R15106-0101 (102.12 acres).
b. The Blythewood Industrial Site Alternative Site 1 is the Applicant's preferred Proposed Project site, totaling approximately 2,581 acres, of which approximately 1,633 acres, comprised of twenty-seven (27) tracts, would be the build site. The shape of the primary acreage of the Property (approximately 1,631.26 acres) is roughly a reverse " P ", with the majority of the acreage located in the Northern part of the site, and additional acreage extending in the Southeastern portion of the Property. Additional acreage (approximately 465.80 acres) is located to the East of I-77. The remainder of the acreage is along road rights-of-way evaluated by the Applicant for road improvement purposes. Nineteen (19) of the twenty-seven (27) parcels are within the corporate limits of the Town of Blythewood, with the remaining parcels located in the unincorporated portions of Richland County. The larger portion of the acreage of the Property, located to the West of I-77, is approximately bounded by Blythewood Road to the North, developed residential parcels and Fairfield Electric Cooperative to the Northwest, Blythewood Road and developed and undeveloped residential parcels to the West, developed residential parcels to the Southwest, developed commercial properties to the South, and Community Road (which is a frontage road to I-77) to the East. The remaining acreage of the Property, located to the East of I-77, is approximately bounded by I-77 to the West, electric transmission right-of-way and developed commercial and residential parcels to the North, U.S. Highway 21 to the East, a developed substation pad to the Southeast, and developed residential and commercial parcels to the south.

The Property is located approximately 0.1 miles from Exit 27 of I-77, and less than one (1) mile from Exit 24 of I-77, approximately 9.5 miles from the Interstate 77 (Exit 16)/Interstate 20 (Exit 76) interchange, 74.5 miles from the Interstate 77 (Exit

[^15]Page 26 of 97
9)/Interstate 85 (Exit 30) interchange, 79 miles from the Interstate 26 (Exit 169)/Interstate 95 (Exit 86) interchange, 130 miles from the Port of Charleston, 101 miles from the Inland Port Greer, and 110 miles from the Inland Port Dillon. The site is approximately 8.6 miles from Columbia. ${ }^{20}$ A Norfolk Southern rail line runs adjacent to the Eastern portion of the Property along U.S. Highway 21.

Today, the Property is largely undeveloped, with the exception of two properties on the Northern side of the Property that front on Blythewood Road. The remainder of the Property consists of a mix of forested and cleared property, several aquatic features, including thirteen (13) ponds, streams, and wetlands. Parcel Nos. R15100-03-07 (14.5 acres), R15100-03-08 (5.93 acres), R12500-03-01 (287.63 acres), and R15000-02-27 (466.02 acres) are owned by third parties, but are in the process of being acquired by Richland County. The remainder of the parcels are currently owned by Richland County. The primary acreage of the Property is bisected by Locklier Road, which traverses the site on a Southwest to Northeast directional and is currently in the process of being abandoned. Zoning for the parcels comprising the Property currently varies, although the majority of the parcels are zoned industrial, and applications for rezoning the remainder of the parcels are currently under consideration by the appropriate governmental bodies; the Applicant expects all parcels comprising the build site of the Property to be appropriately zoned in advance of any permit issuance. The acreage of the Property is of sufficient size and shape to accommodate the planned production facilities, along with their attendant infrastructure and various additional planned employee, administrative, utility and support buildings. All of the following due diligence for the site has already been performed, including: Cultural Resource Identification Survey, Boundary Survey, Protected Species Assessment, Preliminary Geotechnical Exploration, Phase 1 ESA Assessment, Topographical Survey, and a Wetlands Delineation.

5.3 JAB Site West Alternative Site 2 (Edgemoor, SC 29712)

a. Tax Map IDs: Portion of 113-00-00-017-000 (1,139.523 acres); and 113-00-00-044000 (127.333 acres).
b. The JAB Site West (of I-77) Alternative Site 2 property is comprised of the entirety of one (1) tract (TMS No. 113-00-00-044-000), and a portion of an adjacent tract (TMS No. 113-00-00-017-000), totaling approximately 1,023 acres, all of which is listed as developable. The site is located in the unincorporated part of Chester County and is adjacent to I-77 to the West. The shape of the site is an irregular "U", with a number of angles, and is approximately bordered by I-77 to the East, developed residential and

[^16][^17]Page 27 of 97
undeveloped acreages to the North, undeveloped parcels to the West, and developed residential and undeveloped acreages to the South. A number of interior roads, including Dunlap Roddey Road, Humpback Bridge Road, and Steele Village Road traverse and bisect the site. The Exit 65 interchange of I-77 located approximately 5.3 miles from the site, Interstate 26 is approximately 60 miles away (via I-20), Interstate 95 is approximately 120 miles away, Interstate 85 is approximately 36 miles away, the Port of Charleston is approximately 173 miles away, the Inland Port Greer is approximately 91 miles away, and the Inland Port Dillon is approximately 140 miles away. The site is approximately 8.5 miles from Rock Hill. ${ }^{21}$ A CSX rail line runs adjacent to the Southern boundary of the Property. The Applicant is not aware that any of the following formal due diligence for the site has been performed, including: Cultural Resource Identification Survey, Boundary Survey, Protected Species Assessment, Preliminary Geotechnical Exploration, Phase 1 ESA Assessment, Topographical Survey, and a Wetlands Delineation. The site is a Certified SC site. The site is not owned by the Applicant.

5.4 Carolinas I-95 Super Park Alternative Site 3 (Dillon, SC 29536)

a. Tax Map IDs: 058-00-00-004 (42.12 acres); 058-00-00-006 (2.85 acres); 058-00-00-018 (94.48 acres); 058-00-00-019 (110.40 acres); 058-00-00-021 (30.48 acres); 058-00-00024 (103 acres); 067-00-00-009 (126.45 acres); 067-00-00-012 (95.33 acres); 068-00-00001 (119.09 acres); 068-00-00-002 (138.39 acres); 068-00-00-006 (58.10 acres); 068-00-00-007 (160.90 acres); 068-00-00-015 (5.19 acres); 068-00-00-030 (101.15 acres); 068-00-00-042 (109.63 acres); 080-00-00-016 (166.99 acres); 080-00-00-017 (39.67 acres); and 080-00-00-092 (5.13 acres).
b. The Carolinas I-95 Super Park Alternative Site 3 property is comprised of nineteen (18) parcels comprising approximately $1,509.35$ acres that is currently undeveloped and partially cleared. An additional parcel, TMS No. 058-00-00-001 (337.57 acres), is available, but it is located approximately one (1) mile away from the primary acreage of the site on the Northwest (opposite) site of I-95. The shape of the primary acreage of the site is an upside down " T " and it is located in the unincorporated part of Dillon County. The site is approximately bounded by Highway 34 W to the North, wraps around and is adjacent to the Harbor Freight facility with frontage on I-95 to the Northwest/West, undeveloped parcels to the South, and a combination of developed residential and undeveloped parcels to the East. The Exit 190 interchange of I-95 is located approximately 0.5 miles from the site, the Exit 169 interchange of I-26/I-95 is approximately 105 miles away, the Exit 41 interchange of I-85 is approximately 116 miles away, the Port of Charleston is approximately 156 miles away, the Inland Port Greer is approximately 211 miles away, and the Inland Port Dillon is immediately

[^18][^19]Page 28 of 97
adjacent to the site. The site is approximately 2 miles from Florence. ${ }^{22}$ A CSX line that serves the Inland Port Dillon is proximately adjacent to the site. The Applicant is not aware that any of the following formal due diligence for the site has been performed, including: Cultural Resource Identification Survey, Boundary Survey, Protected Species Assessment, Preliminary Geotechnical Exploration, Phase 1 ESA Assessment, Topographical Survey, and a Wetlands Delineation. The site is a Certified SC site. The site is not owned by the Applicant.

5.5 I-77 International Megasite Alternative Site 4 (Ridgeway, SC 29130)

a. Tax Map IDs: 148-00-00-013-000 (1,141.67 acres); and portion of 110-00-00-004-000 (appr. 403 acres).
b. The I-77 International Megasite Alternative Site 4 property is comprised of the entirety of one (1) tract, and a portion of an adjacent tract, totaling approximately 1,544 acres, of which an undetermined amount is developable. The shape of the site is largely a solid, block shape with the exception of a thin, finger-like projection extending to the South along I-77 on the Western boundary of the site. The site is further bounded by Valencia Road and Dutchman's Creek to the South, undeveloped, wooded property to the East, and the continuation of Valencia Road to the North. The Exit 34 interchange of I-77 is approximately 4 miles away, I-26 is approximately 30 miles away (via I-20), I-95 is approximately 80 miles away, I- 85 is approximately 75 miles away, the Port of Charleston is approximately 142 miles away, the Inland Port Greer is approximately 112 miles away, and the Inland Port Dillon is approximately 106 miles away. The site is approximately 23 miles from Columbia. ${ }^{23}$ A Norfolk Southern rail line runs adjacent to the Southern boundary of the site, near Exit 34 of I-77. All of the following formal due diligence for the site has been performed, including: Cultural Resource Identification Survey, Boundary Survey, Protected Species Assessment, Preliminary Geotechnical Exploration, a Topographical Survey and a Wetlands Delineation. Based on Applicant's review of the foregoing due diligence, it confirms that the site has approximately 18.52 acres of wetlands, and 85,405 linear feet of streams. Further, according to an April 11, 2016 protected species report, the site does not present habitat for Bald Eagles, but did contain suitable habitat for Carolina Heelsplitter; following a subsequent site visit, USFWS concurred in the determination by letter dated May 4, 2016, that a project on the site may affect, but is not likely to adversely affect Carolina Heelsplitter habitat. Regarding cultural resources, two sites have been identified and recommended for further surveying as a part of any proposed project on the site, a determination in which SHPO concurred by letter dated

[^20][^21]Page 29 of 97

September 21, 2016. The site is a Certified SC site. The site is not owned by the Applicant.

5.6 Angel Tract LLC Alternative Site 5 (Yemassee, SC 29945)

a. Tax Map ID: 188-00-00-030 (1,571.48 acres).
b. The Angel Tract LLC Alternative Site 5 property is comprised of a single parcel totaling approximately $1,571.48$ acres, of which and undetermined amount is developable. The shape of the site is largely a solid, block shape, with the majority of the acreage located to the South of Yemassee Highway (Hwy 68), and the remaining acreage located to the North of Yemassee Highway (Hwy 68). The site is approximately bounded by Yemassee Highway (Hwy 68) to the North, undeveloped, wooded property to the East/Southeast, a combination of developed and undeveloped residential parcels to the South, Southwest, and West. A significant portion of the Western side of the site has been developed into a solar farm and is therefore undevelopable. The site is not adjacent to I-95. The Exit 38 interchange of I-95 is approximately 1 mile away, the Exit 169 interchange of I-26/I-95 is approximately 48.5 miles away, the Exit 30 interchange with I- 385 is approximately 195 miles away, the Port of Charleston is approximately 65.4 miles away, the Inland Port Greer is approximately 213 miles away, and the Inland Port Dillon is approximately 157 miles away. The site is approximately 63 miles from Charleston and approximately 50.4 miles from Savannah, Georgia. ${ }^{24}$ A CSX rail line runs adjacent to the site on the Northern side of Yemassee Highway (Hwy 68). The Applicant is not aware that any of the following formal due diligence for the site has been performed, including: Cultural Resource Identification Survey, Boundary Survey, Protected Species Assessment, Preliminary Geotechnical Exploration, Phase 1 ESA Assessment, Topographical Survey, and a Wetlands Delineation. The site is not owned by the Applicant.

5.7 Yemassee Timber LLC Alternative Site 6 (Yemassee, SC 29945)

a. Tax Map ID: 191-00-00-002 (1,971.23 acres).
b. The Yemassee Timber LLC Alternative Site 6 property is comprised of a single parcel totaling approximately $1,971.23$ acres, of which and undetermined amount is developable. The shape of the site is a solid, block shape that is approximately bounded by Pocotaligo Road (County Road S-25-17) to the North, the Tulifiny River and undeveloped, wooded property to the West, an unpaved road and a combination of developed and undeveloped residential parcels to the South, and I-95 to the East. Portions of the site have been cleared for agricultural and silvicultural purposes and

[^22]include several structures. The site is immediately adjacent to I-95. The Exit 38 interchange of I-95 is approximately 2.7 mile away, the Exit 169 interchange of I-26/I95 is approximately 50 miles away, the Exit 30 interchange with I-385 is approximately 196.7 miles away, the Port of Charleston is approximately 69.4 miles away, the Inland Port Greer is approximately 215 miles away, and the Inland Port Dillon is approximately 158 miles away. The site is approximately 67.1 miles from Charleston and approximately 51.6 miles from Savannah, Georgia. ${ }^{25}$ A CSX rail line runs under I-95 near the Southeast corner of the site. The Applicant is not aware that any of the following formal due diligence for the site has been performed, including: Cultural Resource Identification Survey, Boundary Survey, Protected Species Assessment, Preliminary Geotechnical Exploration, Phase 1 ESA Assessment, Topographical Survey, and a Wetlands Delineation. The site is not owned by the Applicant.

5.8 Chilton Timber \& Land Co. LLC Alternative Site 7 (Yemassee, SC 29945)

a. Tax Map ID: 191-00-00-001 (7,573 acres).
b. The Chilton Timber \& Land Company Alternative Site 7 property is comprised of a single tract totaling approximately 7,573 acres, consisting of approximately 4,135 acres of uplands and approximately 3,438 acres of jurisdictional wetlands. A portion of the acreage lies to the East of I-95, while the majority of the acreage lies to the West of I95. The property is bounded by undeveloped property to the West of I-95, including Pocotaligo Road, undeveloped property to the South, a combination of developed and undeveloped residential parcels to the West/Northwest and North. A portion of the property, although not the largest block of acreage, is immediately adjacent to I-95. The Exit 38 interchange of I-95 is approximately 1 mile away, the Exit 169 interchange of I-26/I-95 is approximately 48.5 miles away, the Exit 30 interchange with I-385 is approximately 195 miles away, the Port of Charleston is approximately 65.4 miles away, the Inland Port Greer is approximately 213 miles away, and the Inland Port Dillon is approximately 157 miles away. The site is approximately 63 miles from Charleston and approximately 50.4 miles from Savannah, Georgia. ${ }^{26}$ A CSX rail line runs adjacent to the site on the Northern side of Yemassee Highway (Hwy 68), although access to Yemassee Highway goes through a substantial wetland system. The undeveloped property appears to be managed for silviculture. The Applicant is not aware that any of the following formal due diligence for the site has been performed, including: Cultural Resource Identification Survey, Boundary Survey, Protected Species Assessment, Preliminary Geotechnical Exploration, Phase 1 ESA Assessment, Topographical Survey, and a Wetlands Delineation. However, using available NWI data, SCDNR's bald eagle database, USFWS's Critical Habitat Portal, and SHPO's

[^23]ArchSite data, the Applicant's consultants have determined the above-stated and approximated wetland figures for the site (3,438 acres of wetlands), as well as that the site contains neither critical habitat for known or threatened/endangered species nor eligible historic sites or artifacts. The site is not owned by the Applicant.

5.9 Okeetee Club Alternative Site 8 (Hardeeville, SC 29927)

a. Tax Map IDs: 023-00-02-020 (5,653.35 acres); 027-00-02-034 (38,353.98 acres); and 045-00-01-035 (304.2 acres).
b. The Okeetee Club Alternative Site 8 property is a historic hunting club tract comprised of approximately 44,000 non-contiguous acres made up of numerous tracts, with approximately 28,000 acres of uplands and approximately 16,000 acres of jurisdictional wetlands. The Western portion of the site is wedged shaped, running South to North between I-95 and Highway 321. Portions of the Western side of the site are also located between the Savannah River and Highway 321. The Eastern side of the site is bounded by I-95 to the West and the Beaufort-Jasper Water and Sewer Authority canal to the South. The Northern and Eastern boundaries of the Eastern side of the site are bounded by undeveloped tracts and the Hickory Hill Landfill, which is zoned industrial. The site does not currently have direct onsite rail access; however, CSX rail right-of-way runs adjacent to the site along two of its borders. The site is located approximately 4.6 miles from Exit 5 of I-95 (3 miles from Exit 18 of I-95), the Exit 169 interchange of I-26/I-95 is approximately 81.6 miles away, the Exit 30 interchange with I-385 is approximately 228 miles away, the Port of Charleston is approximately 94.5 miles away, the Inland Port Greer is approximately 246 miles away, and the Inland Port Dillon is approximately 190 miles away. The site is approximately 20 miles from Savannah, Georgia. ${ }^{27}$

The site is bisected by I-95, just North of the City of Hardeeville. The zoning for the site Rural Preservation and it is designated as a Resource Conservation area according to Jasper's County's Future Land Use Map. The Applicant is not aware that any of the following formal due diligence for the site has been performed, including: Cultural Resource Identification Survey, Boundary Survey, Protected Species Assessment, Preliminary Geotechnical Exploration, Phase 1 ESA Assessment, Topographical Survey, and a Wetlands Delineation. However, using available NWI data, the Applicant's consultants have determined the above-stated and approximated wetland figures for the site (16,000 acres of wetlands). With respect to threatened/endangered species, the Applicant has reviewed SCDNR's bald eagle database and USFWS's Critical Habitat Portal, and while the site is not listed as containing critical habitat for known or threatened/endangered species, based on
${ }^{27}$ For the purpose of this alternative, the MSA is designated as the Savannah, Georgia.

[^24]Page 32 of 97
those publicly available sources, the Applicant understands that the site is believed to be home to protected and endangered red-cockaded woodpeckers, given the pervasive existence of longleaf pine forests, confirmed by visual inspection, within the site, which is known habitat of red-cockaded woodpeckers. Further, the Applicant's consultants reviewed SHPO's ArchSite data, and the site contains two structures, one of which is eligible for registration and one that is not, which may or may not qualify as Significant Resources that require additional evaluation. The site is not owned by the Applicant and its availability is questionable, given the Club's historic use and hunt club membership.

5.10 Martha Black Alternative Site 9 (Yemassee, SC 29945)

a. Tax Map ID: 088-00-01-001 (1,417.69 acres).
b. The Martha Black Alternative Site 9 property is comprised of a single tract totaling approximately $1,417.69$ acres, of which an undetermined amount is considered developable. The site is located in the unincorporated part of Jasper County. The majority of the acreage is located to the West/Northwest of a CSX rail line that bifurcates the site, with the remainder of the acreage to the East, fronting on Nuna Rock Road and I-95. The site is undeveloped and is bordered by Nuna Rock Road/I95 and undeveloped parcels to the East/Southeast, by undeveloped parcels to the North and West, and by the Coosawhatchie River to the Southwest/South. The Exit 28 interchange of I-95 located approximately 0.8 miles from the site, the Exit 169 interchange of I-26/I-95 is approximately 58 miles away, the Exit 30 interchange with I-385 is approximately 205 miles away, the Port of Charleston is approximately 69.6 miles away, the Inland Port Greer is approximately 223 miles away, and the Inland Port Dillon is approximately 166 miles away. The site is approximately 40 miles from Savannah, Georgia. ${ }^{28}$ As referenced above, a CSX rail line runs through the site. The Applicant is not aware that any of the following formal due diligence for the site has been performed, including: Cultural Resource Identification Survey, Boundary Survey, Protected Species Assessment, Preliminary Geotechnical Exploration, Phase 1 ESA Assessment, Topographical Survey, and a Wetlands Delineation. The site is not owned by the Applicant.

5.11 C\&S National Bank Alternative Site 10 (Ridgeland, SC 29936)

a. Tax Map ID: 087-00-03-002 (1,092.04 acres).
b. The C\&S National Bank Alternative Site 10 property is comprised of a single tract totaling approximately $1,417.69$ acres, of which an undetermined amount is considered developable. The site is located in the unincorporated part of Jasper County, north of
${ }^{28}$ For the purpose of this alternative, the MSA is designated as the Savannah, Georgia.

[^25]Page 33 of 97
the Town of Ridgeland. The site consists of undeveloped wooded and cleared acreage, with several natural or manmade ponds. The rectangular-shaped site is approximately bounded by I-95 to the West, undeveloped property fronting on Coosaw Scenic Drive (Hwy 462) to the North, and undeveloped property to the East and South. The site is located approximately 0.4 miles from Exit 28 on I-95, the Exit 169 interchange of I$26 / \mathrm{I}-95$ is approximately 57 miles away, the Exit 30 interchange with I-385 is approximately 204 miles away, the Port of Charleston is approximately 70.6 miles away, the Inland Port Greer is approximately 223 miles away, and the Inland Port Dillon is approximately 166 miles away. The site is approximately 40 miles from Savannah, Georgia. ${ }^{29}$ The site does not have direct onsite rail access, but a CSX rail line runs parallel to I-95 on the opposite side of the interstate from the site. The Applicant is not aware that any of the following formal due diligence for the site has been performed, including: Cultural Resource Identification Survey, Boundary Survey, Protected Species Assessment, Preliminary Geotechnical Exploration, Phase 1 ESA Assessment, Topographical Survey, and a Wetlands Delineation. The site is not owned by the Applicant.

5.12 Cypress Woods Corporation Alternative Site 11 (Ridgeland, SC 29936)

a. Tax Map IDs: 048-00-01-001 (9,682.74 acres); and 048-00-03-019 (1,126.26 acres).
b. The Cypress Woods Corporation Alternative Site 11 property is comprised of two non-contiguous parcels totaling approximately 10,809 acres, consisting of approximately 7,003 acres of uplands and approximately 3,806 acres of jurisdictional wetlands. The undeveloped property is vertically bisected by Highway 278, with the Western side of the site consisting of a block-shaped parcel to the North, and adjacent rectangular parcel to the South. The Eastern side of the site is also block-shaped and is bounded along its Eastern border by a CSX rail right-of-way and I-95. The remaining portions of the site are surrounded by large undeveloped tracts, as well as smaller residential or industrial parcels. The site is located approximately 5.3 miles from Exit 21, and 5.7 miles from Exit 22 on I-95, the Exit 169 interchange of I-26/I95 is approximately 65 miles away, the Exit 30 interchange with I-385 is approximately 213 miles away, the Port of Charleston is approximately 78.7 miles away, the Inland Port Greer is approximately 233 miles away, and the Inland Port Dillon is approximately 174 miles away. The site is approximately 36.5 miles from Savannah, Georgia. ${ }^{30}$ The Applicant is not aware that any of the following formal due diligence for the site has been performed, including: Cultural Resource Identification Survey, Boundary Survey, Protected Species Assessment, Preliminary Geotechnical Exploration, Phase 1 ESA Assessment, Topographical Survey, and a Wetlands

[^26]Delineation. However, using available NWI data, SCDNR's bald eagle database, USFWS's Critical Habitat Portal, and SHPO's ArchSite data, the Applicant's consultants have determined the above-stated and approximated wetland figures for the site (3,806 acres of wetlands), as well as that the site does not contain critical habitat for known or threatened/endangered species. However, the site contains two resource sites in the Eastern side of the site, one of which is eligible for registration and one that is not, and which may or may not qualify as Significant Resources that require additional evaluation. The site is not owned by the Applicant.

5.13 Jocelyn Clark Alternative Site 12 (Ridgeland, SC 29936)

a. Tax Map ID: 086-00-01-002 (1,226.35 acres).
b. The Jocelyn Clark Alternative Site 12 property is comprised of a single tract totaling approximately $1,226.35$ acres, of which an undetermined amount is considered developable. The site is located in the unincorporated part of Jasper County, north of the Town of Ridgeland. The site consists of undeveloped wooded and partially-cleared acreage. The roughly rectangular-shaped site is vertically bisected by Coosaw Scenic Drive (Hwy 462), with the Western side of the site consisting of a rectangular-shaped parcel bounded by bounded by I-95 to the West, and the Eastern side of the site consisting of an irregular shape bounded by the Coosawhatchie River to the Northeast. The site is approximately bounded by I-95 to the West, undeveloped property and Bees Creek to the South, Coosawhatchie River to the East/Northeast, and a combination of developed and undeveloped parcels to the North. The site is located approximately 2 miles from Exit 28 on I-95, the Exit 169 interchange of I-26/I-95 is approximately 59.5 miles away, the Exit 30 interchange with I-385 is approximately 206 miles away, the Port of Charleston is approximately 72.3 miles away, the Inland Port Greer is approximately 216 miles away, and the Inland Port Dillon is approximately 168 miles away. The site is approximately 38.4 miles from Savannah, Georgia. ${ }^{31}$ The site does not have direct onsite rail access, but a CSX rail line runs parallel to I-95 on the opposite side of the interstate from the site. The Applicant is not aware that any of the following formal due diligence for the site has been performed, including: Cultural Resource Identification Survey, Boundary Survey, Protected Species Assessment, Preliminary Geotechnical Exploration, Phase 1 ESA Assessment, Topographical Survey, and a Wetlands Delineation. The site is not owned by the Applicant.

[^27][^28]Page 35 of 97

5.14 WA Holdings South, LLC Alternative Site 13 (Hardeeville, SC 29927).

a. Tax Map ID: 042-00-06-045 (2,629.85 acres).
b. The WA Holdings South, LLC Alternative Site 13 property is comprised of a single, contiguous tract totaling approximately 2,630 acres, with approximately 1,816 acres of uplands and 814 acres of jurisdictional wetlands. The site is located in the corporate limits of the City of Hardeeville. The site is roughly rectangular in shape and is approximately bounded along the entire Western edge by I-95, by an undeveloped tract and the Hardeeville-Ridgeland Middle School to the South, by undeveloped portions of the Okeetee Hunt Club to the North, and by the Great Swamp to the East, which is under a conservation easement in connection with the adjacent East Argent PDD. The site is located approximately 4.4 miles from Exit 8 on I-95, the Exit 169 interchange of I-26/I-95 is approximately 82 miles away, the Exit 30 interchange with I-385 is approximately 229 miles away, the Port of Charleston is approximately 95 miles away, the Inland Port Greer is approximately 238 miles away, and the Inland Port Dillon is approximately 190 miles away. The site is approximately 23.5 miles from Savannah, Georgia. ${ }^{32}$

The entirety of the site is zoned as a PDD known as "West Argent," which is set for development as single and multi-family residential and commercial space and any rezoning to allow for the industrial development would require specific approvals from the City of Hardeeville. The site does not currently have direct onsite or adjacent rail access; however, a CSX rail line runs on the opposite side of I-95 from the site. The current owners of the site, who purchased the property from the original developers in 2019, currently have Nationwide Permits and Individual Wetland Permits in place with the USACE for the residential/commercial development of the parcel, and also worked with the City of Hardeeville to improve access to the site for development via the City's eminent domain power. Given the status of the permitted projects on the site, it is likely that all formal due diligence has been performed; however, that information is not currently available to the Applicant. Using available NWI data, SCDNR's bald eagle database, USFWS's Critical Habitat Portal, and SHPO's ArchSite data, the Applicant's consultants have determined the above-stated and approximated wetland figures for the site (814 acres of wetlands), as well as that the site contains

[^29][^30]Page 36 of 97
neither critical habitat for known or threatened/endangered species nor eligible historic sites or artifacts. The site is not owned by the Applicant.

5.15 Sherwood Tract Alternative Site 14 (Hardeeville, SC 29927)

a. Tax Map IDs: 030-00-01-007 (771.21 acres); 031-00-00-017 (50.4 acres); 030-00-01019 (486.88 acres); 030-00-01-020 (20.05 acres); 030-00-01-021 (92.96 acres); and 030-00-01-022 (16.11 acres).
b. The Sherwood Tract Alternative Site 14 property is comprised of five tracts totaling approximately 1,437 acres, of which 882.78 is currently upland area and 554.82 acres is freshwater wetlands. The wedged-shaped site is located within the corporate limits of the City of Hardeeville and is approximately bounded by I-95, U.S. Highway 17, Purrysburg Road, Toomerville Loop Road and several privately owned parcels on its Southern, Western and Northern boundaries. The site has approximately 2,400 feet of frontage on I-95, approximately 14,000 feet of frontage on the South side of Highway 17, approximately 3,015 feet of frontage on the North side of Highway 17, and approximately 5,100 feet of frontage on both sides of Toomerville Loop Road. The site does not currently have direct onsite rail access; however, a currently inactive CSX rail right-of-way runs adjacent to the Property on its Southwest corner. The Property is located less than 1 mile from Exit 5 on I-95, the Exit 169 interchange of I-26/I-95 is approximately 81.3 miles away, the Exit 30 interchange with I- 385 is approximately 228 miles away, the Port of Charleston is approximately 94 miles away, the Inland Port Greer is approximately 246 miles away, and the Inland Port Dillon is approximately 189 miles away. The site is approximately 15.5 miles from Savannah, Georgia. ${ }^{33}$

The property is zoned as the "Sherwood Tract" PDD, and is currently the subject of a pending permit application with the Corps (SAC-2018-00298) for the South Atlantic Logistics Terminal. All of the following due diligence for the site has already been performed, including: Cultural Resource Identification Survey, Boundary Survey, Protected Species Assessment, Preliminary Geotechnical Exploration, Phase 1 ESA Assessment, Topographical Survey, and a Wetlands Delineation. This site is not owned by the Applicant.

5.16 Central South Carolina Megasite Alternative Site 15 (Lugoff, SC 29078)

a. Tax Map IDs: 323-00-00-011 (504.97 acres); 323-00-00-014 (294.76 acres); 309-00-00031 (212 acres); 309-00-00-032 (385.36 acres), 309-00-00-070 (30.22 acres); 310-00-00080 (12.75 acres); 324-00-00-001 (81.37 acres); and 323-00-00-006 (29.8 acres).

[^31]b. The Central South Carolina Megasite Alternative Site 15 property is comprised of eight (8) separate tracts totaling approximately 1,551 acres, of which 1,426 acres is listed as a part of the megasite. The site is located in the unincorporated part of Kershaw County, near Lugoff, and is approximately bordered by Whiting Way (a frontage road to Interstate 20) to the South, undeveloped property to the West, a mixture of residential and commercial development fronting on Highway 601 to the East, and a CSX rail line and developed residential properties to the North. The site is located approximately 0.8 miles from Exit 92 on Interstate 20, approximately 17 miles from Interstate 77 (Exit 16)/Interstate 20 (Exit 76) interchange, approximately 49 miles from Interstate 95, approximately 90 miles from Interstate 85, approximately 120 miles from the Port of Charleston, approximately 124 miles from the Inland Port Greer, and approximately 84 miles from the Inland Port Dillon. The site is approximately 17 miles from Columbia. ${ }^{34}$ All of the following formal due diligence for the site has been performed, including: Cultural Resource Identification Survey, Boundary Survey, Protected Species Assessment, Preliminary Geotechnical Exploration, a Topographical Survey and a Wetlands Delineation. Based on Applicant's review of the foregoing due diligence, it confirms that the site has approximately 137.599 acres of jurisdictional wetlands, an additional 17.365 acres of non-jurisdictional wetlands, and 14,126 linear feet of streams. With respect to threatened and endangered species, a protected species assessment of the site determined that there was no evidence of, or suitable habitat for, federally protected resources in the project area, a determination in which U.S. Fish and Wildlife Service (USFWS) concurred on May 31, 2011. Regarding cultural resources, one site, 38KE1164, is eligible for inclusion and recommended avoidance. By letter dated November 15, 2016, SHPO concurred in the findings and recommendations. The site is a Certified SC site. The site is not owned by the Applicant.

5.17 Tyger Oak Inc. Alternative Site 16 (Kinards, SC 29355)

a. Tax Map ID: 745-00-00-009 (1,907.53 acres).
b. The Tyger Oak Inc. Alternative Site 16 property is comprised of a single tract totaling approximately $1,907.53$ acres, of which an undetermined amount is considered developable. The site is located in the unincorporated part of Laurens County, adjacent to property within the unincorporated community of Joanna. The site consists of undeveloped wooded and partially-cleared acreage. The "W"-shaped site is approximately bounded by residential and commercial properties fronting on Highway 76 E and a Norfolk Southern rail line to the West, a combination of developed and undeveloped residential parcels to the North, with partial frontage on Whitmire

[^32][^33]Page 38 of 97

Highway and undeveloped parcels to the East and South. The site is located approximately 1 mile from Exit 60 on I-26, the Exit 169 interchange of I-26/I-95 is approximately 109 miles away, the Exit 30 interchange with I-385 is approximately 41 miles away, the Port of Charleston is approximately 161 miles away, the Inland Port Greer is approximately 48.6 miles away, and the Inland Port Dillon is approximately 159 miles away. The site is approximately 51.6 miles from Greenville, South Carolina. ${ }^{35}$ The site does not have direct onsite rail access, but a Norfolk Southern rail line runs parallel to an adjacent parcel to the West. The Applicant is not aware that any of the following formal due diligence for the site has been performed, including: Cultural Resource Identification Survey, Boundary Survey, Protected Species Assessment, Preliminary Geotechnical Exploration, Phase 1 ESA Assessment, Topographical Survey, and a Wetlands Delineation. The site is not owned by the Applicant.

5.18 South Carolina Gateway Alternative Site 17 (Santee, SC 29142)

a. Tax Map IDs: 0323-00-06-012.000 (775.01 acres); 0323-00-06-001.000 (344.41 acres); and 0322-00-01-001.000 (138.08 acres).
b. This South Carolina Gateway Alternative Site 17 property is comprised of the three (3) parcels totaling approximately $1,257.5$ acres, of which 748 acres is listed as developable, in the unincorporated part of Orangeburg County. The site has a large central block of acreage, as well as several finger-like projections extending in a number of different directions. The site is approximately bounded by Interstate 95 and other undeveloped property to the East, and undeveloped parcels to the North, East, and South. The Exit 97 interchange of I- 95 is approximately 0.1 miles away from portions of the site, I-85 (near Charlotte) is approximately 160 miles away, while I-85 (near Spartanburg) is approximately 155 miles away, the Port of Charleston is approximately 67 miles away, the Inland Port Greer is approximately 170 miles away, and the Inland Port Dillon is approximately 98 miles away. The site is rail-served by CSX right-ofway and has access to all utilities. The site is approximately 23 miles from Orangeburg. ${ }^{36}$ All of the following formal due diligence for the site has been performed, including: Cultural Resource Identification Survey, Boundary Survey, Protected Species Assessment, Preliminary Geotechnical Exploration, a Topographical Survey and a Wetlands Delineation. The site is a Certified SC site. The site is not owned by the Applicant.

Although detailed due diligence was not available for each of the alternative sites, as described above, the Applicant conducted a review of readily available and accessible information and databases for

[^34]each of the sites regarding wetlands, upland acreage, potential impacts for the Proposed Project footprint, federal T\&E, cultural resources, cost/availability, among other considerations. ${ }^{37}$ Regarding jurisdictional wetlands, unless otherwise noted, the deduced quantity and spatial distribution of wetlands is the result of approximating the boundary of wetlands based on available NWI data. The depicted wetlands on the Property are based on delineations conducted by S\&ME. Detailed wetland, cultural resources, and threatened and/or endangered species information for those sites carried forward to Level 2 of this analysis is included below.

6.0 Alternatives Analysis

6.1 Level 1 Analysis

Level 1 of the alternatives analysis evaluates the range of reasonable alternatives for their ability to best satisfy the purpose and need criteria of the Proposed Project. This step of the analysis is intended to identify, on a macro level, which of the alternatives might reasonably meet the purpose and need, and those alternatives that clearly do not meet the requisite criteria were not considered further within this analysis.

The Level 1 screening evaluated eighteen (18) potential alternative locations, including the No-Action Alternative. These sites were assessed with respect to varying aspects of their location, size, and general site characteristics within the primary characteristics and criteria identified by the Applicant.
[LEVEL 1 TABLE INCLUDED BELOW]

[^35]| | Alternatives | Minimum 1,000
 acres of contiguous, developable acreage | Adjacent to or direct localized access within 1 mile of an interstate | Direct onsite or adjacent rail access to a Class I rail carrier | Within a combined 180 miles of both Interstate 85 and Interstate 95 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1. | No Action (No Build) | \bigcirc | \bigcirc | \bigcirc | \bigcirc |
| 2. | Blythewood Industrial Site Alt. Site 1 | \bullet | \bullet | - | \bullet |
| 3. | JAB Site West Alt. Site 2 | \bullet | \emptyset | \bullet | \bullet |
| 4. | Carolinas I-95 Super Park Alt. Site 3 | \bullet | \bullet | \bullet | \bullet |
| 5. | I-77 International Megasite Alt. Site 4 | \bullet | \bullet | - | \bullet |
| 6. | Angel Tract LLC Alt. Site 5 | \emptyset | \bullet | \bullet | \bigcirc |
| 7. | Yemassee Timber LLC Alt. Site 6 | \bullet | \emptyset | \bullet | \bigcirc |
| 8. | Chilton Timber \& Land Co. LLC Alt. Site 7 | \bullet | \bullet | - | \bigcirc |
| 9. | Okeetee Club Alt. Site 8 | \emptyset | \bullet | \bullet | \bigcirc |
| 10. | Martha Black Alt. Site 9 | \bullet | \bullet | \bullet | \bigcirc |
| 11. | C\&S National Bank Alt. Site 10 | \bullet | \bullet | \bullet | \bigcirc |
| 12. | Cypress Woods Corp. Alt. Site 11 | - | \bullet | - | \bigcirc |
| 13. | Jocelyn Clark Alt. Site 12 | \bullet | \bullet | - | \bigcirc |
| 14. | WA Holdings South, LLC Alt. Site 13 | - | \bullet | - | \bigcirc |
| 15. | Sherwood Tract Alt. Site 14 | \bullet | \bullet | \bigcirc | \bigcirc |
| 16. | Central South Carolina Megasite Alt. Site 15 | \bullet | \bullet | - | \bullet |
| 17. | Tyger Oak Inc. Alt. Site 16 | \bullet | \bullet | \varnothing | \bullet |
| 18. | South Carolina Gateway Alt. Site 17 | \bullet | \bullet | \bullet | \bullet |
| $\begin{array}{lll} \bullet & = & \text { passes criterion } \\ 0 & = & \text { fails criterion } \\ \varnothing & = & \text { partially passes criterion } \end{array}$ | | | | | |

As a result of the Level 1 analysis applied above, fifteen (11) of the identified alternatives, including the No Action (No Build) Alternative, failed to at least partially meet all of the minimum characteristics and criteria for the Proposed Project, and fourteen (10) alternatives were eliminated at this level:

1. No Action (No Build)

a. The No-Action (No Build) alternative fails to meet any of the purpose and need criteria of the Proposed Project. Notwithstanding, this alternative is retained for further comparison in the alternatives practicability analysis in order to ensure a complete environmental impact evaluation, as well as provide a baseline comparison to other alternatives in the Level 2 analysis.

2. Angel Tract LLC Alternative Site 5

a. The Angel Tract LLC Alternative Site 5 property fails to fully meet two (2) of the four (4) primary characteristics and criteria identified by the Applicant. The site has direct localized access within one (1) mile of an interstate (approximately 1.0 mile from Exit 38 of I-95) and has adjacent rail access to a Class I rail carrier (via a CSX rail line running adjacent to the Northern portion of the site across Yemassee Highway). However, while the site, at 1,571.48 acres, is conceptually large enough to meet the required minimum contiguous and developable acreage estimated by the Applicant to accommodate the required square footage of buildings onsite, a significant portion of the Western side of the site has been developed into a solar farm; therefore, the site, in its current state of development, is unlikely to have the required minimum acreage for the Proposed Project. Further, while the site is located within one (1) mile of I95, it has no interstate frontage. Finally, while the site is within 90 miles of I-95 (approximately 1.0 mile away), the site is more than 90 miles away from I-85 (approximately 195 miles away), collectively more than 180 miles away from both interstates. Accordingly, because this alternative fails to meet the basic minimum site requirements identified by the Applicant for the Proposed Project, it was eliminated from consideration by Level 1 analysis.
3. Yemassee Timber LLC Alternative Site 6
a. The Yemassee Timber LLC Alternative Site 6 property fails to fully meet two (2) of the four (4) primary characteristics and criteria identified by the Applicant. The site, at $1,971.23$ acres, conceptually meets the required minimum contiguous and developable acreage estimated by the Applicant to accommodate the required square footage of buildings onsite, along with attendant parking and site infrastructure, as well as sufficient additional acreage to provide flexibility to meet future growth opportunities should market conditions dictate further investment in the future, and has direct onsite or adjacent rail access to a Class I rail carrier (via a CSX rail line
running adjacent to the Southeastern corner of the site). However, while the site is adjacent to I-95, current driving mileage to the nearest interstate access is approximately 2.7 miles away (Exit 38 of I-95). In addition, while the site is within 90 miles of I-95 (approximately 2.7 miles away), the site is more than 90 miles away from I-85 (approximately 196.7 miles away), collectively more than 180 miles away from both interstates. Accordingly, because this alternative fails to meet the basic minimum site requirements identified by the Applicant for the Proposed Project, it was eliminated from consideration by Level 1 analysis.

4. Chilton Timber \& Land Company LLC Alternative Site 7

a. The Chilton Timber \& Land Company LLC Alternative Site 7 property fails to meet one (1) of the four (4) primary characteristics and criteria identified by the Applicant. The site, at 7,573 acres, conceptually meets the required minimum contiguous and developable acreage estimated by the Applicant to accommodate the required square footage of buildings onsite, along with attendant parking and site infrastructure, as well as sufficient additional acreage to provide flexibility to meet future growth opportunities should market conditions dictate further investment in the future, the site is both adjacent to and has direct localized access within one (1) mile of an interstate (approximately 1.0 mile from Exit 38 of I-95), and is proximately adjacent rail access to a Class I rail carrier (via a CSX rail line running adjacent to the Northern portion of the site across Yemassee Highway). However, while the site is within 90 miles of I-95 (approximately 1.0 mile away), the site is more than 90 miles away from I-85 (approximately 195 miles away), collectively more than 180 miles away from both interstates. Accordingly, because this alternative fails to meet the basic minimum site requirements identified by the Applicant for the Proposed Project, it was eliminated from consideration by Level 1 analysis.

5. Okeetee Club Alternative Site 8

a. The Okeetee Club Alternative Site 8 property fails to fully meet two (2) of the four (4) primary characteristics and criteria identified by the Applicant. The site, at 44,000 noncontiguous acres, conceptually meets the required minimum developable acreage estimated by the Applicant to accommodate the required square footage of buildings onsite, along with attendant parking and site infrastructure, as well as sufficient additional acreage to provide flexibility to meet future growth opportunities should market conditions dictate further investment in the future, portions of the site are both adjacent to and has direct localized access within one (1) mile of an interstate, and has adjacent rail access to a Class I rail carrier (via a CSX rail line along two of its borders). However, while the site is adjacent to I-95, current driving mileage from the most logically developable portion of the site to the nearest interstate access is approximately 4.6 miles away (Exit 5 of I-95). In addition, while the site is within 90

[^36]Page 43 of 97
miles of I-95 (approximately 4.6 miles away), it is more than 90 miles away from I-85 (approximately 228 miles away), collectively more than 180 miles away from both interstates. Moreover, this alternative is believed to be home to protected and endangered red-cockaded woodpeckers, given the pervasive existence of longleaf pine forests, confirmed by visual inspection, within the site, which is known habitat of redcockaded woodpeckers. Further, the Applicant's consultants reviewed SHPO's ArchSite data, and the site contains two structures, one of which is eligible for registration and one that is not, which may or may not qualify as Significant Resources that require additional evaluation. Accordingly, because this alternative fails to meet the basic minimum site requirements identified by the Applicant for the Proposed Project, it was eliminated from consideration by Level 1 analysis.

6. Martha Black Alternative Site 9

a. The Martha Black Alternative Site 9 property fails to meet one (1) of the four (4) primary characteristics and criteria identified by the Applicant. The site, at 1,417.69 acres, conceptually meets the required minimum contiguous and developable acreage estimated by the Applicant to accommodate the required square footage of buildings onsite, along with attendant parking and site infrastructure, as well as sufficient additional acreage to provide flexibility to meet future growth opportunities should market conditions dictate further investment in the future, the site is both adjacent to and has direct localized access within one (1) mile of an interstate (approximately 0.8 miles from Exit 28 of I-95), and has direct onsite rail access to a Class I rail carrier (via a CSX rail line bifurcating the site). However, while the site is within 90 miles of I- 95 (approximately 0.8 miles away), the site is more than 90 miles away from I-85 (approximately 205 miles away), collectively more than 180 miles away from both interstates. Further, the location of the CSX rail line through the site inhibits the placement of the required configuration of the Proposed Project, which necessitates a dense, linear grouping with a specified sequencing that is necessary for staging, production, finishing, and shipping automobiles, which is the result Client's extensive experience designing, constructing, and operating similar facilities as one of the largest and most highly advanced manufacturing OEM companies in the world. Accordingly, because this alternative fails to meet the basic minimum site requirements identified by the Applicant for the Proposed Project, it was eliminated from consideration by Level 1 analysis.

7. Ceos National Bank Alternative Site 10

a. The C\&S National Bank Alternative Site 10 property fails to meet one (1) of the four (4) primary characteristics and criteria identified by the Applicant. The site, at 1,417.69 acres, conceptually meets the required minimum contiguous and developable acreage estimated by the Applicant to accommodate the required square footage of buildings
onsite, along with attendant parking and site infrastructure, as well as sufficient additional acreage to provide flexibility to meet future growth opportunities should market conditions dictate further investment in the future, the site is both adjacent to and has direct localized access within one (1) mile of an interstate (approximately 0.4 miles from Exit 28 of I-95), and has proximately adjacent rail access to a Class I rail carrier (via a CSX rail line running adjacent to I-95 on the opposite site of the interstate). However, while the site is within 90 miles of I-95 (approximately 0.4 miles away), the site is more than 90 miles away from I-85 (approximately 204 miles away), collectively more than 180 miles away from both interstates. Accordingly, because this alternative fails to meet the basic minimum site requirements identified by the Applicant for the Proposed Project, it was eliminated from consideration by Level 1 analysis.

8. Cypress Woods Corporation Alternative Site 11

a. The Cypress Woods Corporation Alternative Site 11 property fails to meet one (1) of the four (4) primary characteristics and criteria identified by the Applicant. The site, at 10,809 acres, conceptually meets the required minimum contiguous and developable acreage estimated by the Applicant to accommodate the required square footage of buildings onsite, along with attendant parking and site infrastructure, as well as sufficient additional acreage to provide flexibility to meet future growth opportunities should market conditions dictate further investment in the future, the site is adjacent to an interstate (I-95), and is adjacent to rail access to a Class I rail carrier (via a CSX rail line running adjacent to the site). However, while the site is adjacent to I-95, current driving mileage to the nearest interstate access is approximately 5.3 miles away (Exit 21 of I-95) and 5.7 miles away (Exit 22 of I-95), respectively, and the site is more than 90 miles away from I-85 (approximately 213 miles away), collectively more than 180 miles away from both interstates. Accordingly, because this alternative fails to meet the basic minimum site requirements identified by the Applicant for the Proposed Project, it was eliminated from consideration by Level 1 analysis.

9. Jocelyn Clark. Alternative Site 12

a. The Jocelyn Clark Alternative Site 12 property fails to meet one (1) of the four (4) primary characteristics and criteria identified by the Applicant. The site, at 1,226.35 acres, conceptually meets the required minimum contiguous and developable acreage estimated by the Applicant to accommodate the required square footage of buildings onsite, along with attendant parking and site infrastructure, as well as sufficient additional acreage to provide flexibility to meet future growth opportunities should market conditions dictate further investment in the future, the site is adjacent to an interstate (I-95), and has proximately adjacent rail access to a Class I rail carrier (via a CSX rail line running adjacent to I-95 on the opposite site of the interstate). However,
while the site is adjacent to I-95, current driving mileage to the nearest interstate access is approximately 2.0 miles away (Exit 28 of I-95), and the site is more than 90 miles away from I-85 (approximately 206 miles away), collectively more than 180 miles away from both interstates. Further, the location of Coosaw Scenic Drive (Hwy 462), which bisects the site, inhibits the placement of the required configuration of the Proposed Project, which necessitates a dense, linear grouping with a specified sequencing that is necessary for staging, production, finishing, and shipping automobiles, which is the result Client's extensive experience designing, constructing, and operating similar facilities as one of the largest and most highly advanced manufacturing OEM companies in the world. Accordingly, because this alternative fails to meet the basic minimum site requirements identified by the Applicant for the Proposed Project, it was eliminated from consideration by Level 1 analysis.

10. W A Holdings South, LLC Alternative Site 13

a. The WA Holdings South, LLC Alternative Site 13 property fails to meet one (1) of the four (4) primary characteristics and criteria identified by the Applicant. The site, at 2,630 acres, conceptually meets the required minimum contiguous and developable acreage estimated by the Applicant to accommodate the required square footage of buildings onsite, along with attendant parking and site infrastructure, as well as sufficient additional acreage to provide flexibility to meet future growth opportunities should market conditions dictate further investment in the future, the site is adjacent to an interstate (I-95), and has proximately adjacent rail access to a Class I rail carrier (via a CSX rail line running adjacent to I-95 on the opposite site of the interstate). However, while the site is adjacent to I-95, current driving mileage to the nearest interstate access is approximately 4.4 miles away (Exit 8 of I-95), and the site is more than 90 miles away from I-85 (approximately 229 miles away), collectively more than 180 miles away from both interstates. Moreover, the site is subject to an established PDD scheduled for development as single and multi-family residential and commercial space and is therefore unavailable for the Proposed Project. Accordingly, because this alternative fails to meet the basic minimum site requirements identified by the Applicant for the Proposed Project, it was eliminated from consideration by Level 1 analysis.

11. Sherwood Tract Alternative Site 14

a. The Sherwood Tract Alternative Site 14 property fails to meet two (2) of the four (4) primary characteristics and criteria identified by the Applicant. The site, at 1,437 acres, conceptually meets the required minimum contiguous and developable acreage estimated by the Applicant to accommodate the required square footage of buildings onsite, along with attendant parking and site infrastructure, as well as sufficient additional acreage to provide flexibility to meet future growth opportunities should
market conditions dictate further investment in the future, and the site is both adjacent to and has direct localized access within one (1) mile of an interstate (approximately 0.3 miles from Exit 5 of I-95). However, while a currently inactive CSX rail right-ofway runs adjacent to the Property on its Southwest corner, the Applicant does not consider the site to have direct onsite or adjacent rail access. Further, while the site is both adjacent to and within one (1) mile of an interstate (Exit 5 of I-95), the site is more than 90 miles away from I-85 (approximately 228 miles away), collectively more than 180 miles away from both interstates. In addition, the site is subject to an established PDD scheduled for development as industrial warehousing and economic development spaces and is therefore unavailable for the Proposed Project. Accordingly, because this alternative fails to meet the basic minimum site requirements identified by the Applicant for the Proposed Project, it was eliminated from consideration by Level 1 analysis.

6.2 Level 2 Analysis

The Level 2 analysis evaluates the seven (7) site locations that at least partially satisfied all four (4) of the primary characteristics and criteria established by the Applicant, as well as the No Action (No Build) alternative, by comparing additional factors to determine which alternative provides the least environmentally damaging practicable alternative and meets the overall purpose of the Proposed Project. In addition to the identified primary characteristics and criteria for the Proposed Project, as a part of this Level 2 analysis, the Applicant evaluated the sites carried forward as to their fulfillment of the additional characteristics and criteria identified by the Applicant as having secondary importance.

In particular, in discussing the viability of locating the Proposed Project in South Carolina, the Client expressed a strong preference for a location in the Midlands. This characteristic is attractive to the Client for a number of reasons. First, the Midlands region of South Carolina, considered to include Aiken, Barnwell, Chester, Edgefield, Fairfield, Kershaw, Lancaster, Lexington, Newberry, Richland, Saluda, and York Counties, stretches the width of the State and in a central band that is ideally located for advanced manufacturers looking to locate in South Carolina. The Midlands provides easy access to the State's TDL infrastructure given its central location, including I-26, I-95, I-20, and I-77. The Midlands also provides proximity to the Columbia and other metropolitan statistical areas which, as discussed in depth below, provide access to critical population masses needed to accommodate a workforce profile capable of filling out the required employee pool, as well as, more critically, access to educational institutions capable of training and certifying workers for jobs in advanced manufacturing. Finally, while the Upstate of South Carolina has provided a fertile area for growth surrounding BMW's facilities, and the Lowcountry has similarly performed well in accommodating Boeing, Volvo, and Mercedes Benz, the Midlands does not have an advanced manufacturer of the scale and scope of those areas of the State similar to what is being put forward by the Proposed Project, allowing the Client to take advantage of one of the last, untapped advanced manufacturing

[^37]Page 47 of 97
labor pools of the State. To that end, and more specifically, a location in the Midlands allows the Client to take advantage of the area's high concentration of engineering and skilled labor talent and also offers access to skilled labor, training, and educational opportunities, including Midlands Technical College, CCTC, and the University of South Carolina, which offer trade and advanced degree schools working collaboratively with the advanced manufacturers and suppliers to offer new technologies that further advance the State's automotive industry.

In addition, the Client has identified a preference for direct onsite interstate frontage. This characteristic is attractive to the Client for several reasons. First, given the number of employees anticipated to be hired by the Client as a part of the operations of the facility, the Applicant is proposing as a part of the Proposed Project to construct a dedicated interchange off of I-77 to the project site. As set forth above, a dedicated interchange is preferred here given the logistical and transportation efficiencies achieved through direct access to the site; ease of ingress and egress to the site is imperative to the operational success of the site by the Applicant. Bringing employees and component parts to the site through a dedicated interchange avoids overburdening existing surrounding roadways and ensures their efficient arrival to and departure from the site. Moreover, over-reliance and -utilization of the local roads and highways would potentially create issues of local land use, community disturbance, and interference that would be avoided with direct interchange access. In addition, a site directly on the interstate provides accessibility and visibility to the public, suppliers, dealers, and other visitors, all of whom will play a critical role in the success of the Proposed Project, and further provides a visible reminder of the Client's presence in the Midlands.

Further, the Client has identified a parameter for a locating the Proposed Project within 15 miles of an area with a skilled workforce having access to adequate education and training. This characteristic is necessary to the Client, given the number of employees required to operate the facility. Only the larger MSAs can accommodate the labor need based on the critical population mass needed to generate a workforce profile capable of filling out the required employee pool. In addition to population numbers, larger MSAs provide access to the necessary educational institutions required to train and certify workers for jobs in advanced manufacturing, through trade and advanced degree schools that work collaboratively with the advanced manufacturers and suppliers to provide curriculums in new technologies critical to automotive production. In particular, South Carolina's ReadySC program provides significant workforce training and development throughout the State, while the Midlands offers a number of trade and advanced degree schools that work collaboratively with the advanced manufacturers and suppliers to offer new technologies that further advance the State's automotive industry, including, but not limited to, Midlands Technical College, CCTC, and the University of South Carolina. Finally, given that proximity to a work site and daily commute time factor significantly in a prospective employee's decision-making process to accept and stay in a job, see n. 17 , supra, the Client was purposeful in selecting a site within 15 miles of a large MSA, in order to reduce the need to recruit workers requiring a re-location or a significant commute time for workers within that labor pool. This consideration was important to the Client in terms of both access to
labor, worker health and well-being, as well as serving as an attractive employment opportunity/alternative in close proximity to the MSA.

Third, the client has identified a need to be located roughly equidistant from the Port of Charleston and the Inland Ports of Greer and Dillon, respectively, corresponding to a distance of 145 miles away from each. As set forth above, it is expected that certain of the component parts for production and assembly at the Proposed Project, as well as a certain percentage of the completed automobiles, will arrive from and be exported through international shipments portals of the Port of Charleston. Accordingly, a site that is equidistant from the Port of Charleston and each of the State's Inland Port facilities is optimally located for the efficient just-in-time delivery of component parts for production, as well as further delivery of assembled automobiles to end-users.

Finally, the client has identified the need for immediate access to all required utilities. Immediate access to utility infrastructure is key both from an operations perspective, as without adequate access to sufficient power, water, gas, and sewer with sufficient capacity, no development is possible, particularly with EV automobile production which requires significant power resources, as well as from a timing perspective, as the length of time it would take to get utility easements/rights-of-way to the site would compromise the Applicant's ability to meet the expected construction and operation deadlines for the Proposed Project.

6.2.1 No Action Alternative

The No Action alternative means either no permit is to be required or that a permit is to be denied. In this specific case, the Applicant submits that it is not possible to fulfill the purpose and need of the Proposed Project, meeting the characteristics and criteria identified by the Applicant, while entirely avoiding impacts to aquatic resources, as evidenced by the comparable alternatives set forth below, which demonstrate resource impacts similar to the Property. Therefore, the No Action alternative would be equivalent to permit denial. Permit denial would meet the overall project purpose only if there was another parcel available that could accommodate the Proposed Project, including the characteristics and criteria identified by the Applicant, with no wetland impacts and no other significant environmental impact or effect. This analysis demonstrates that this is not possible.

Although selection of the No Action Alternative would render this analysis futile, the No Action Alternative is nevertheless retained as a baseline for evaluation of a Build Alternative. Under the No Action Alternative, the Applicant would be unable to meet the identified need of constructing a new worldwide production site for automotive vehicles with the burgeoning electric vehicle EV automotive industry sector. Under the No Action Alternative, this identified need would not be met such a facility in South Carolina, but would instead not be built at all or be located in a less efficient and connected location. Commerce is obligated under its statutory authority and responsibility to pursue such actions and projects as will meet the long-term strategic needs of potential clients, including the contribution to economic development in South Carolina through the cultivation and stimulation of the types of facilities proposed here by Client. Because the No Action Alternative would not effectuate the

[^38]Proposed Project's purpose and need, it was eliminated from consideration through this Level 2 analysis.

6.2.2 Blythewood Industrial Site Alternative Site 1

The Blythewood Industrial Site Alternative Site 1 property was identified by the Applicant as the preferred location of the Proposed Project because it uniquely satisfies all of the primary and secondary characteristics and criteria identified for the development of a site for the identified facilities of the Project. The preferred site layout for the Proposed Project is depicted in the Applicant's application and attached to this analysis as Exhibit H.

First and foremost, at 2,581 acres of contiguous, developable land, the Property is of sufficient size to accommodate the required approximately 16 Million/sf of buildings onsite, along with attendant parking and site infrastructure, as well as sufficient additional acreage to provide flexibility to meet future growth opportunities should market conditions dictate further investment in the future. The Proposed Project is intended to fulfill Client's vision of developing a site for the construction and operation of a new rail-served advanced manufacturing facility in the automotive industry for an OEM that will take advantage of South Carolina's TDL cluster and initiatives. The Proposed Project facilities will serve as the new worldwide production site for automotive vehicles within the burgeoning EV automotive industry sector. The design of the Proposed Project has been developed under a master plan concept that will be constructed in phases to support existing demand, while allowing for planned expansion as well as provide sufficient available acreage to address future growth opportunities to meet projected and new demand. The fully constructed facilities and support operations will allow Client to source, stage, assemble, produce, and manufacturer fully-assembled automobiles in scalable manner that meets the growing demand and needs of end-users. The master plan concept proposed is thoughtfully laid out in a configuration that ensures proper sequencing of materials, assembly, and production, and is one that Client has utilized in other manufacturing facilities in order to achieve desired production levels and efficiencies. In turn, accommodating Client's design and layout of its facilities to achieve desired efficiencies in workflow, product, information, and materials across the site requires sufficient acreage.

In particular, the onsite work for the Proposed Project facilities is planned to be built in two or more phases. Ground-clearing activities on the site have begun in non-wetland areas. Activities in the wetland areas would begin immediately upon issuance of the Section 404 permit. Construction of Phase I of the Proposed Project would begin upon the completion of the necessary site work and is contemplated to include construction of the necessary facilities to produce EV automobiles starting in 2026. Specifically, Phase I of the Proposed Project will consist of site preparation work and the cumulative construction of 16 buildings, totaling approximately $5,250,000 / \mathrm{sf}$ in buildings to stage materials and house facilities for the production of automobiles, including assembly and finish, paint, body, a central control building, SQM2, utility, truck gate/security control center, fire station, recycle center, main gate/welcome center, tank farm, factory substation, supplier substation, outbound

[^39]Page 50 of 97
building, battery assembly shop, and the axle shop. Phase I will also entail construction of attendant infrastructure, including a new interchange on I-77, interior roadways, a rail spur and rail loading areas, truck and personal vehicle (POV) parking, and stormwater detention basins.

The remaining phases of the Proposed Project would be constructed and become operational after completion of Phase I, based on identified demand and projected growth opportunities. Specifically, the subsequent phases of the Proposed Project are projected to consist of the cumulative construction of approximately 20 additional buildings, totaling approximately $10,750,000,000 / \mathrm{sf}$ in buildings and facilities. The subsequent phases of the Proposed Project would largely mirror those constructed in Phase I, essentially doubling the production capacity of the overall facility, and would include additional facilities to house battery assembly, assembly, paint, finish, body, press shop, and finished automobile parking processes, as well as a two test tracks for finished automobiles, among other administrative buildings and features. In sum, given its size and shape, the Property fulfills the Applicant's first characteristic and criterion, in that it allows for the scope of facilities and infrastructure that the undertaking requires.

Second, the Property is located directly adjacent to, with frontage on, I-77. It is also located 0.1 miles from 27 of Interstate 77, while the Southern end of the Property is located less than one (1) mile from Exit 24 of Interstate 77. The component parts and raw materials that Client intends to utilize in its productions facilities are likely to be sourced from a number of locations, including abroad, with parts delivered by truck or rail over the State's TDL clusters. Nearby access to an interstate is crucial for the efficient just-in-time delivery of OEM component parts for production, assembly, and further transportation to end-users, and provides logistical efficiencies for personnel. Accordingly, the Property fulfills the Applicant's second characteristic and criterion.

Third, the Eastern site of the Property is adjacent to an existing Norfolk Southern rail line, and a proposed spur into the site is planned as a part of the project. Having onsite rail access via a dedicated and fully-integrated rail spur ensures cost-effectiveness to clients and shippers and provides logistical efficiencies for incoming and outgoing transportation of products, reduces truck traffic on alreadyoverburdened roads, increases accessibility for regional manufacturers and distributors, and provides additional access points throughout the Country, including to the Port of Charleston for international shipment, over a Class I's mainline. Because the Property has the capability of being served by a Class I rail carrier, it fulfills the Applicant's third characteristic and criterion.

Fourth, the location of the Property is ideal and comports with the geographic requirements identified as the fourth characteristic and criterion by the Applicant. An ideal location for the Proposed Project is one that is also located centrally to the established North/South and East/West transportation corridors along the East Coast. It is expected that component parts and raw materials for production and assembly at the Proposed Project will arrive, and produced EV automobiles will be shipped to end-users, via a number of transportation methods, including by interstate. For the purposes of

[^40]Page 51 of 97
establishing an optimal radius for the efficient just-in-time delivery of EV component parts for production, as well as further delivery of produced EV automobiles to end-users, a location which is equidistant from both Interstate 85 and Interstate 95 is preferred. The Property is located 74.5 miles from the Interstate 77 (Exit 9)/Interstate 85 (Exit 30) interchange, and 79 miles from the Interstate 26 (Exit 169)/Interstate 95 (Exit 86) interchange. Accordingly, the Property fulfills the Applicant's fourth characteristic and criterion for the Proposed Project.

Further, and with respect to the secondary characteristics and criteria identified by the Applicant, the Property is located in the Midlands, the Client's preferred location, allowing the Client to take advantage of the area's high concentration of engineering and skilled labor talent and also offers access to skilled labor, training, and educational opportunities, including Midlands Technical College, CCTC, and the University of South Carolina, which offer trade and advanced degree schools working collaboratively with the advanced manufacturers and suppliers to offer new technologies that further advance the State's automotive industry. Accordingly, the Property satisfies the first secondary characteristic and criterion identified by the Applicant for the Proposed Project.

Second, the Property has direct interstate frontage allowing for a dedicated interchange off of I-77. As set forth above, a dedicated interchange is preferred here given the logistical and transportation efficiencies achieved through direct access to the site. Such an arrangement is ideal given the number of employees anticipated to be hired by the Client as a part of the operations of the facility, as bringing employees and component parts to the site through a dedicated interchange avoids overburdening existing surrounding roadways and ensures their efficient arrival to and departure from the site. In addition, a site directly on the interstate provides accessibility and visibility to the public, suppliers, dealers, and other visitors, all of whom will play a critical role in the success of the Proposed Project, and further provides a visible reminder of the Client's presence in the Midlands. Accordingly, the Property satisfies the Applicant's second secondary characteristic and criterion.

Third the Property is located only approximately 8.6 miles from Columbia, which is the designated MSA for the site. As referenced above, a location in the Midlands, near Columbia, allows the Client to take advantage of the area's high concentration of engineering and skilled labor talent. The area's deep talent pool and educational programs have allowed the Midlands to become a dynamic region for advanced manufacturing and research. Given that proximity to a work site and daily commute time factor significantly in a prospective employee's decision-making process to accept and stay in a job, see n. 17, supra, the Client was purposeful in selecting a site within 15 miles of a large MSA, in order to reduce the need to recruit workers requiring a re-location or a significant commute time for workers within that labor pool. This consideration was important to the Client in terms of both access to labor, worker health and well-being, as well as serving as an attractive employment opportunity/alternative in close proximity to the MSA. At only 8.6 miles from the Interstate 77 (Exit 16)/Interstate 20 (Exit 76) interchange, which is geographically central to Columbia's labor pool, the Property is close enough to entice high-skilled workers living in the Columbia MSA to commute to
the site to work. Accordingly, the Property fulfills the third secondary characteristic and criterion identified by the Applicant.

Fourth, it is expected that certain of the component parts and raw materials for production and assembly at the Proposed Project will arrive through the Port of Charleston via international shipment. Therefore, in addition to use of the State's interstate TDL corridors, a site that is equidistant from the Port of Charleston and each of the State's Inland Port facilities is optimally located for the efficient just-in-time delivery of EV component parts for production, as well as further delivery of assembled automobiles to end-users. The Property is located 130 miles from the Port of Charleston, 101 miles from the Inland Port Greer, and 110 miles from the Inland Port Dillon. Accordingly, the Property fulfills the fourth secondary characteristic and criterion identified by the Applicant.

Fifth and finally, the Property has immediate access to all required utilities. As set forth above, immediate access to utility infrastructure is key both from an operations perspective, as without adequate access to sufficient power, water, gas, and sewer with sufficient capacity, no development is possible, particularly with EV automobile production which requires significant power resources. With respect to the required power infrastructure for the Proposed Project, the Applicant has multiple options for nearby power sources, all with sufficient existing capacity and onsite infrastructure to fulfill the requirements of the Proposed Project. From a timing perspective, the existence of these onsite utilities is paramount, as the length of time it would take to get utility easements/rights-of-way to the site would compromise the Applicant's ability to meet the expected construction and operation deadlines for the Proposed Project. Accordingly, the Property fulfills the fifth secondary characteristic and criterion identified by the Applicant.

With respect to impacts, the size, scale, and required layout of the Proposed Project renders it impossible to locate the Proposed Project on the Property and not have environmental impacts to onsite waters of the United States. Overall, the Property consists of approximately 2,384.193 acres of uplands and 196.807 acres of aquatic resources, comprised of approximately 146.215 acres of jurisdictional wetlands (between 119 wetland features), approximately 43.203 acres of non-wetland ponds (between 13 separate pond features), approximately 70,037 linear feet of streams, and approximately 9,472 linear feet of non-aquatic resources consisting of agricultural ditches and ephemeral swales (across 24 separate features). Of the approximately 1,633 acres identified as the limits of disturbance, the Proposed Project calls for 23,599 linear feet of permanent fill impacts to onsite streams, 30 linear feet of permanent clearing impacts to onsite streams, 3,043 linear feet of morphological impacts to onsite streams, 9,019 linear feet of pipe impacts to onsite streams, 38.219 acres of permanent fill impacts to non-wetland ponds, 60.649 acres of permanent fill impacts to jurisdictional wetlands, 0.317 acres of temporary excavation/permanent clearing impacts to jurisdictional wetlands, and 8.742 acres of permanent clearing impacts to jurisdictional wetlands.

With respect to cultural resources, and as further detailed below in Level 3 of this analysis, the Applicant's consultants have conducted broad cultural resource identification surveys of the Property

[^41]Page 53 of 97
and have consulted extensively with SHPO regarding the results. As a result of those surveys and consultations, there are two identified sites which require further action by the Applicant in conjunction with the Project.

Based on the Property's fulfillment of both the primary and secondary characteristics and criteria identified for the Proposed Project, the Applicant determined that the Property was a practicable alternative that would fulfill the purpose and need of the Proposed Project. As a result, it was carried forward to Level 3 of this analysis.

6.2.3 JAB Site West Alternative Site 2

The JAB Site West Alternative Site 2 property was carried through to Level 2 analysis based on its ability to fully satisfy, at the macro-level, all four (4) of the primary characteristics and criteria identified by the Applicant for the Proposed Project. A depiction of the preferred site layout for the Proposed Project on the JAB Site West site is provided in Exhibit I to this alternatives analysis.

In particular, at 1,023 acres, on the surface the JAB Site West site meets the required minimum available and developable acreage estimated by the Applicant to accommodate the required approximately 16 Million/sf of buildings onsite, along with attendant parking and site infrastructure, as well as sufficient additional acreage to provide flexibility to meet future growth opportunities should market conditions dictate further investment in the future. The site is also located directly adjacent to, with frontage on, I-77, and a CSX rail line runs adjacent to the Southern boundary of the site. Finally, the site is located within the 180 -mile combined window for the North/South and East/West transportation corridors along the East Coast that was identified by Client as being the ideal, approximately 120 miles away from I- 95 and 36 miles away from I-85.

However, although the site has frontage on I-77, the current distance to the nearest interstate exit is approximately 5.3 miles to Exit 65 of I- 77 via two-lane state roads.

Regarding the secondary characteristics and criteria identified by the Applicant as being critical for the successful implementation of the Proposed Project, the site appears to fully satisfy three (3) of the five (5) additional criteria. In particular, the JAB Site West site is located in Chester County, within the Midlands of the State. As such, the site comports with the Client's expressed a strong preference for a location in the Midlands and providing access to the Midlands employee pool and the area's high concentration of engineering and skilled labor talent offering access to skilled labor, training, educational, and collaboration opportunities. Accordingly, the site meets the first secondary characteristic and criterion identified by the Applicant for the Proposed Project.

Second, the site has direct frontage on I-77, sufficient to allow for a dedicated interchange with the interstate and provide the desired visibility for project facilities. Thus the site's location would be conducive to a dedicated interchange, allowing for the desired logistical and transportation efficiencies achieved through direct access to the site. Without a dedicated interchange, however, employees and

[^42]supplies would need to access the site via local roads and existing Exit 65, which is located more than one (1) mile from the project site (approximately 5.3 miles), potentially overburdening these existing surrounding roadways. Accordingly, the site fulfills the second secondary characteristic and criterion identified by the Applicant for the Proposed Project.

Third, the site is located approximately 13.7 miles from the City of Chester, population 5,245 , and 23.2 miles from the City of Lancaster, population 8,575 . Because none of the municipalities in close proximity to the site are considered major MSA's, the Applicant determined that the closest MSA with possible sufficient population size to satisfy the Proposed Project is the City of Rock Hill, population 74,102 , which is located approximately 8.5 miles away. Nearby access to an MSA's high concentration of engineering and skilled labor talent provides the Client with skilled labor, training, and educational opportunities. The further away from an MSA of sufficient population, the more difficult it will be for the Client to utilize those vital resources to recruit and develop its employees. Accordingly, the site fulfills the third secondary characteristic and criterion identified by the Applicant for the Proposed Project; however, while the site is in close proximity to Rock Hill, the population of Rock Hill is significantly smaller than the population of Columbia $(137,541)$. Attracting the necessary skilled labor force would therefore be more difficult at the site than the Columbia MSA, making the site a less practicable alternative for the Proposed Project.

Fourth, while the site is located approximately 91 miles from the Inland Port Greer, and 140 miles from the Inland Port Dillon, the Port of Charleston is located approximately 173 miles from the site, more than the desired outer limit of 145 miles. Thus, the site only partially fulfills the fourth secondary characteristic and criterion identified by the Applicant for the Proposed Project and rendering it a less feasible and practicable alternative to the Client.

Fifth, a review of publicly-available information renders inconclusive a determination as to whether the site has immediate access to all required industrial-level utilities. According to data kept by Commerce, the site has access to water and sewer through the Chester Metropolitan District and the Chester Sewer District, respectively, although information as to whether the existing water and sewer lines are sufficient for industrial use is undetermined. The site also has access to power via Duke Energy; however, an existing power line easement bisects two portions of the available acreage, which would require the Applicant to relocate service. Finally, the site does not have immediate access to natural gas. As set forth above, immediate access to utility infrastructure is key both from an operations and timing perspective, as without adequate access to power, water, gas, and sewer with sufficient capacity, no development is possible, and the length of time it would take to get utility easements/rights-of-way to the site would compromise the Applicant's ability to meet the expected construction and operation deadlines for the Proposed Project. Accordingly, the site only partially satisfies the fifth secondary characteristic and criterion identified by the Applicant for the Proposed

Project, while capacity issues for utilities would require further investigation and costly upgrades, if necessary.

Further, while the available acreage (1,023 acres) is conceptually conducive to the Proposed Project, as discussed above, the construction limits of the planned development of the Proposed Project would comprise approximately 1,633 acres. While the Applicant included alternative sites greater than 1,000 acres for consideration in order to conduct a comprehensive analysis of available alternative sites, the project limits were established based on the overall layout of the facility satisfying the purpose and need of the Proposed Project. Artificially reducing the overall size of the Proposed Project fails to meet the purpose and need identified by the Applicant. In particular, an artificial reduction in facility size would potentially render the project incapable of accommodating a second phase deemed critical to the client. Not being able to fully construct the second phase of the project, reducing the building footprints to fit the site, or eliminating certain of the buildings altogether, would not satisfy the minimum requirements and parameters of the Client. Current technologies dictate that the component parts and overall production of electric vehicles is more expensive than the components and production of internal combustion engine automobiles. ${ }^{38}$ The Client's investment in South Carolina generally, and the Proposed Project specifically, is premised on its ability to recoup its investment through the attainment of certain production goals based on current and projected industry demand, government-dictated policies setting targets for emission reductions, and production-related subsidies and tax rebates designed to support the production of long range, zero emission vehicles. As such, reducing the production capacity of the facility through an arbitrary reduction of individual building footprints or the overall project size would place the Client investment at risk, while also impeding the Client's ability to stage, produce, finish, and ship automobiles in the manner in which Client's extensive experience in designing, constructing, and operating similar facilities around the world would dictate. See 46 Fed. Reg. 18026 (March 23, 1981) (dictating that under NEPA, reasonable alternatives include those that are practical or feasible from a technical and economic standpoint and using common sense, rather than simply desirable from the standpoint of the applicant). Client's extensive experience and the required advanced manufacturing process has dictated the proposed linear shape of facilities that flow in the order shown, effectively preventing the re-location of specific component parts of the overall facility, even within each specific phase, in order to fit the shape or size of a site. Accordingly, and upon closer inspection and review, the site does not meet the minimum acreage required by the Applicant and Client to fulfill the purpose and need of the Proposed Project.

In addition, the shape of the site, an upside down "U", is not conducive to the required configuration of a dense, linear grouping with a specified sequencing that is necessary for staging, production, finishing, and shipping automobiles, which is the result Client's extensive experience designing,

[^43]constructing, and operating similar facilities as one of the largest and most highly advanced manufacturing OEM companies in the world. The site plan is based on directives from the Client as to required manufacturing and processing flows for an advanced manufacturing OEM automotive facility for each of the respective phases. These directives dictated a linear shape that flowed in the order shown and also dictated that, for instance, the locations for the specific component parts of the overall facility, even within each specific phase, were necessary and strategically placed, preventing the Applicant from relocating buildings to other locations in order to fit the desired footprint of the Proposed Project within the existing shape of the site. Here, in order to fit all of the project components and buildings onto the site, significant re-arranging of the buildings was required, as shown on Exhibit I. This included, for instance, separating the Assembly facilities, and locating the Assembly facilities, Paint Shop, Body Shops, and Press Shop facilities throughout the site, rather than keeping them together in a unified layout, which is not conducive to the desired automotive process. These changes would destroy any semblance of the desired automotive process and effectively renders this alternative incompatible for the Proposed Project from a process and logistics point of view. Further, separating these facilities would incrementally increase the cost of production of each vehicle to the Client by increasing the time required to transport assembled automotive components throughout the site, thereby decreasing the efficiency achieved through the masterplan design for automotive production proposed by the Client's preferred layout.

Regarding impacts to special aquatic sites on the JAB Site West site, based on the Applicant's review of available delineation information, locating a conceptual version of the Proposed Project on the site would result in permanent fill impacts to approximately 129 acres of jurisdictional wetlands and approximately 52,350 linear feet of streams. Compared to the Property, this alternative site would result in substantially greater impacts to both jurisdictional wetlands and streams. Moreover, given that fitting the component buildings of the Proposed Project on the site would require substantial reconfiguring of the project layout, as discussed extensively in the preceding paragraphs, these figures are correspondingly skewed, do not represent an apples to apples comparison, endanger the Client's investment in the Proposed Project, and therefore fail to meet the purpose and need of the project.

Further, no onsite cultural resource review, protected species assessment, or in-depth wetlands delineation has been conducted; therefore, the existence of unexpected impacts, and the precise number impacts to those resources on the site, are unknown and could be greater.

Based on the fact that the site does not to fully satisfy two (2) of the five (5) additional secondary characteristics and criteria for the Proposed Project, lacks sufficient developable acreage to meet with desired project limits without artificially reducing the project's size, and the shape of the site is not conducive to the desired condensed, linear layout, in addition to substantially greater impacts to both jurisdictional wetlands and streams, the Applicant determined that the JAB Site West Alternative Site 2 property is a less feasible and practicable alternative which would not fulfill the purpose and need
of the Proposed Project. As a result, it was eliminated from consideration through Level 2 of this analysis.

6.2.4 Carolinas I-95 Super Park. Alternative Site 3

The Carolinas I-95 Super Park Alternative Site 3 property was carried through to Level 2 analysis based on its ability to fully satisfy, at the macro-level, all four (4) of the primary characteristics and criteria identified by the Applicant for the Proposed Project. A depiction of the preferred site layout for the Proposed Project on the Carolinas I-95 Super Park site is provided in Exhibit \mathbf{J} to this alternatives analysis.

In particular, at 1,509.35 acres, on the surface the Carolinas I-95 Super Park site meets the required minimum available and developable acreage estimated by the Applicant to accommodate the required approximately 16, Million/sf of buildings onsite, along with attendant parking and site infrastructure, as well as sufficient additional acreage to provide flexibility to meet future growth opportunities should market conditions dictate further investment in the future. The site is also located directly adjacent to, with frontage on, and within one (1) mile of Exit 190 of I-95, and a CSX rail line and the Inland Port Dillon is adjacent to the site to the South. Finally, the site is located within the 180-mile combined window for the North/South and East/West transportation corridors along the East Coast that was identified by Client as being the ideal, approximately 0.5 miles away from I-95 and 116 miles away from I-85.

Regarding the secondary characteristics and criteria identified by the Applicant as being critical for the successful implementation of the Proposed Project, the site appears not to fully satisfies any of the five (5) additional criteria. In particular, the Carolinas I-95 Super Park site is located in Dillon County, outside of the Midlands. As such, the site does not comport with the Client's expressed a strong preference for a location in the Midlands, foreclosing meaningful access to the Midlands employee pool and the area's high concentration of engineering and skilled labor talent offering access to skilled labor, training, educational, and collaboration opportunities. Accordingly, the site does not meet the first secondary characteristic and criterion identified by the Applicant for the Proposed Project.

Second, while the site has direct frontage on I-95, the area adjacent to the interstate is located only 0.9 miles from Exit 190 on I-95. Under State and Federal regulations, the location of new interchanges typically must be a minimum of one (1) mile away from existing interchanges in order to provide the necessary entrance/exit ramp infrastructure in a safe manner. Thus the site's location is not conducive to a dedicated interchange, preventing the desired logistical and transportation efficiencies achieved through direct access to the site. Without the possibility of a dedicated interchange, employees and supplies would need to access the site via local roads and existing Exit 190, potentially overburdening these existing surrounding roadways. Accordingly, the site does not fully fulfill the second secondary
characteristic and criterion identified by the Applicant for the Proposed Project and rendering it a less feasible and practicable alternative to the Client.

Third, the site is located approximately 1.5 miles from the City of Dillon, population 6,282, and 7 miles from the Town of Latta, population 1,283, 18.7 miles from the City of Mullins, population 3,935, and 19.6 miles from the City of Marion, population 6,314. Because none of the municipalities in close proximity to the site are considered major MSA's, the Applicant determined that the closest MSA with possible sufficient population size to satisfy the Proposed Project is the City of Florence, population 39,958 , which is located approximately 30 miles away. Given that proximity to a work site and daily commute time factor significantly in a prospective employee's decision-making process to accept and stay in a job, see n. 17 , supra, the Client was purposeful in targeting sites within 15 miles of a large MSA, in order to reduce the need to recruit workers requiring a re-location or a significant commute time for workers within that labor pool. This consideration was important to the Client in terms of both access to labor, worker health and well-being, as well as serving as an attractive employment opportunity/alternative in close proximity to the MSA. Nearby access to an MSA's high concentration of engineering and skilled labor talent provides the Client with skilled labor, training, and educational opportunities. The further away from an MSA, the more difficult it will be for the Client to utilize those vital resources to develop its employees, and the more difficult it will be for the Client to recruit and retain qualified employees. Here, the municipalities in close proximity to the site lack the population size to provide the number of skilled workers for the Proposed Project, requiring it to pull from an MSA 30 miles away. Further, due to the existing industry in the Florence MSA, including the newly-announced Envision AESC electric battery facility currently under construction and projected to create 1,170 new jobs, the Client would be required to compete for skilled manufacturing labor in a market that is limited to start and becoming more competitive. Attracting the necessary skilled labor force would therefore be more difficult at the site and require an increased daily commute time for employees as compared to the Columbia MSA, making the site a less practicable alternative for the Proposed Project. Accordingly, the site does not fulfill the third secondary characteristic and criterion identified by the Applicant for the Proposed Project and rendering it a less feasible and practicable alternative to the Client.

Fourth, while the site is located adjacent to the Inland Port Dillon, ameliorating rail concerns, the site is still located approximately 156 miles from the Port of Charleston and approximately 211 miles from the Inland Port Greer, failing to fully meet the fourth secondary characteristic and criterion identified by the Applicant for the Proposed Project and rendering it a less feasible and practicable alternative to the Client.

Fifth, a review of publicly-available information renders inconclusive a determination as to whether the site has immediate access to all required industrial-level utilities. According to data kept by Commerce, the site has access to water, but only through a 12 -inch existing line, insufficient for industrial use, has access to sewer, but only through a gravity line, insufficient for industrial use and requiring the installation of a costly development-specific pump station (assuming the City of Dillon

[^44]Page 59 of 97
has existing capacity), has access to power, although publicly-available Commerce data suggests that it is one (1) mile from the site, and the site does not have immediate access to natural gas. Regarding access to power specifically, the one (1) mile represents only the distance required for power to be provided to the site, but does not include the internal distribution network required to power an electric vehicle plant. As set forth above, immediate access to utility infrastructure is key both from an operations and timing perspective, as without adequate access to power, water, gas, and sewer with sufficient capacity, no development is possible, and the length of time it would take to get utility easements/rights-of-way to the site would compromise the Applicant's ability to meet the expected construction and operation deadlines for the Proposed Project. Accordingly, the site fails to meet the fifth secondary characteristic and criterion identified by the Applicant for the Proposed Project.

Further, while the available acreage ($1,509.35$ acres $)^{39}$ is conceptually conducive to the Proposed Project, as discussed above, the construction limits of the planned development of the Proposed Project would comprise approximately 1,633 acres. While the Applicant included alternative sites greater than 1,000 acres for consideration in order to conduct a comprehensive analysis of available alternative sites, the project limits were established based on the overall layout of the facility satisfying the purpose and need of the Proposed Project. Artificially reducing the overall size of the Proposed Project fails to meet the purpose and need identified by the Applicant. In particular, an artificial reduction in facility size would potentially render the project incapable of accommodating a second phase deemed critical to the client. Not being able to fully construct the second phase of the project, reducing the building footprints to fit the site, or eliminating certain of the buildings altogether, would not satisfy the minimum requirements and parameters of the Client. Current technologies dictate that the component parts and overall production of electric vehicles is more expensive than the components and production of internal combustion engine automobiles. ${ }^{40}$ The Client's investment in South Carolina generally, and the Proposed Project specifically, is premised on its ability to recoup its investment through the attainment of certain production goals based on current and projected industry demand, government-dictated policies setting targets for emission reductions, and production-related subsidies and tax rebates designed to support the production of long range, zero emission vehicles. As such, reducing the production capacity of the facility through an arbitrary reduction of individual building footprints or the overall project size would place the Client investment at risk, while also impeding the Client's ability to stage, produce, finish, and ship automobiles in the manner in which Client's extensive experience in designing, constructing, and operating similar facilities around the world would dictate. See 46 Fed. Reg. 18026 (March 23, 1981) (dictating that under NEPA, reasonable alternatives include those that are practical or feasible from a technical and

[^45]economic standpoint and using common sense, rather than simply desirable from the standpoint of the applicant). Client's extensive experience and the required advanced manufacturing process has dictated the proposed linear shape of facilities that flow in the order shown, effectively preventing the re-location of specific component parts of the overall facility, even within each specific phase, in order to fit the shape or size of a site. Accordingly, and upon closer inspection and review, the site does not meet the minimum acreage required by the Applicant and Client to fulfill the purpose and need of the Proposed Project.

In addition, the shape of the site, an upside down " T ", is not conducive to the required configuration of a dense, linear grouping with a specified sequencing that is necessary for staging, production, finishing, and shipping automobiles, which is the result Client's extensive experience designing, constructing, and operating similar facilities as one of the largest and most highly advanced manufacturing OEM companies in the world. The site plan is based on directives from the Client as to required manufacturing and processing flows for an advanced manufacturing OEM automotive facility for each of the respective phases. These directives dictated a linear shape that flowed in the order shown and also dictated that, for instance, the locations for the specific component parts of the overall facility, even within each specific phase, were necessary and strategically placed, preventing the Applicant from relocating buildings to other locations in order to fit the desired footprint of the Proposed Project within the existing shape of the site. Here, in order to fit all of the project components and buildings onto the site, significant re-arranging of the buildings was required, as shown on Exhibit J. This included, for instance, separating the Assembly and Body Shop facilities, and locating the Assembly facilities, Paint Shop, Body Shops, Press Shop, and FBU facilities throughout the site, rather than keeping them together in a unified layout, which is not conducive to the desired automotive process. These changes would destroy any semblance of the desired automotive process and effectively renders this alternative incompatible for the Proposed Project from a process and logistics point of view. Further, separating these facilities would incrementally increase the cost of production of each vehicle to the Client by increasing the time required to transport assembled automotive components throughout the site, thereby decreasing the efficiency achieved through the masterplan design for automotive production proposed by the Client's preferred layout.

Regarding impacts to special aquatic sites on the Carolinas I-95 Super Park site, based on the Applicant's review of available delineation information, locating a conceptual version of the Proposed Project on the site would result in permanent fill impacts to approximately 216.5 acres of jurisdictional wetlands and approximately 23,850 linear feet of streams. Compared to the Property, this alternative site would result in nearly three times the number of impacts to jurisdictional wetlands, while streams impacts would be reduced; however, given that the Proposed Project is required to be substantially reconfigured to fit the site, as discussed extensively in the preceding paragraphs, these figures are
correspondingly skewed, do not represent an apples to apples comparison, endanger the Client's investment in the Proposed Project, and therefore fail to meet the purpose and need of the project.

Further, no onsite cultural resource review, protected species assessment, or in-depth wetlands delineation has been conducted; therefore, the existence of unexpected impacts, and the precise number impacts to those resources on the site, are unknown and could be greater.

Based on the fact that the site does not to fully satisfies any of the five (5) additional secondary characteristics and criteria for the Proposed Project, would require modifications of the Proposed Project's layout that would not be conducive to the automotive processes of the Client, and substantially greater impacts to jurisdictional wetlands, the Applicant determined that the Carolinas I95 Super Park Alternative Site 3 property is a less feasible and practicable alternative which would not fulfill the purpose and need of the Proposed Project. As a result, it was eliminated from consideration through Level 2 of this analysis.

6.2.5 I-77 International Megasite Alternative Site 4

The I-77 International Megasite Alternative Site 4 property was carried through to Level 2 analysis based on its ability to fully satisfy, at the macro-level, all four (4) of the primary characteristics and criteria identified by the Applicant for the Proposed Project. A depiction of the preferred site layout for the Proposed Project on the I-77 International Megasite Alternative Site 4 property is provided in Exhibit K to this alternatives analysis.

In particular, at 1,544 acres, the I-77 International Megasite meets the required minimum available and developable acreage estimated by the Applicant to accommodate the required approximately 16 Million/sf of buildings onsite, along with attendant parking and site infrastructure, as well as sufficient additional acreage to provide flexibility to meet future growth opportunities should market conditions dictate further investment in the future. The site is also located directly adjacent to, with frontage on, I-77, and a Norfolk Southern rail line runs adjacent to the Southern boundary of the site, near Exit 34 of I-77. Finally, the site is located within the combined 180-mile window for the North/South and East/West transportation corridors along the East Coast that was identified by Client as being the ideal, approximately 80 miles away from Interstate 95, and approximately 75 miles away from Interstate 85.

Regarding the secondary characteristics and criteria identified by the Applicant as being critical for the successful implementation of the Proposed Project, the site is located in the Midlands of the State. As such, the site comports with the Client's expressed a strong preference for a location in the Midlands and providing access to the Midlands employee pool and the area's high concentration of engineering and skilled labor talent offering access to skilled labor, training, educational, and
collaboration opportunities. Accordingly, the site meets the first secondary characteristic and criterion identified by the Applicant for the Proposed Project.

Second, the site has significant frontage on I-77 sufficient to allow for a dedicated interchange with the interstate and provide the desired visibility for project facilities. Thus the site's location would be conducive to a dedicated interchange, allowing for the desired logistical and transportation efficiencies achieved through direct access to the site. Without a dedicated interchange, however, employees and supplies would need to access the site via local roads and existing Exit 34, potentially overburdening these existing surrounding roadways. Accordingly, the site fulfills the second secondary characteristic and criterion identified by the Applicant for the Proposed Project.

Third, the site is located within 145 miles of the Port of Charleston (142 miles), the Inland Port Greer (112 miles), and the Inland Port Dillon (106 miles). Accordingly, the site meets the fourth secondary characteristics and criteria identified by the Applicant for the Proposed Project.

However, the site does not meet the remaining two secondary characteristics and criteria. In particular, the site is approximately 23 miles from Columbia. Given that proximity to a work site and daily commute time factor significantly in a prospective employee's decision-making process to accept and stay in a job, see n. 17 , supra, the Client was purposeful in targeting sites within 15 miles of a large MSA, in order to reduce the need to recruit workers requiring a re-location or a significant commute time for workers within that labor pool. This consideration was important to the Client in terms of both access to labor, worker health and well-being, as well as serving as an attractive employment opportunity/alternative in close proximity to the MSA. Nearby access to an MSA's high concentration of engineering and skilled labor talent provides the Client with skilled labor, training, and educational opportunities. The further away from an MSA, the more difficult it will be for the Client to utilize those vital resources to develop its employees, and the more difficult it will be for the Client to recruit and retain qualified employees. Here, the site is located more than fourteen miles further away from Columbia than the Property and outside of the radius the Client identified as being the desired maximum commute mileage of 15 miles from the nearest MSA. Attracting the necessary skilled labor force would therefore be more difficult at the site and require an increased daily commute time for employees from the Columbia MSA, making the site a less desirable job opportunity to prospective workers in the Columbia MSA and limiting the practicability of the alternative for the Proposed Project. Accordingly, the site does not fulfill the third secondary characteristic and criterion identified by the Applicant for the Proposed Project and rendering it a less feasible and practicable alternative to the Client.

In addition, while the site has existing onsite access to power (via Dominion Energy), the Applicant understands that water and sewer service (via the Town of Winnsboro) are not currently located onsite. Instead, construction of approximately 1,000 feet of water and sewer service lines, respectively, would be required just to bring both utilities to the property boundary of the site, and would require extensive, expensive, and time-consuming efforts to attain the required utility easements and rights-

[^46]Page 63 of 97
of-way. As set forth above, immediate access to utility infrastructure is key both from an operations and timing perspective, as without adequate access to power, water, gas, and sewer with sufficient capacity, no development is possible. Attaining the required utility easements/rights-of-way to the site would compromise the Applicant's ability to meet the expected construction and operation deadlines for the Proposed Project. This is compared to the Property, which already has immediate, on-site access to all required utilities. ${ }^{41}$ The lack of immediate onsite access to water and sewer is a further factor that renders the I-77 International Megasite Alternative Site 5 property a less feasible and practicable alternative for the Proposed Project. Accordingly, the site does not fulfill the fifth secondary characteristic and criterion identified by the Applicant for the Proposed Project.

Further, while the available acreage (1,544 acres) is conceptually conducive to the Proposed Project, as discussed above, the construction limits of the planned development of the Proposed Project would comprise approximately 1,633 acres. In addition, the shape of the site is compressed, constrained by the property boundary to the East, and a significant portion of the acreage is a thin, finger-like project along I-77 from the South of the site extending to accommodate the desired rail connect with little other available use to that portion of the acreage. As a result, the remaining acreage of the site is not conducive to the required configuration of a dense, linear grouping with a specified sequencing that is necessary for staging, production, finishing, and shipping automobiles, which is the result Client's extensive experience designing, constructing, and operating similar facilities as one of the largest and most highly advanced manufacturing OEM companies in the world. The site plan is based on directives from the Client as to required manufacturing and processing flows for an advanced manufacturing OEM automotive facility for each of the respective phases. These directives dictated a linear shape that flowed in the order shown and also dictated that, for instance, the locations for the specific component parts of the overall facility, even within each specific phase, were necessary and strategically placed, preventing the Applicant from relocating buildings to other locations in order to fit the desired footprint of the Proposed Project within the existing shape of the site. Here, in order to fit each of the Proposed Project's individual components and buildings on the site, the Applicant was forced to re-organize the building layout in a manner that does not comport with the Client's established manufacturing process. This included, for instance, pulling the battery and assembly facilities out of their desired location parallel and adjacent to the other buildings, in particular the assembly shops that utilize the assembled batteries via mechanized conveyance. It also required moving the finished product parking away from the paint shops, typically the last step in the assembly process. Neither of these changes fit with the identified process and flow for the Client's Proposed Project and therefore fail to meet the purpose and need for the project. Further, separating these facilities would incrementally increase the cost of production of each vehicle to the Client by increasing the time required to transport assembled automotive components throughout the site, thereby
${ }^{41}$ The Proposed Project itself requires extensive on-site utility work to satisfy the needs of an advanced automotive manufacturing facility; however, on-site utility work would be required at any alternative site and has not factored into the Applicant's consideration of access to utilities (i.e., only off-site access issues were considered in this analysis).

[^47]Page 64 of 97
decreasing the efficiency achieved through the masterplan design for automotive production proposed by the Client's preferred layout.

Moreover, in order to fit the Proposed Project on the site in the desire layout, the overall size of the facilities would need to be reduced. However, artificially reducing the overall size of the Proposed Project would likewise fail to meet the purpose and need identified by the Applicant. In particular, an artificial reduction in facility size would potentially render the project incapable of accommodating a second phase deemed critical to the client. Not being able to fully construct the second phase of the project, reducing the building footprints to fit the site, or eliminating certain of the buildings altogether, would not satisfy the minimum requirements and parameters of the Client. Current technologies dictate that the component parts and overall production of electric vehicles is more expensive than the components and production of internal combustion engine automobiles. ${ }^{42}$ The Client's investment in South Carolina generally, and the Proposed Project specifically, is premised on its ability to recoup its investment through the attainment of certain production goals based on current and projected industry demand, government-dictated policies setting targets for emission reductions, and production-related subsidies and tax rebates designed to support the production of long range, zero emission vehicles. As such, reducing the production capacity of the facility through an arbitrary reduction of individual building footprints or the overall project size would place the Client investment at risk, while also impeding the Client's ability to stage, produce, finish, and ship automobiles in the manner in which Client's extensive experience in designing, constructing, and operating similar facilities around the world would dictate. See 46 Fed. Reg. 18026 (March 23, 1981) (dictating that under NEPA, reasonable alternatives include those that are practical or feasible from a technical and economic standpoint and using common sense, rather than simply desirable from the standpoint of the applicant). Client's extensive experience and the required advanced manufacturing process has dictated the proposed linear shape of facilities that flow in the order shown, effectively preventing the re-location of specific component parts of the overall facility, as shown here for the I-77 International Megasite, in order to fit the shape or size of a site. Accordingly, and upon closer inspection and review, the site does not meet the minimum acreage shape required by the Applicant and Client to fulfill the purpose and need of the Proposed Project. Regarding impacts to special aquatic sites on the I-77 International Megasite, based on the Applicant's review of available delineation information, locating the Proposed Project on the site would result in permanent fill impacts to approximately 8.5 acres of jurisdictional wetlands and approximately 50,690 linear feet of streams. Compared to the Property, while this alternative site would result in fewer impacts to jurisdictional wetlands, impacts to jurisdictional streams would be greater.

With respect to threatened and endangered species, S\&ME conducted a protected species assessment of the site on April 11, 2016, which evaluated the site for federally protected species (threatened or

[^48]endangered) and habitat, including Bald Eagles and Carolina Heelsplitters. The assessment determined that there was no evidence of, or suitable habitat for, Bald Eagles. The assessment further found that there was no evidence of Carolina Heelsplitters on the site, but based on the finding of potentially suitable habitat, recommended a may affect, not likely to adversely affect determination with respect to Carolina Heelsplitters. On May 4, 2016, U.S. Fish and Wildlife concurred in that determination.

With respect to cultural resources, S\&ME conducted a cultural resources identification survey (CRIS) of the site in 2016. As a part of the survey, 12 archaeological sites (38FA594 - 38FA604, and 38FA606), 14 isolated finds (IF-1 - IF-14), one National Register of Historic Places (NRHP) listed structure approximately 0.25 miles from the site (Valencia House, NRHP No. 715450016), one cemetery (Durham Cemetery, 29-0085), and no previously-unrecorded historic structures, were identified. As a result, S\&ME recommended an intensive survey for 50 acres of the site, including additional work at sites 38 FA601 and 38 FA606 contained within the 50 -acre portion of the site to determine NRHP eligibility. Following multiple reviews and requests for additional information, SHPO concurred with S\&ME's recommendations for intensive Phase I level surveying of the 50 acres and sites 38FA601 and 38FA606, should that area be included in any future development of the site. If the areas are excluded from development, SHPO recommended appropriate buffering of the areas.

Based on the site's distance from the Columbia MSA, as well as its current lack of all available onsite utilities, and approximately 25% greater impacts to jurisdictional streams, the Applicant determined that the I-77 International Megasite Alternative Site 4 property did not fully meet the identified secondary characteristics and criteria, rendering it a less feasible and practicable alternative which would not fulfill the purpose and need of the Proposed Project. As a result, it was eliminated from consideration through Level 2 of this analysis.

6.2.6 Central South Carolina Megasite Alternative Site 15

The Central South Carolina Megasite Alternative Site 15 was carried through to Level 2 analysis based on its ability to fully satisfy, at the macro-level, all four (4) of the primary characteristics and criteria identified by the Applicant for the Proposed Project. A depiction of the preferred site layout for the Proposed Project on the Central South Carolina Megasite is provided in Exhibit L to this alternatives analysis.

In particular, at 1,426 acres, the Central South Carolina Megasite meets the required minimum available and developable acreage estimated by the Applicant to accommodate the required approximately 16 Million/sf of buildings onsite, along with attendant parking and site infrastructure, as well as sufficient additional acreage to provide flexibility to meet future growth opportunities should market conditions dictate further investment in the future. The site is also located directly adjacent to, with frontage on, and within one (1) mile of Exit 92 of I-20, and a CSX rail line runs adjacent to the Northern boundary of the site. Finally, the site is located within the combined 180-mile window
for the North/South and East/West transportation corridors along the East Coast that was identified by Client as being the ideal, approximately 90 miles away from I-85 and 49 miles away from I-95.

Regarding the secondary characteristics and criteria identified by the Applicant as being critical for the successful implementation of the Proposed Project, the site is located is located in the Midlands and is within 145 miles of the Port of Charleston (120 miles), the Inland Port Greer (112 miles), and the Inland Port Dillon (106 miles), respectively. In addition, the site appears to have immediate access to all required utilities. Accordingly, the site meets the first, fourth, and fifth secondary characteristics and criteria identified by the Applicant for the Proposed Project.

However, certain aspects of the site render is a less feasible and practicable alternative for the Proposed Project. In particular, while the available acreage ($1,426 \mathrm{acres}$) is conceptually conducive to the Proposed Project, the shape of the site would require the Applicant to reduce the overall size of the facility layout by approximately thirteen percent (13\%), as reflected in Exhibit L. Artificially reducing the overall size of the Proposed Project fails to meet the purpose and need identified by the Applicant. In particular, an artificial reduction in facility size would potentially render the project incapable of accommodating a second phase deemed critical to the client. Not being able to fully construct the second phase of the project, reducing the building footprints to fit the site, or eliminating certain of the buildings altogether, would not satisfy the minimum requirements and parameters of the Client. Current technologies dictate that the component parts and overall production of electric vehicles is more expensive than the components and production of internal combustion engine automobiles. ${ }^{43}$ The Client's investment in South Carolina generally, and the Proposed Project specifically, is premised on its ability to recoup its investment through the attainment of certain production goals based on current and projected industry demand, government-dictated policies setting targets for emission reductions, and production-related subsidies and tax rebates designed to support the production of long range, zero emission vehicles. As such, reducing the production capacity of the facility through an arbitrary reduction of individual building footprints or the overall project size would place the Client investment at risk, while also impeding the Client's ability to stage, produce, finish, and ship automobiles in the manner in which Client's extensive experience in designing, constructing, and operating similar facilities around the world would dictate. See 46 Fed. Reg. 18026 (March 23, 1981) (dictating that under NEPA, reasonable alternatives include those that are practical or feasible from a technical and economic standpoint and using common sense, rather than simply desirable from the standpoint of the applicant). Client's extensive experience and the required advanced manufacturing process has dictated the proposed linear shape of facilities that flow in the order shown, effectively preventing the re-location of specific component parts of the overall facility, even within each specific phase, in order to fit the shape or size of a site.

Further, because the shape of the site is compressed, it is not conducive to the required configuration of a dense, linear grouping with a specified sequencing that is necessary for staging, production,

[^49]finishing, and shipping automobiles, which is the result Client's extensive experience designing, constructing, and operating similar facilities as one of the largest and most highly advanced manufacturing OEM companies in the world. The site plan is based on directives from the Client as to required manufacturing and processing flows for an advanced manufacturing OEM automotive facility for each of the respective phases. These directives dictated a linear shape that flowed in the order shown and also dictated that, for instance, the locations for the specific component parts of the overall facility, even within each specific phase, were necessary and strategically placed, preventing the Applicant from relocating buildings to other locations in order to fit the desired footprint of the Proposed Project within the existing shape of the site. Here, in order to fit each of the Proposed Project's individual components and buildings on the site, the Applicant was forced to re-organize the building layout in a manner that does not comport with the Client's established manufacturing process. This included, for instance, pulling the battery facilities away from the assembly facilities and thus out of their desired location parallel and adjacent to the assembly shops that utilize the assembled batteries via mechanized conveyance. It also required moving the finished product parking away from the paint shops, typically the last step in the assembly process, essentially creating an unnecessary loop in the assembly process that is neither efficient nor optimal from a logistics standpoint. Neither of these changes fit with the identified process and flow for the Client's Proposed Project and therefore fail to meet the purpose and need for the project. Further, separating these facilities would incrementally increase the cost of production of each vehicle to the Client by increasing the time required to transport assembled automotive components throughout the site, thereby decreasing the efficiency achieved through the masterplan design for automotive production proposed by the Client's preferred layout.

In addition, the site does meet the remaining two secondary characteristics and criteria. In particular, while the site has frontage on I-20 sufficient to allow for a dedicated interchange with the interstate and provide the desired visibility for project facilities, that frontage is located nearly adjacent to Exit 92 of I-20. As discussed above, under State and Federal regulations, the location of new interchanges typically must be a minimum of one (1) mile away from existing interchanges in order to provide the necessary entrance/exit ramp infrastructure in a safe manner. Thus the site's location is not conducive to a dedicated interchange, preventing the desired logistical and transportation efficiencies achieved through direct access to the site. Without the possibility of a dedicated interchange, employees and supplies would need to access the site via local roads and existing Exit 92, potentially overburdening these existing surrounding roadways. Accordingly, the site does not fulfill the second secondary characteristic and criterion identified by the Applicant for the Proposed Project and rendering it a less feasible and practicable alternative to the Client.

In addition, the site is approximately 17 miles from Columbia, the nearest MSA. Given that proximity to a work site and daily commute time factor significantly in a prospective employee's decision-making process to accept and stay in a job, see n. 17 , supra, the Client was purposeful in targeting sites within 15 miles of a large MSA, in order to reduce the need to recruit workers requiring a re-location or a significant commute time for workers within that labor pool. This consideration was important to the

[^50]Page 68 of 97

Client in terms of both access to labor, worker health and well-being, as well as serving as an attractive employment opportunity/alternative in close proximity to the MSA. Nearby access to an MSA's high concentration of engineering and skilled labor talent provides the Client with skilled labor, training, and educational opportunities. The further away from an MSA, the more difficult it will be for the Client to utilize those vital resources to develop its employees, and the more difficult it will be for the Client to recruit and retain qualified employees. Here, while the site sits just two miles beyond the desired parameter of 15 miles, the site is located outside of the radius the Client identified as being the desired maximum commute mileage from the nearest MSA, and the site is located more than eight miles further away from Columbia than the Property. Attracting the necessary skilled labor force would therefore be more difficult at the site and require an increased daily commute time for employees from the Columbia MSA, making the site an incrementally less desirable job opportunity to prospective workers in the Columbia MSA, thereby limiting the practicability of the alternative for the Proposed Project. Accordingly, the site does not fulfill the third secondary characteristic and criterion identified by the Applicant for the Proposed Project and rendering it a less feasible and practicable alternative to the Client.

Regarding impacts to special aquatic sites on the Central South Carolina Megasite, based on the Applicant's review of available delineation information, locating a reduced conceptual version of the Proposed Project on the site would result in permanent fill impacts to approximately 54.3 acres of jurisdictional wetlands and approximately 6,575 linear feet of streams. Compared to the Property, this alternative site would result in fewer impacts to jurisdictional wetlands and streams; however, given that the Proposed Project is required to be artificially reduced to fit the site, as discussed extensively in the preceding paragraphs, these figures are correspondingly skewed, do not represent an apples to apples comparison, endanger the Client's investment in the Proposed Project, and therefore fail to meet the purpose and need of the project.

With respect to threatened and endangered species, S\&ME conducted a protected species assessment of the site on May 12, 2011, which evaluated the site for federally protected species (threatened or endangered) and habitat, including Bald Eagles and Carolina Heelsplitters. The assessment determined that there was no evidence of, or suitable habitat for, federally protected resources in the project area. On May 31, 2011, U.S. Fish and Wildlife concurred in that determination.

With respect to cultural resources, S\&ME conducted a CRIS of the site in 2011 and submitted to SHPO on March 21, 2011. During the CRIS, 292 shovel tests were excavated in areas thought likely to contain archaeological sites and pedestrian survey was undertaken along dirt roads and other areas with good ground surface exposure. As a result of the CRIS, seven archaeological sites (38KE112938KE1135), two isolated finds (IF-1 and IF-2), and two late twentieth century historic scatters were identified. It was S\&ME's opinion that a Phase I survey should be conducted on approximately 192 acres of the project area, which were identified as having a high potential for containing significant archaeological sites, and that Phase II testing be conducted at site 38 KE 1135 to determine the final NRHP eligibility of the site. Further, a limited architectural survey was conducted during the CRIS

[^51]Page 69 of 97
and no structures 40 years or older were identified within or adjacent to the project area. By letter dated April 18, 2011, SHPO concurred in the findings of the CRIS and recommendations of S\&ME.

S\&ME completed the recommended surveying and testing in 2014, providing the Phase I survey to SHPO in October 2014. The Phase I identified eight new archaeological sites (38KE1159 through 38KE1166), three isolated finds (IF-1 through IF-3), two late twentieth century artifact scatters, and two previously recorded archaeological sites were re-located, 38KE1132 and 38KE1135. Phase II testing was not conducted at site 38 KE 1135 during these investigations. Eight of the archaeological sites (38KE1132, 38KE1159-38KE1163, 38KE1165, and 38KE1166) and the three isolated finds (IF-1-IF-3) were recommended not eligible for inclusion in the NRHP. S\&ME further recommended avoidance of sites 38 KE 1135 and 38 KE 1164 or, if plans for development will impact either site and avoidance is not possible, additional testing should be conducted at each of the sites. By letter dated November 7, 2014, SHPO concurred in the findings of the Phase I and recommendations of S\&ME.

Thereafter, in 2016, S\&ME conducted Phase II evaluative testing of site 38KE1135 and 38KE1164, which was submitted to SHPO in September 2016. Therein, S\&ME recommended that site 38 KE 1135 be deemed ineligible for inclusion in the NRHP; however, it determined that site 38 KE 1164 is eligible for inclusion and recommended avoidance. It further determined that the remainder of the Central South Carolina Megasite contains no historic properties and no additional cultural resources meriting further investigation. By letter dated November 15, 2016, SHPO concurred in the findings and recommendations of S\&ME.

Based on the site's inability to accommodate the desired, full buildout of the Proposed Project, a new dedicated interchange, as well as its distance from the Columbia MSA, the Applicant determined that the Central South Carolina Megasite Alternative Site 15 property did not fully meet the identified secondary characteristics and criteria, rendering it a less feasible and practicable alternative which would not fulfill the purpose and need of the Proposed Project.

6.2.7 Tyger Oak Inc. Alternative Site 16

The Tyger Oak Inc. Alternative Site 16 property was carried through to Level 2 analysis based on its ability to at least partially satisfy, at the macro-level, all four (4) of the primary characteristics and criteria identified by the Applicant for the Proposed Project. A depiction of the preferred site layout for the Proposed Project on the Tyger Oak Inc. site is provided in Exhibit \mathbf{M} to this alternatives analysis.

In particular, at 1,907.53 acres, the Tyger Oak Inc. site on the surface meets the required minimum available and developable acreage estimated by the Applicant to accommodate the required approximately 16 Million/sf of buildings onsite, along with attendant parking and site infrastructure, as well as sufficient additional acreage to provide flexibility to meet future growth opportunities should market conditions dictate further investment in the future. The site is also located directly adjacent to, with frontage on, and within one (1) mile of Exit 97 of I-95, and a CSX rail line runs adjacent to

[^52]Page 70 of 97
the Northern boundary of the site. Finally, the site is located within the 180 -mile combined window for the North/South and East/West transportation corridors along the East Coast that was identified by Client as being the ideal, approximately 109 miles away from I-95 and 41 miles away from I- 85.

Regarding the secondary characteristics and criteria identified by the Applicant as being critical for the successful implementation of the Proposed Project, the site does not satisfy four (4) of the five (5) additional criteria, and information related to the fifth criterion is inconclusive. In particular, the Tyger Oak Inc. site is located in Laurens County, outside of the Midlands. As such, the site does not comport with the Client's expressed a strong preference for a location in the Midlands, foreclosing meaningful access to the Midlands employee pool and the area's high concentration of engineering and skilled labor talent offering access to skilled labor, training, educational, and collaboration opportunities. Accordingly, the site does not meet the first secondary characteristic and criterion identified by the Applicant for the Proposed Project.

Second, while the site does not have direct frontage on an interstate and is located approximately one (1) mile from Exit 60 on I-26. As such, the site cannot accommodate a dedicated interchange to the project site, preventing the desired logistical and transportation efficiencies achieved through direct access to the site. Without the possibility of a dedicated interchange, employees and supplies would need to access the site via local roads and existing Exit 60, potentially overburdening these existing surrounding roadways. Accordingly, the site does not fulfill the second secondary characteristic and criterion identified by the Applicant for the Proposed Project and rendering it a less feasible and practicable alternative to the Client.

Third, the site is adjacent to the unincorporated community of Joanna, population $1,270,8.3$ miles from the City of Clinton, population $7,694,19$ miles from the City of Laurens, population 9,319, and 17.4 miles from the City of Newberry, population 10,847 . Because none of the municipalities in close proximity to the site are considered major MSA's, the Applicant determined that the closest MSA with sufficient population size to satisfy the Proposed Project is the City of Greenville, which is located 51.6 miles away. Given that proximity to a work site and daily commute time factor significantly in a prospective employee's decision-making process to accept and stay in a job, see n. 17, supra, the Client was purposeful in targeting sites within 15 miles of a large MSA, in order to reduce the need to recruit workers requiring a re-location or a significant commute time for workers within that labor pool. This consideration was important to the Client in terms of both access to labor, worker health and wellbeing, as well as serving as an attractive employment opportunity/alternative in close proximity to the MSA. Nearby access to an MSA's high concentration of engineering and skilled labor talent provides the Client with skilled labor, training, and educational opportunities. The further away from an MSA, the more difficult it will be for the Client to utilize those vital resources to develop its employees, and the more difficult it will be for the Client to recruit and retain qualified employees. Here, the municipalities in close proximity to the site lack the population size to provide the number of skilled workers for the Proposed Project, requiring it to pull from a major MSA more than 50 miles away, outside of the radius the Client identified as being the desired maximum commute mileage from the

[^53]Page 71 of 97
nearest MSA. Further, due to the existing industry and advanced automotive manufacturing the Greenville MSA, the Client would be required to compete for skilled manufacturing labor in a market that is already saturated. Attracting the necessary skilled labor force would therefore be more difficult at the site and require an increased daily commute time for employees as compared to the Columbia MSA, making the site a less practicable alternative for the Proposed Project. Accordingly, the site does not fulfill the third secondary characteristic and criterion identified by the Applicant for the Proposed Project and rendering it a less feasible and practicable alternative to the Client.

Fourth, while the site is located approximately 48.6 miles from the Inland Port Greer, the Port of Charleston is located approximately 161 miles away from the site, while the Inland Port Dillon is located approximately 159 miles away, failing to fully meet the fourth secondary characteristic and criterion identified by the Applicant for the Proposed Project and rendering it a less feasible and practicable alternative to the Client.

Fifth, a review of publicly-available information renders inconclusive a determination as to whether the site has immediate access to all required industrial-level utilities. According to data kept by Commerce, a nearby site located outside of Joanna has access to water, sewer, and power, although there are no indications that the level of service would accommodate industrial development on the size and scale required by the Proposed Project. Further, the nearby site does not have immediate access to natural gas, and presumably the Tyger Oak Inc. site does not either. As set forth above, immediate access to utility infrastructure is key both from an operations and timing perspective, as without adequate access to power, water, gas, and sewer with sufficient capacity, no development is possible, and the length of time it would take to get utility easements/rights-of-way to the site would compromise the Applicant's ability to meet the expected construction and operation deadlines for the Proposed Project. Accordingly, the site does not fully meet the fifth secondary characteristic and criterion identified by the Applicant for the Proposed Project.

Further, while the acreage of the site is undeveloped and theoretically available for development, according to updated public records, as of March 6,2023 , the site was acquired and is currently owned by The Nature Conservancy. Given The Nature Conservancy's conservation mission and purpose, the site is likely under existing restrictive covenants and/or easements that would prevent its development. Accordingly, and upon closer inspection and review, the site is likely unavailable for development by the Applicant and Client to fulfill the purpose and need of the Proposed Project.

Further, the "W" shape of the site is not conducive to the required configuration of a dense, linear grouping with a specified sequencing that is necessary for staging, production, finishing, and shipping automobiles, which is the result Client's extensive experience designing, constructing, and operating similar facilities as one of the largest and most highly advanced manufacturing OEM companies in the world. The site plan is based on directives from the Client as to required manufacturing and processing flows for an advanced manufacturing OEM automotive facility for each of the respective phases. These directives dictated a linear shape that flowed in the order shown and also dictated that,
for instance, the locations for the specific component parts of the overall facility, even within each specific phase, were necessary and strategically placed, preventing the Applicant from relocating buildings to other locations in order to fit the desired footprint of the Proposed Project within the existing shape of the site. Here, as shown on Exhibit M, because the site lacks a substantial block of acreage for the primary build site, certain components and buildings of the Proposed Project, include the Body Shops, were required to be located to the West of and isolated from the remaining buildings of the project, requiring finished vehicles to be transported around the site rather than in a natural progress dictated by the assembly process, which effectively renders this alternative incompatible for the Proposed Project from a process and logistics point of view. Further, separating these facilities would incrementally increase the cost of production of each vehicle to the Client by increasing the time required to transport assembled automotive components throughout the site, thereby decreasing the efficiency achieved through the masterplan design for automotive production proposed by the Client's preferred layout.

Even if it were available, and regarding impacts to special aquatic sites on the Tyger Oak Inc. site, based on the Applicant's review of available delineation information, locating a conceptual version of the Proposed Project on the site would result in permanent fill impacts to approximately 5.5 acres of jurisdictional wetlands and approximately 26,900 linear feet of streams. Compared to the Property, this alternative site would result in fewer impacts to both jurisdictional wetlands and streams; however, because of the modifying the proposed layout of the Proposed Project, as discussed extensively in the preceding paragraphs, would fail to meet the purpose and need of the project.

Further, no onsite cultural resource review, protected species assessment, or in-depth wetlands delineation has been conducted; therefore, the existence of unexpected impacts, and the precise number impacts to those resources on the site, are unknown and could be greater.

Based on the fact that the site does not appear to meet any of the five (5) secondary characteristics and criteria for the Proposed Project, is likely unavailable for development, and would require modifications of the Proposed Project's layout that would not be conducive to the automotive processes of the Client, the Applicant determined that the Tyger Oak Inc. Alternative Site 16 property is a less feasible and practicable alternative which would not fulfill the purpose and need of the Proposed Project. As a result, it was eliminated from consideration through Level 2 of this analysis.

6.2.8 South Carolina Gateway Alternative Site 17

The South Carolina Gateway Alternative Site 17 property was carried through to Level 2 analysis based on its ability to fully satisfy, at the macro-level, all four (4) of the primary characteristics and criteria identified by the Applicant for the Proposed Project. A depiction of the preferred site layout for the

Proposed Project on the South Carolina Gateway site is provided in Exhibit \mathbf{N} to this alternatives analysis.

In particular, at 1,257.5 acres, on the surface the South Carolina Gateway site meets the required minimum available and developable acreage estimated by the Applicant to accommodate the required approximately 16 Million/sf of buildings onsite, along with attendant parking and site infrastructure, as well as sufficient additional acreage to provide flexibility to meet future growth opportunities should market conditions dictate further investment in the future. The site is also located directly adjacent to, with frontage on, and within one (1) mile of Exit 97 of I-95, and a CSX rail line runs adjacent to the Northern boundary of the site. Finally, the site is located within the 180 -mile combined window for the North/South and East/West transportation corridors along the East Coast that was identified by Client as being the ideal, approximately 0.1 miles away from I- 95 and 155 miles away from I- 85 .

Regarding the secondary characteristics and criteria identified by the Applicant as being critical for the successful implementation of the Proposed Project, the site fully satisfies only one of the five (5) additional criteria. In particular, the site has immediate access to all required utilities. As set forth above, immediate access to utility infrastructure is key both from an operations and timing perspective, as without adequate access to power, water, gas, and sewer with sufficient capacity, no development is possible, and the length of time it would take to get utility easements/rights-of-way to the site would compromise the Applicant's ability to meet the expected construction and operation deadlines for the Proposed Project. Accordingly, the site meets the fifth secondary characteristic and criterion identified by the Applicant for the Proposed Project.

However, certain aspects of the site render is a less practicable alternative for the Proposed Project. In particular, the South Carolina Gateway site is located in Orangeburg County, outside of the Midlands. As such, the site does not comport with the Client's expressed a strong preference for a location in the Midlands, foreclosing meaningful access to the Midlands employee pool and the area's high concentration of engineering and skilled labor talent offering access to skilled labor, training, educational, and collaboration opportunities. Accordingly, the site does not meet the first secondary characteristic and criterion identified by the Applicant for the Proposed Project.

Second, while the site has direct frontage on I-95, the area adjacent to the interstate is very thin, amounting to a finger like projection to the South from the majority of the site's acreage. As such, the interstate frontage acreage is of insufficient depth to accommodate an interstate interchange. Moreover, the interstate frontage acreage is located only 0.7 miles from Exit 97 on I-95. As discussed above, under State and Federal regulations, the location of new interchanges typically must be a minimum of one (1) mile away from existing interchanges in order to provide the necessary entrance/exit ramp infrastructure in a safe manner. Thus the site's location has insufficient acreage on the interstate and its location is not conducive to a dedicated interchange, preventing the desired logistical and transportation efficiencies achieved through direct access to the site. Without the possibility of a dedicated interchange, employees and supplies would need to access the site via local

[^54]Page 74 of 97
roads and existing Exit 97, potentially overburdening these existing surrounding roadways. Accordingly, the site does not fulfill the second secondary characteristic and criterion identified by the Applicant for the Proposed Project and rendering it a less feasible and practicable alternative to the Client.

Third, the site is approximately 23 miles from Orangeburg, the nearest MSA. Given that proximity to a work site and daily commute time factor significantly in a prospective employee's decision-making process to accept and stay in a job, see n.17, supra, the Client was purposeful in targeting sites within 15 miles of a large MSA, in order to reduce the need to recruit workers requiring a re-location or a significant commute time for workers within that labor pool. This consideration was important to the Client in terms of both access to labor, worker health and well-being, as well as serving as an attractive employment opportunity/alternative in close proximity to the MSA. Nearby access to an MSA's high concentration of engineering and skilled labor talent provides the Client with skilled labor, training, and educational opportunities. The further away from an MSA, the more difficult it will be for the Client to utilize those vital resources to develop its employees, and the more difficult it will be for the Client to recruit and retain qualified employees. Here, the site is located more than fourteen miles further away from the closest MSA than the Property, outside of the radius the Client identified as being the desired maximum commute mileage from the nearest MSA. In addition, in terms of the existing labor pool, Orangeburg provides a smaller skilled labor pool than Columbia. Attracting the necessary skilled labor force would therefore be more difficult at the site and require an increased daily commute time for employees as compared to the Columbia MSA, making the site a less practicable alternative for the Proposed Project. Accordingly, the site does not fulfill the third secondary characteristic and criterion identified by the Applicant for the Proposed Project and rendering it a less feasible and practicable alternative to the Client.

Fourth, while the site is located approximately 67 miles from the Port of Charleston and approximately 98 miles from the Inland Port Dillon, it is located 170 miles from the Inland Port of Greer, failing to fully meet the fourth secondary characteristic and criterion identified by the Applicant for the Proposed Project and rendering it a less feasible and practicable alternative to the Client.

Further, while the available acreage (1,257.5 acres) is conceptually conducive to the Proposed Project, available site data published by Commerce indicates that only 748 of the acres are listed as developable. Further, as discussed above, while the Applicant included alternative sites greater than 1,000 acres for consideration in order to conduct a comprehensive analysis of available alternative sites, the construction limits of the planned development of the Proposed Project would comprise approximately 1,633 acres. Artificially reducing the overall size of the Proposed Project fails to meet the purpose and need identified by the Applicant. In particular, an artificial reduction in facility size would potentially render the project incapable of accommodating a second phase deemed critical to the client. Not being able to fully construct the second phase of the project, reducing the building footprints to fit the site, or eliminating certain of the buildings altogether, would not satisfy the minimum requirements and parameters of the Client. Current technologies dictate that the

[^55]Page 75 of 97
component parts and overall production of electric vehicles is more expensive than the components and production of internal combustion engine automobiles. ${ }^{44}$ The Client's investment in South Carolina generally, and the Proposed Project specifically, is premised on its ability to recoup its investment through the attainment of certain production goals based on current and projected industry demand, government-dictated policies setting targets for emission reductions, and production-related subsidies and tax rebates designed to support the production of long range, zero emission vehicles. As such, reducing the production capacity of the facility through an arbitrary reduction of individual building footprints or the overall project size would place the Client investment at risk, while also impeding the Client's ability to stage, produce, finish, and ship automobiles in the manner in which Client's extensive experience in designing, constructing, and operating similar facilities around the world would dictate. See 46 Fed. Reg. 18026 (March 23, 1981) (dictating that under NEPA, reasonable alternatives include those that are practical or feasible from a technical and economic standpoint and using common sense, rather than simply desirable from the standpoint of the applicant). Client's extensive experience and the required advanced manufacturing process has dictated the proposed linear shape of facilities that flow in the order shown, effectively preventing the re-location of specific component parts of the overall facility, even within each specific phase, in order to fit the shape or size of a site. Here, in order to fit all of the project components and buildings onto the site, significant re-arranging of the buildings was required, as shown on Exhibit \mathbf{N}. This included, for instance, separating the battery and assembly facilities, rather than keeping them together, and placing them in areas on the site that are not conducive to the desired automotive process. In addition, the FBU area was required to be located on the opposite end of the site from Assembly and the Paint Shop, requiring finished vehicles to be transported around the site rather than in a natural progress dictated by the assembly process. Finally, the Body Shop size is substantially reduced in size from what is required by the Client, and is further required to be located in a non-contiguous location from the remainder of the automotive facility, which effectively renders this alternative incompatible for the Proposed Project from a process and logistics point of view. Further, separating these facilities would incrementally increase the cost of production of each vehicle to the Client by increasing the time required to transport assembled automotive components throughout the site, thereby decreasing the efficiency achieved through the masterplan design for automotive production proposed by the Client's preferred layout.

Regarding impacts to special aquatic sites on the South Carolina Gateway site, based on the Applicant's review of available delineation information, locating a reduced conceptual version of the Proposed Project on the site would result in permanent fill impacts to approximately 74 acres of jurisdictional wetlands and approximately 12,250 linear feet of streams. Compared to the Property, this alternative site would result in greater impacts to jurisdictional wetlands, but fewer impacts to streams and tributaries; however, given that the Proposed Project is required to be artificially reduced to fit the site, as discussed extensively in the preceding paragraphs, these figures are correspondingly skewed,

[^56]do not represent an apples to apples comparison, endanger the Client's investment in the Proposed Project, and therefore fail to meet the purpose and need of the project.

Based on the fact that the site does not fully meet four (4) of the five (5) secondary characteristics and criteria for the Proposed Project, including not being located in the Midlands, having insufficient acreage to accommodate the full buildout of the Proposed Project, its distance from the closest MSA and pulling from a smaller labor pool, its distance from the Inland Port Greer, and greater impacts to jurisdictional wetlands, even with a reduced footprint, the Applicant determined that the South Carolina Gateway Alternative Site 17 property is a less feasible and practicable alternative which would not fulfill the purpose and need of the Proposed Project. As a result, it was eliminated from consideration through Level 2 of this analysis.

Level 2 Conclusion:

Below, is a table that summarizes how each of the alternatives carried forward into Level 2 of this analysis fared with respect to the secondary characteristics and other considerations relevant to the Applicant's evaluation of the sites as feasible and practicable alternatives for the Proposed Project:

	Level 2 Criteria	Blythewood Industrial Site	$\begin{gathered} \hline \text { JAB } \\ \text { Site } \\ \text { West } \\ \text { Site } \end{gathered}$	Carolinas I-95 Super Park Site	I-77 Int. Megasite	Central SC Megasite	Tyger Oak Inc. Site	$\begin{gathered} \text { SC } \\ \text { Gateway } \end{gathered}$ Site
$\begin{gathered} \text { Primary Characteristics } \\ \text { and Criteria } \end{gathered}$	1,000+ acres	\bullet						
	Adjacent/within 1 Mile to Interstate	\bullet	\emptyset	\bullet	\bullet	\bullet	\bullet	\bullet
	Onsite/Adjacent Rail	\bullet						
	W/in Combined 180 miles of both I-85/95	\bullet						
彩000000000000000	Located in the Midlands	\bullet	\bullet	\bigcirc	\bullet	\bullet	\bigcirc	\bigcirc
	Direct Interstate Frontage for Dedicated Interchange	\bullet	\bullet	\bigcirc	\bullet	\bigcirc	\bigcirc	\bigcirc
	Located w/in 15 Miles of Skilled Work Force	\bullet	\bullet	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	W/in 145 to Port of Charleston and Inland Ports	\bullet	\emptyset	\emptyset	\bullet	\bullet	\emptyset	\emptyset
	Immediate Access to Utilities	\bullet	\emptyset	\bigcirc	\bigcirc	\bullet	\bigcirc	\bullet
	Availability	\bullet	\bullet	\bullet	\bullet	\bullet	\bigcirc	\bullet
	Cost/Efficiency Factors	\bullet	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	\bigcirc
	Logistics	\bullet	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc
	Environmental (In comparison to Preferred Alternative)	N/A	\bigcirc	\emptyset	Ø	\bullet	\bullet	\emptyset
	Size and Shape	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	Certainty as to Cultural Resources and T\&E	\bullet	\bigcirc	\bigcirc	\bigcirc	\bullet	\bigcirc	\bullet
$\begin{array}{lll} \bullet & = & \text { passes criterion } \\ \circ & = & \text { fails criterion } \\ \varnothing & = & \text { partially passes criterion } \end{array}$								

Consideration of these alternatives reveals that there are no practicable alternatives available to the Applicant, which meet the project purpose and needs, that do not include impacts on special aquatic sites. Moreover, of the range of reasonable alternatives considered by the Applicant, the Blythewood Industrial Site Alternative Site 1 property is uniquely capable of accommodating the Applicant's characteristics and criteria, all while minimizing its environmental impact.

6.3 Level 3 Analysis

Level 3 of the Alternatives Analysis traditionally focuses on the site layout in terms of positioning the proposed project within the site in a manner that incorporates the considerations of accessibility, efficiency, and the site's environmental impacts. Consideration of a number of site-specific alternatives was constrained by the sheer size and scope of the project overlaid on the size and shape of the Property, along with the specific design configuration requirements of large-scale automotive OEMs, generally, and the Client specifically.

With respect to avoidance and minimization, the necessary starting point is defining the acreage of the project limits that actually available for constructing the Proposed Project. While the total site acreage for the Proposed Project comprises approximately 2,581 acres, not all of that acreage is actually available for development. In particular, the 2,581 acres includes approximately 464.95 acres for SCDOT roadway improvements, which is comprised of Interstate 77 , starting approximately 8.7 miles North of Exit 27 and extending approximately 0.5 miles to the South of Exit 24, a total distance of approximately 5.5 miles, as well as the acreages comprising Exits 24 and 27, Blythewood Road on either side of I-77, a portion of Muller Road, approximately 2.5 miles of U.S. Highway 21, as well as various other roadway components. In terms, of build site acreage, it is self-evident that the existing roadways, including I-77, were not available to the Applicant as potential avoidance and minimization areas for the primary build site. That leaves approximately 2,116.06 acres of the project site which consists of developable property for the Proposed Project.

Further, as discussed extensively above, the proposed site is located on both sides of I-77. In particular, 465.97 acres of the $2,116.06$ developable acreage is located on the Eastern side of I-77. Given the Applicant's proposal to construct a new, dedicated interstate interchange as a part of the Proposed Project, given the traffic analysis conducted by SCDOT indicating that it was warranted, the guidelines for interchanges dictated that a connecting roadway be constructed from an existing local roadways. Because the proposed interchange connects directly to the Proposed Project on the Western side of I-77, the connecting roadway was required to traverse through the Eastern acreage of the project site, connecting with U.S. Highway 21. Factoring further into the interchange and connecting roadway's respective locations, SCDOT was required to design the interchange in a location that complied with State and Federal regulations which dictated that the location of new interchange must be a minimum of one (1) mile away from existing interchanges in order to provide the necessary entrance/exit ramp infrastructure in a safe manner. Once the proposed interchange

[^57]Page 79 of 97
location was set, the connecting roadway to U.S. Highway 21 necessarily traversed through the middle of the Eastern acreage of the project site. In addition, given the Applicant's proposal to construct a new, dedicated rail spur to the site, in order to alleviate truck traffic associated with the Proposed Project's operations, the location of the rail spur had to be further factored into the equation. As discussed above, an existing Norfolk Southern rail line runs parallel and adjacent to U.S. Highway 21, on its Eastern side. Therefore, in order to bring the rail spur onto the project site, the spur required a crossing of the existing alignment of U.S. 21, across the Eastern acreage of the project site and I-77, before entering primary build site of the Proposed Project. Given the required location of the interchange, this required the proposed rail spur to traverse the Eastern acreage of the project site to the South of the proposed interchange, and further required proposed improvements and realignments to U.S. Highway 21, including an elevated roadway over the proposed rail spur in order to avoid an at-grade rail crossing of U.S. Highway 21.

The result of all of the foregoing is that amount of available, developable acreage to the East of I-77 was significantly constrained, effectively rendering its 465.97 acres unavailable for meaningful use for construction of the proposed automotive facility. As a result, of the 2,581 acres of the project limits, only approximately 1,650 acres remains for development of the automotive facility. This was dictated by several additional factors, discussed below. In particular, based on Client's extensive experience designing, constructing, and operating similar facilities as one of the largest and most highly advanced manufacturing OEM companies in the world, the required configuration of the automotive facilities are a dense, linear grouping with a specified sequencing that is necessary for staging, production, finishing, and shipping automobiles, which is the result. The site plan is based on directives from the Client as to required manufacturing and processing flows for an advanced manufacturing OEM automotive facility for each of the respective phases. These directives dictated a linear shape that flowed in the order shown and also dictated that, for instance, the locations for the specific component parts of the overall facility, even within each specific phase, were necessary and strategically placed, preventing the Applicant from relocating buildings to other locations within the project site in order to substantially minimize impacts to onsite special aquatic sites. The required process and flow of an advanced automotive manufacturing facility prevents taking individual components or buildings of the overall site layout and re-organizing the building layouts in a manner that does not fit the purpose and need of the Proposed Project. State differently, redesigning the layout of a project, where those design changes would contradict the articulated preferences of the Applicant and the underlying Client regarding required project layout and the efficiencies achieved therefrom, would run contrary to the purpose and need of the project.

Here, the Applicant has clearly articulated the need for a dense, linear grouping in a particular sequencing that is necessary for production and assembly of electric vehicles, as well as infrastructure in the form of the interchange and rail spur that facilitate the delivery of raw materials and distribution of finished automobiles. This need is not based on a hypothetical exercise of how a facility might be laid out to best avoid onsite special aquatic sites, but is based on the Client's extensive experience designing, constructing, and operating similar facilities as one of the largest and most highly acclaimed

[^58]Page 80 of 97
automotive manufacturing companies in the world. Non-manufacturing infrastructure (like entrances, exits, roads, employee and finished car parking, logistical delivery zones, outbuildings, substations, control centers, and utility centers) or main manufacturing buildings (like assembly, finish, paint shop, body shop, and SQM2) within the overall layout can only be moved around within certain limits to optimize the production flow depending of the individual automotive product and its model variety, respectively, without impacting the production unit capacity of the facility.

Over the years the Client developed and has continually improved the its preferred layout for these facilities to optimize logistical efficiencies and throughput capacity. While the Proposed Project layout is conceptually similar to those that have been constructed by the Client and its parent company over the years in Russia and India, and even more similar to those that have been constructed more recently in Chattanooga, Tennessee and China, improvements have been made in this latest design concept that build upon the lessons learned through those projects. In particular, the Proposed Project layout for Phase I is similar to that of the constructed Phase I of the Chattanooga facility, subject to minor alteration for site specific conditions, with the exception that, whereas the buildings for Phase I Chattanooga are more condensed, changes have been made in the Proposed Project layout in order to add connecting roadway infrastructure interspersed throughout the onsite buildings in order maximize process flow from a logistics standpoint, as well as from an access and safety standpoint. Again, these iterative design changes have been made based on perceived improvements that can be made to the design based on the Client's experience in designing these facilities.

As further justification for the Proposed Project's layout, the Applicant provides the following explanation with respect to the placement of the proposed individual buildings within the site, as dictated by the Client's required processes discussed above and experience in laying out similar advanced automotive manufacturing facilities:
i. Infrastructure Generally: The site is oriented to provide logistical flow from north to south to support assembly and process logistics. Parking areas and roadways are proposed to be located centrally throughout the site for employee and product distribution to process shops, but also located in near proximity to the proposed interchange on the Eastern side of the project site, separated from process and truck traffic. The FBU Yard is strategically located nearest to rail and Assembly/Finish on the Southwestern portion of the site, given its purpose. Finished vehicles leave Assembly/Finish and proceed to the FBU Yard for staging prior to shipment. Rail Support is located directly West of FBU yard, given its purpose. Further, the Outbound building is intended to support outbound product to be shipped via truck. The Outbound building is strategically located directly South of the FBU yard, in close proximity to the location of staged finish vehicles.
ii. Press Shop: The press shop is located South of the Body Shop, because this is the natural point of inclusion in the process. Its purpose in the manufacturing process is to feed into the
next step in the process which is Body. It is located to the South of the Body Shop, because the largest volume of trucks are coming from the North to support Assembly/Finish logistics.
iii. Body Shop: The Body Shop is located between the Press Shop and Paint Shop as is the normal sequence of the automotive manufacturing process, further requiring expansion options and logistics traffic. Expansions are to be located on East side of Body Shop, due to consolidated operation and proximity to the next process building. This is required for movement of vehicles through the different process steps. There exists no conveyor after Assembly/Finish, as these are finished units and can be driven to next point in process.
iv. Paint Shop: The Paint Shop is located between the Body Shop and Assembly/Finish Shop, as is the normal sequence of the automotive manufacturing process. The Paint Shop is required to be directly next to the Sequencer building (SQM2) for sequencing reasons, and furthest away from Assembly, for just-in-time sequencing providers.
v. Assembly/Finish: The Assembly/Finish Shop is located between the Paint Shop and FBU Yard, as is the normal sequence of the automotive manufacturing process. The Finish Shop, due to the sequence of operations, must be closest to shipping and logistics of finished vehicles to the market.
vi. Central Building: The Central Building is critical to the facility for overall site support, hence its name, as it houses critical functions to the manufacturing processes. These include quality assurance, measurement equipment, and pre-series processing, which are relevant for all adjacent buildings. Employees will arrive to the site and be directed to the Central Building, where locker rooms are placed. Afterward, employees will use the Central Building for disbursement of foot traffic to relevant Shops.
vii. SQM2: The purpose of the Sequencer Building is to allow for buffer storage of painted and unpainted vehicle bodies. This building allows the Shops to start/stop at different times and not impact overall throughput. The Sequencer Building must be located adjacent to the Paint Shop for sequencing reasons and away from Assembly/Finish for just-in-time deliveries.
viii. Utility: The Utility Building is centrally located to the Shops to allow for optimized utility runs to support the Process Shops.
ix. Truck Gate/Security Control Center: The Primary Truck Gate is located at the North of the site to separate delivery traffic from POV traffic. The Security Control Center is located at the Primary Truck Gate for logistics control reasons. This is the main gate, so security is co-
located here to help maintain secure access to site. The largest amount of trucks will enter the Primary Truck Gate at the North to support Assembly/Finish.
x. Fire Station: The Fire Station is located next to the Primary Truck Gate and Security Control Center to co-locate first responders to issues that may arise during operations.
xi. Recycle Center: The Recycle Center is located near the Primary Truck Gate entrance and exit for use of the installed scales at that location. It is located directly in the middle of the facility's spine road so that it can optimize drive times to waste streams.
xii. Main Gate/Welcome Center: The Main Gate/Welcome Center is a pedestrian access point for visitors and VIP's to be picked up in the secure zone for Shop visits and tours around the site. It is located at the primary parking lots for POV traffic as this is the primary area to support visitor parking.
xiii. Tank Farm: The Tank Farm is a supporting shop to the Assembly/Finish process as the fluids required to support the finished automobile are introduced in the Assembly/Finish Shops. The Tank Farm is therefore required to be located directly adjacent to Assembly/Finish on East side of the Assembly/Finish Shop. The location is the shortest possible line between the Tank Farm and point of use location inside the Assembly/Finish Shop.
xiv. Factory Substation: The Factory Substation is located along the South of the project site, as this is closest to Dominion Energy South Carolina primary power feed.
xv. Supplier Substation: The Supplier Substation yard is in closest proximity to the proposed supplier parks located at North end of overall site. Transmission lines to provide power to the Supplier Substation shall be routed from the East.
xvi. Outbound Building: The Outbound Building is required to be near the outbound truck traffic staging at the FBU yard. The purpose of this building is for drivers to be able to retrieve their paperwork from the Outbound Building to pick up finished vehicles for transport.
xvii. Battery Assembly Shop: The Battery Assembly Shop is located to the West of the Assembly/Finish Shop, to be supported by the proposed rail spur for cell delivery and to support the Assembly line where batteries are delivered to the Assembly process. This building is an assembly shop for completed subcomponents into the battery pack system.

As referenced above, the amount of available acreage on the Western side of I-77, where the automotive facilities are proposed to be located, is limited to approximately 1,650 acres. As further referenced above, the limits of disturbance for the full build-out of the Proposed Project is approximately 1,633 acres, including the acreage associated with the proposed new interchange and roadway improvements, some of which is occurring on the Eastern side of I-77. The following
consists of a breakdown of the respective acreages associated with the facility buildings and all of the associated infrastructure supporting the Proposed Project within the proposed limits of disturbance:

- Total Building Footprints - appr. 16,000,000/sf (appr. 368 acres);
- Employee Parking - appr. 1,710,580/sf (appr. 40 acres);
- Employee Access Road - appr. 405,002.9/sf (appr. 10 acres);
- Training Center Parking - appr. 334,303.1/sf (appr. 8 acres);
- North Access Road - appr. 450,454.2/sf (appr. 11 acres);
- Rail Spur and Yard - appr. 4,492,086/sf (appr. 104 acres);
- Finished Vehicle Parking - appr. 1,617,415/sf (appr. 38 acres);
- Truck Parking - appr. 1,806,748/sf (appr. 42 acres);
- Test Track - appr. 178,469.51/sf (appr. 5 acres);
- Internal Facility Roads and Infrastructure Corridors - appr. 3,488,521/sf (appr. 81 acres);
- Truck Courts - appr. 694,281.54/sf (appr. 16 acres);
- Supplier Parking Lots - appr. 2,445,296.96/sf (appr. 57 acres);
- Security Roads - appr. 282,637.31/sf (appr. 7 acres);
- Stormwater Ponds - appr. 5,010,268/sf (appr. 116 acres);
- SCDOT Interchange/Roadways - appr. 7,179,917.88/sf (appr. 165 acres);
- Community Road widening improvements - appr. 2,232,523.32/sf (appr. 52 acres);
- Utility Easements - appr. 3,270,521.08/sf (appr. 76 acres); and
- Slope Tie Out Areas/Buffers/Wetlands Avoidance - appr. 18,999,260.28/sf (appr. 437 acres).

In sum, short of artificially reducing the size of the Proposed Project, which is neither economically and practicably feasible nor consistent with the purpose and need of the project, as demonstrated by
the above figures and explanations, additional avoidance and minimization of the impacts associated with the Proposed Project is rendered difficult given the acreage requirements for the facilities.

The Client's desired design and layout of the foregoing facilities are directly correlated to its operations, as an efficient layout can facilitate an increased flow of work, product, information, and materials around the site; if a facility is not designed with efficiency in mind, it can limit production, slow processes and impact overall profitability. Any significant redesign and contraction of facilities are incompatible with both of these concepts and the scope and scale of operations that the Client seeks to establish by the Proposed Project; therefore, they do not result in any practicable or feasible alternative to the preferred alternative and layout. Moreover, such alterations could not be accomplished without substantial shifts to the associated infrastructure for the facilities, including the interchange and rail spur, which, as discussed above, are similarly constrained by relevant factors and have likewise been laid out in a very deliberate fashion based on the operational processes and dense linear grouping. If individual elements were to be moved or facilities redesigned, the impacts caused by additional or relocated roads, rail, utilities, and other necessary infrastructure would also require redesign and could very likely result in new and incrementally larger impacts to aquatic resources, as shown in the iterative site designs discussed below.

Further, any contraction or reduction in the size of the project components and its buildings would likewise fail to meet the purpose and need identified by the Applicant. In particular, an artificial reduction in facility size would potentially render the project incapable of accommodating a second phase deemed critical to the Client. Not being able to fully construct the second phase of the project, reducing the building footprints to avoid additional onsite special aquatic site, or eliminating certain of the buildings altogether, would not satisfy the minimum requirements and parameters of the Client. Current technologies dictate that the component parts and overall production of electric vehicles is more expensive than the components and production of internal combustion engine automobiles. ${ }^{45}$ The Client's investment in South Carolina generally, and the Proposed Project specifically, is premised on its ability to recoup its investment through the attainment of certain production goals based on current and projected industry demand, government-dictated policies setting targets for emission reductions, and production-related subsidies and tax rebates designed to support the production of long range, zero emission vehicles. As such, reducing the production capacity of the facility through an arbitrary reduction of individual building footprints or the overall project size would place the Client investment at risk, while also impeding the Client's ability to stage, produce, finish, and ship automobiles in the manner in which Client's extensive experience in designing, constructing, and operating similar facilities around the world would dictate. See 46 Fed. Reg. 18026 (March 23, 1981) (dictating that under NEPA, reasonable alternatives include those that are practical or feasible from a technical and economic standpoint and using common sense, rather than simply desirable from the

[^59]standpoint of the applicant). Client's extensive experience and the required advanced manufacturing process has dictated the proposed linear shape of facilities that flow in the order shown, effectively preventing the re-location of specific component parts of the overall facility in order to fit the shape or size of a site.

Taking the foregoing into consideration, and in particular taking into consideration the location of the interchange, connecting roadway to U.S. Highway 21, and required alignment of the rail spur, also discussed above, locating portions of the Proposed Project on the Eastern side of I-77 was not feasible or practicable. Similarly, the Southeastern portion of the Western side of the project site (to the West of I-77), consisting of approximately 150 acres, did not present a viable location for locating portions of Proposed Project and is proposed to be left unimpacted and undisturbed. This is so for at least two reasons. First, as discussed above, relocation of specific buildings or components of the Proposed Project does not comport with the purpose and need of the project and undermines the required automation and flow of the vehicle assembly process. Therefore, relocating portions of the project in that acreage is not feasible. And second, placing the project facilities to the North and out of that acreage allowed the Applicant to avoid impacts to Wetlands 17, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30 , and 31 , as well as portions of Wetland 26, along with NARs $10,11,12,13$, and 14, and Tributaries $14,15,16,17,18$, and 19 , with the preferred alternative layout discussed below. More generally, onsite alternatives were also necessarily constrained by the location of the onsite wetlands, streams, and man-made ponds, as well as the location of certain geographical insets of adjacent properties.

Notwithstanding the foregoing constraints, and as discussed above, since the submission of the application on May 26, 2023, the Applicant, in conjunction with cooperating agency SCDOT, has continued to evaluate the interchange and roadway components of the project in order to avoid and minimize additional impacts to special aquatic sites. In particular, based on further analysis of the appropriate interchange design, as detailed in Exhibit B, the Applicant and SCDOT evaluated whether the location of the associated connecting roadway to U.S. Highway 21 could be modified to further avoid and minimize impacts to special aquatic sites. The result of that analysis is that the revised application will show post-application avoidance and minimization in the form of reductions in impacts to Wetlands $66,71,75,76,78$, and $108,{ }^{46}$ resulting in a net reduction of proposed wetland impacts of 2.3 acres, as well as a reduction in impacts to Stream 57, but increases in impacts to Streams 58 and 59^{47} resulting increase of proposed stream impacts of 119.98 linear feet.

In addition, since the submission of the application on May 26, 2023, the Applicant, in conjunction with the Client, has continued to evaluate the primary build site of the Proposed Project in order to

[^60][^61]Page 86 of 97
further avoid and minimize additional impacts to special aquatic site. In particular, and based on those efforts, the Applicant has been able to reduce the size and footprint of one of the proposed supplier parks located in the Northeast corner of the primary build site. That area of the project site contains a substantial wetland and stream system, designated on the project plans as NWW (Trib. 21) and Wetland 1. Strategically reducing the size of this supplier park area by approximately 288.286/sf allows the Applicant to avoid substantial impacts to those special aquatic sites that were previously proposed to be impacted in the May 26, 2023, application. This change reduced impacts to jurisdictional wetlands in the area by approximately 5 acres, and reduced impacts to streams by approximately 1,100/lf.

Combined with the changes associated with the interchange and roadway connection, and factoring in the addition of post-application impacts associated with power line rights-of-ways, the Applicant's additional, post-application avoidance and minimization efforts have reduced total impacts to wetlands by 4.246 acres (including a 8.692 -acre reduction of impacts to jurisdictional wetlands), a reduction of approximately 6% in wetland impacts (including an approximately 13% reduction of impacts to jurisdictional wetlands), and reduced total impacts to streams by approximately 2,491/lf, a reduction of more than 6.5% in stream impacts.

With respect to the site's special aquatic sites, as noted above, the Property consists of approximately 2,384.193 acres of uplands and 196.807 acres of aquatic resources, comprised of approximately 146.215 acres of jurisdictional wetlands (between 119 wetland features), approximately 43.203 acres of non-wetland ponds (between 13 separate pond features), approximately 70,037 linear feet of streams, and approximately 9,472 linear feet of non-aquatic resources consisting of agricultural ditches and ephemeral swales (across 24 separate features). These features, including wetlands, streams/tributaries, and ponds, are interspersed at regular intervals throughout the site, North to South and East to West, rendering significant avoidance and minimization of those features difficult to achieve. Nevertheless, the Applicant worked extensively with the Client in order to position the required facilities in a way that avoided and minimized the maximum number of areas of aquatic features, as well as minimized the scope of unavoidable impacts to those features to the maximum extent possible, while still fulfilling the purpose and need of the project, including the required layout of the project facilities. In total, the revised plans for the Proposed Project calls for 23,599 linear feet of permanent fill impacts to onsite streams, 30 linear feet of permanent clearing impacts to onsite streams, 3,043 linear feet of morphological impacts to onsite streams, 9,019 linear feet of pipe impacts to onsite streams, 38.219 acres of permanent fill impacts to non-wetland ponds, 60.649 acres of permanent fill impacts to jurisdictional wetlands, 0.317 acres of temporary excavation/permanent clearing impacts to jurisdictional wetlands, and 8.742 acres of permanent clearing impacts to jurisdictional wetlands.

Further, the Property has undergone a comprehensive review for cultural resources. Portions of the project area have had cultural resource surveys completed under numerous names (Firetower

[^62]Page 87 of 97

Road/Palmer Tract - 2006; Project Y - 2006; Blythewood Industrial Site - 2015; Blythewood Industrial Park Northern Portion - 2018, 2019, 2022; Project Storage - 2022; Beasley Tract - 2023; Arum Tract - 2023). In April 2006, a cultural resources literature review and reconnaissance survey was completed for the Firetower Road/Palmer tract, a 465 -acre project area to the east of I-77. As a result of the survey four archaeological sites (31RD1290 through 38RD1293) and one isolated find were identified and recorded. Site 38RD1291 was recommended as potentially eligible for inclusion in the NRHP and site 38RD1293 was recommended for additional work prior to determining the NRHP eligibility of the site; the remaining archaeological sites were considered not eligible for inclusion in the NRHP. An intensive archaeological survey was recommended for the entirety of the project area. In October 2006, a Phase I survey of 465 acres and Phase II testing at archaeological sites 38RD1291 and 38RD1293 was completed for Project Y, previously known as the Firetower Road/Palmer tract. As a result of the Phase I investigation and Phase II testing, four archaeological sites were revisited (38RD1290 through 38RD1293), and seven archaeological sites (38RD1295 through $38 R D 1301$) and 10 isolated finds were identified and recorded. Archaeological site 38RD1293 was recommended as eligible for inclusion in the NRHP and avoidance or mitigation of the archaeological site was recommended; the remaining archaeological sites and isolated finds were recommended to be not eligible for inclusion in the NRHP. SHPO concurred with these recommendations in a letter dated September 25, 2006.

In 2015, a CRIS was completed on 674 acres associated with the Blythewood Industrial Site and was west of Community Road and I-77 with private property bordering the other three cardinal directions. As a result of the survey, one archaeological site (38RD1436), two isolated finds, and no above ground resources were recorded. The archaeological site and isolated finds were recommended not eligible for inclusion in the NRHP and no additional cultural resource work was recommended for the 674 acres. SHPO concurred with the recommendations in a letter dated December 9, 2015.

In July 2018, a CRIS was completed on 658 acres associated with the Blythewood Industrial Site Northern Portion, located north and west of the 2015 survey area and south and east of Blythewood Road. As a result of the survey, five archaeological sites (38RD1466 through 38RD1470) and six above ground resources (BIP-1 through BIP-6) were identified and recorded and two previously recorded structures were revisited (SHPO Survey Numbers 4815 and 4862). It was recommended that a Phase I survey be conducted on 178 acres due to the high probability for containing significant archaeological sites; additional work was also recommended for sites 38RD1466 and 38RD1468, which are in the Phase I survey area. The remaining archaeological sites were recommended not eligible for inclusion in the NRHP and the structures were not evaluated for inclusion in the NRHP. In a letter dated August 31, 2018, SHPO concurred with the recommendations for the Phase I survey and requested Phase II testing at sites 38 RD1466 and 38RD1468, as well as the recordation and evaluation for the six above ground resources recorded during the survey. In December 2018, the Phase I survey of 178 acres within the Blythewood Industrial Site - Northern Portion was completed. As a result of the Phase I survey, two previously recorded archaeological sites (38RD1466 and

38RD1468) and two previously recorded above ground resources (4815 and 4862) were revisited, five new archaeological sites (38RD1473 through 38RD1477) and six isolated finds were recorded, and six above ground resources were recorded (7619 through 7624). Phase II testing was not conducted at sites 38RD1466 and 38RD1468 during these investigations. Four of the archaeological sites (38RD1473, 38RD1474, 38RD1475, and 38RD1477) and the six above ground resources (7619 through 7624) were recommended not eligible for inclusion in the NRHP. Phase II testing was recommended at sites 38RD1466, 38RD1468, and 38RD1476 to determine the final NRHP eligibility of each of the archaeological sites. In a letter dated February 4, 2019, SHPO concurred with the recommendations.

In June 2022, a CRIS was completed for potential Project Storage, an 18-acre addition to the Blythewood Industrial Site - Northern Portion. The project area is located south of Blythewood Road and Locklier Road bisected the project area. As a results of the survey, no archaeological sites and one above ground resource (SHPO Survey No. 8969) was recorded and three previously recorded above ground resources were revisited (SHPO Survey Nos. 7620, 7623, and 7624). The revisited above ground resources were determined to be not eligible for inclusion in the NRHP and the newly recorded structure was recommended not eligible for the NRHP; no additional cultural resource work was recommended for the project area. In a letter dated July 18, 2022, SHPO concurred with these recommendations.

In July 2022, Phase II testing at sites 38RD1466, 38RD1468, and 38RD1476 was conducted. As a result of the testing, sites 38RD1466 and 38RD1476 were recommended not eligible for inclusion in the NRHP and site 38RD1468 was recommended eligible for inclusion in the NRHP. Avoidance, with a 25 -ft buffer, or mitigation of archaeological site 38RD1468 was recommended. In a letter dated February 22, 2023, SHPO concurred with these recommendations.

In March 2023, a reconnaissance level survey and Phase I intensive survey was completed on the Beasley Tract, a 288 -acre project area that is located west of I-77, south of the 2015 Blythewood Industrial Site survey area, and east of the 2018 Blythewood Industrial Site - Northern Portion project area. The reconnaissance was completed on the 288 -acre project area and the Phase I intensive survey was completed on 90.2 acres. As a result of the reconnaissance survey two archaeological sites (38RD1529 and 38RD1530) were identified and SHPO Survey No. 7624 was revisited. SHPO Survey No. 7624 was determined to be not eligible for inclusion in the NRHP and both archaeological sites were recommended not eligible for inclusion in the NRHP.

In March 2023, a cultural resource survey was completed on the Arum Tract, the 466-acre project area that was previously known as Firetower Road/Palmer Tract and Project Y. A site visit was completed to determine the current condition of site 38RD1293 and an architectural survey was completed. As a result of the survey, archaeological site 38 RD 1293 remains undisturbed and six above ground resources were recorded (SHPO Survey Nos. 8658 through 8662 and 8727). Site 38RD1293 remains

[^63]Page 89 of 97
eligible for inclusion in the NRHP and the six above ground resources were recommended not eligible for inclusion in the NRHP. Both the Beasley Tract and Arum Tract have been submitted to SHPO for its review and comment.

In July 2023, S\&ME completed a cultural resource survey for the SCDOT I-77 Exit 26 Interchange, an approximately 484.2-acre project area that was centered on Interstate 77, north of Blythewood and south of the US Highway 21 and I-77 interchange. The project focused on the roadway and interchange improvements and exit creation associated with the Proposed Project. The majority of the project area had been previously surveyed or was disturbed by residential/commercial development, roadway construction, and buried utilities. A total of 20.4 acres had not been previously surveyed and was not extensively disturbed; an archaeological survey was completed on this acreage. An architectural survey was completed for the project APE, which included resources that were adjacent to the project area. As a result of the survey two archaeological sites (38RD1531 and 38RD1532) and 14 above ground resources (SHPO Site Numbers 8735 through 8747) were identified and recorded, and 10 previously recorded resources were revisited (SHPO Site Numbers 0048, 4813, 4831,5021 through $5024,5033,5452$, and 5453). The newly recorded archaeological sites and above ground resources, as well as nine of the 10 previously recorded above ground resources were recommended not eligible for inclusion in the NRHP. SHPO Site Number 0048 is listed in the NRHP. The viewshed from the resource to the project area, and vice-versa, has already been altered during the late twentieth century, with modern roadway improvements, power poles, and commercial development. The Proposed Project is unlikely to affect the resource that make it eligible for the NRHP, specifically its architecture and its association with the early settlement and development of Blythewood. The July 2023 survey has been submitted to SHPO for its review and comment.

Beyond cultural resources, the location of the specific facilities within the site plan is based on directives from the Client as to required manufacturing and processing flows for an advanced manufacturing OEM automotive facility for each of the respective phases. These directives dictated a linear shape that flowed in the order shown and also dictated that, for instance, the locations for the specific component parts of the overall facility, even within each specific phase, were necessary and strategically placed. For example, the Battery facilities that are proposed to be located along the Western border of the site, are not independent pieces of the overall production facility that could be moved to the Southern or Eastern sides of the centrally-located Assembly facilities, where, perhaps, fewer aquatic impacts could be achieved, but instead are strategically located to achieve the necessary process flows dictated by the Client. The same is true for the location of the finished automobile areas along the Western border of the site to the South of the Battery facilities, as process flows dictate their proximity both to the Paint Shops, as well as the rail yard loading area in the Southwest corner of the Property that will serve the function of shipping finished automobiles. Instead, the linear shape and positioning of each of the component parts of the Proposed Project site is purposeful and strategic such that the position of the project layout as a whole could shift, but not the component parts within the project layout.

6.3.1 Site Layout Alternative 1 - Preferred Alternative Site Layout

Site Layout Alternative 1, the Preferred Alternative Site Layout, depicted in the Applicant's application and attached to the Application as Exhibit H, is the preferred site layout for the Proposed Project.

Site Layout Alternative 1 positions the project site and buildings centrally within the majority of the acreage to the West of I-77. Positioning the Proposed Project in such a way allows the Applicant to avoid impacts to a number of aquatic features, including: (1) Wetland 44, NAR 16, and portions of Tributary 29 along the Southwestern border of the Property; and (2) Wetlands 79, 80, 81, 82, 83, 91, and 92 , as well as portions of Wetland 84 , along with Tributaries 36, 37, 38, 40, 39, and portions of Tributary 42, further South along the Southwestern border of the Property; Wetlands 17, 19, 20, 21, $22,23,24,25,27,28,29,30$, and 31 , as well as portions of Wetland 26, along with NARs 10, 11, 12, 13, and 14, and Tributaries 14, 15, 16, 17, 18, and 19 in the Southernmost portion of the Property. Positioning the Proposed Project in such a way also allows the Applicant to minimize impacts to a number of aquatic features, including Wetland 1 and Tributaries 1, 2, 3, 20, and 21, along the Northeastern border of the site near Community Road. Based on the Applicant's efforts to avoid impacts to aquatic features to the maximum extent possible, Site Layout Alternative 1 avoids impacts to 34,376 linear feet of onsite jurisdictional streams and tributaries, 76.824 acres of onsite wetlands, and 4.984 acres of non-wetland ponds. Below is a table setting forth the avoidance and minimization of onsite special aquatic sites under Site Alternative 1:

Avoidance and Minimization Matrix	Site Layout Alternative 1 Preferred Alternative Site Layout
Permanent Fill Impacts to Jurisdictional Wetlands	69.391 acres
Impacts to Non-Wetlands Ponds	38.219 acres
Avoidance Wetlands	76.824 acres
Avoidance Non-Wetland Ponds	4.984 acres
Permanent Impacts to Jurisdictional Streams/Tributaries	35,661 linear feet
Avoidance Streams/Tributaries	34,376 linear feet

The location of the specific facilities in Site Layout Alternative 1 also meets the expectations and needs of Client and accommodates the desired size, density, and linear grouping that is necessary for a world class automotive OEM manufacturing facility. In particular, the Phase I facilities are laid out in a linear, vertical fashion, with proposed supplier parks located in the Northeast corner of the site, material handling spaces centrally located in the Northern part of the site, and primary assembly facilities located in the heart of the site, with immediate adjacent access to axle assembly facilities, paint shops, and body construction facilities in the required processing locations. The proposed layout also incorporates a test track for completed automobiles experience/marketing-related functions. Furthermore, adjacent to the primary assembly facilities to the West, the proposed layout provides for necessary finished automobile areas which are adjacent to the proposed rail yard, providing immediate outbound shipping access along the newly constructed interior rail spur. Finally, the Eastern portion of the site provides factory parking areas and training facilities with immediate access to interior roadways and the proposed new interchange access, providing convenient ingress and egress to employees and guests that avoids impacts to localized roadways. Moreover, the secondary phases to the Proposed Project are laid out to largely mirror and/or be adjacent to the parallel Phase I components of the Proposed Project, providing seamless scalability to operations. Locating the project as a whole, and Phase I specifically, in the proposed manner allows for the master plan concept desired by Client to be fully implemented, thus fulfilling the purpose and need for the Proposed Project.

In sum, due to the size and desired alignment of the Proposed Project, as dictated by Client, combined with Applicant's desire to fulfill its statutory purpose and responsibility to pursue such actions and projects that meet the long-term strategic needs of the State, the community, and potential end-users of assembled EV component parts, including the contribution to economic development in South Carolina broadly, and Richland County specifically, through the cultivation and stimulation of the types of facilities proposed here, the Preferred Alternative Site Layout best fulfills the project's purpose and need while maintaining the maximum amount of existing hydrologic features of the site and is the Applicant's preferred alternative.

6.3.2 Site Layout Alternative 2

Site Layout Alternative 2, depicted in the Applicant's application and attached to this analysis as Exhibit O, was an iterative site layout developed by the Applicant for the project facilities during the course of evaluating the feasibility of the Proposed Project at the Blythewood Industrial Site.

Under the Site Layout Alternative 2, the Proposed Project facilities were proposed to be laid out in a substantially similar fashion to Site Layout Alternative 1, particularly in the Western, Central, and Southern portions of the site. The notable differences between Alternatives 1 and 2 are found in the
proposed Supplier Park areas. Initially, the Client proposed to locate the facility substation in the Northern part of the site, as evidenced by its central location in Alternative 2. Putting the substation in that location increased the amount of proposed intake parking areas, but shifted other administrative and support structures East of the middle dividing line of the site South of the substation. The resulting location of the substation and the administrative and support structures pushed the proposed Supplier Park areas further East into Wetland 1, and Tributaries 1, 2, 20, and 21. As a result, Site Layout Alternative 2 would result in 80.5 acres of permanent wetland fill impacts, 38.2 acres of permanent non-wetland (ponds) fill impacts, and 41,234 linear feet of permanent tributary/stream impacts, amounting to slightly lower non-wetland (pond) impacts, but greater impacts to both wetlands and tributary/streams than Site Layout Alternative 1. Site Layout Alternative 2 would therefore avoid impacts to 28,803 linear feet of onsite jurisdictional streams and tributaries, 65.715 acres of onsite jurisdictional wetlands, and 5.003 acres of non-wetland ponds. Below is a table setting forth the avoidance and minimization of onsite special aquatic sites under Site Alternative 2:

Avoidance and Minimization Matrix	Site Layout Alternative 2
Permanent Fill Impacts to Jurisdictional Wetlands	80.5 acres
Impacts to Non-Wetland Ponds	38.2 acres
Avoidance Wetlands	65.715 acres
Avoidance Non-Wetland Ponds	5.003 acres
Permanent Impacts to Jurisdictional Streams/Tributaries	41,234 linear feet
Avoidance Streams/Tributaries	28,803 linear feet

However, when compared to Site Layout Alternative 1, this iterative design of the Proposed Project considered by the Applicant increased the number of impacts to onsite jurisdictional streams and tributaries by 5,573 linear feet, an increase of approximately 16%, and increased the number impacts to onsite wetlands by 11.109 acres, an increase of approximately 16%.

Ultimately, the Client preferred to locate the substation to the Southwest corner of the Property, allowing it to shift the administrative and support structures into the area of intake parking area,
increasing the size of the proposed Supplier Park and parking area, while simultaneously allowing the Supplier Park to shift to the West avoiding additional impacts to Wetland 1, and Tributaries 1, 2, 20, and 21. A less desirable layout, combined with the greater impacts to special aquatic sites, rendered Site Layout Alternative 2 a less feasible and practicable layout alternative than the preferred Site Alternative 1. Due to the Applicant's aspiration to avoid and minimize these additional impacts, as well as achieve its desired facility configuration, continuity, and layout of operations, the Applicant determined that Site Layout Alternative 2 was a less feasible and practicable alternative and did not fulfill the purpose and need of the Proposed Project.

6.3.3 Site Layout Alternative 3

Site Layout Alternative 3, depicted in the Applicant's application and attached to this analysis as Exhibit P, was an iterative site layout developed by the Applicant for the project facilities during the course of evaluating the feasibility of the Proposed Project at the Blythewood Industrial Site.

Under the Site Layout Alternative 3, the Proposed Project facilities were proposed to be laid out in a substantially different configuration compared to Site Layout Alternatives 1 and 2. In particular, while certain aspects of the Southern portion of the site facility layout are similar, those facilities are shifted slightly to the North. In their place, this alternative proposed an additional stormwater detention basin just North of the incoming rail staging area, with an addition parking area to the West, and a portion of the Supplier Park to the East. Further, rather than two test tracks, this alternative proposed one, larger test track proposed to be located on the Western boundary of the build site, just inside the Western rail yard. In addition, the proposed Battery facilities were proposed to be more square in shape, rather than long linear rectangles, and are located between the two Assembly facilities. This resulted in pushing the remaining Supplier Park facilities further West and East, while requiring production facilities to be located further to the North of the site. Finally, the remaining Supplier Park building was pushed to the Southeast corner of the site in an area that the preferred alternative left undisturbed. These shifts resulted in additional building impacts to Wetland 1, and Tributaries 1, 2,20 , and 21 , while requiring new impacts to portions of Wetlands $22,23,24,25,26$, and 27 , along with Tributaries 16, 17, and 18. Consequently, Site Layout Alternative 3 would result in 84.9 acres of permanent wetland fill impacts, 37.9 acres of permanent non-wetland (ponds) fill impacts, and 44,731.9 linear feet of permanent tributary/stream impacts, amounting to slightly lower non-wetland (pond) impacts, but greater impacts to both wetlands and tributary/streams than Site Layout Alternatives 1 and 2. Site Layout Alternative 3 would therefore avoid impacts to 25,305.1 linear feet of onsite jurisdictional streams and tributaries, 61.315 acres of onsite jurisdictional wetlands, and 5.303 acres of non-wetland ponds. Below is a table setting forth the avoidance and minimization of onsite special aquatic sites under Site Alternative 3:

Avoidance and Minimization Matrix	Site Layout Alternative 3
Permanent Fill Impacts to Jurisdictional Wetlands	84.9 acres
Impacts to Non-Wetland Ponds	37.9 acres
Avoidance Wetlands	61.315 acres
Avoidance Non-Wetland Ponds	5.303 acres
Permanent Impacts to Jurisdictional Streams/Tributaries	$44,731.9$ linear feet
Avoidance Streams/Tributaries	$25,305.1$ linear feet

However, when compared to Site Layout Alternative 1, this iterative design of the Proposed Project considered by the Applicant increased the number of impacts to onsite jurisdictional streams and tributaries by $9,070.9$ linear feet, an increase of approximately 25%, and increased the number impacts to onsite wetlands by 15.509 acres, an increase of approximately 22%.

Ultimately, the Client determined that it preferred the compact, linear configuration of Site Layout Alternative 1 due to the efficiencies that it would achieve in production, along with the ability to mirror those facilities in a side-by-side fashion in future phases of the Project. Locating the facilities as proposed in Site Layout Alternative 1 also avoided additional impacts to Wetlands 1, 22, 23, 24, 25, 26, and 27, as well as Tributaries 1, 2, 16, 17, 18, 20, and 21. A less desirable layout, combined with the greater impacts to special aquatic sites, rendered Site Layout Alternative 3 a less feasible and practicable layout alternative than the preferred Site Alternative 1. Due to the Applicant's aspiration to avoid and minimize these additional impacts, as well as achieve its desired facility configuration, continuity, and layout of operations, the Applicant determined that Site Layout Alternative 3 was a less feasible and practicable alternative and did not fulfill the purpose and need of the Proposed Project.

Level 3 Conclusion:

Below, is a table that includes each of the three onsite alternatives, comparing their respective impacts, avoidance, and percentage differences:

Comparison of Alternatives	Site Layout Alt. 1	Site Layout Alt. 2	Site Layout Alt. 3
Permanent Fill Impacts to Jurisdictional Wetlands	69.391 acres	80.5 acres	84.9 acres
Avoidance Wetlands	76.824 acres	65.715 acres	61.315 acres
Wetland Impact Acreage Difference (Compared to Site Alt.1)	-	$\begin{gathered} +11.109 \\ \text { acres } \end{gathered}$	$\begin{gathered} +15.509 \\ \text { acres } \end{gathered}$
Percentage Impact Difference (Compared to Site Alt.1)	-	+ 16\%	+ 22%
Impacts to Non-Wetland Ponds	38.219 acres	38.2 acres	37.9 acres
Avoidance Non-Wetland Ponds	4.984 acres	5.003 acres	5.303 acres
Non-wetland Impact Acreage Difference (Compared to Site Alt.1)	-	- 0.019 acres	- 0.319 acres
Percentage Impact Difference (Compared to Site Alt.1)	-	- 0.0038\%	- 0.064\%
Permanent Impacts to Jurisdictional Streams/Tributaries	35,661 lf.	41,234 lf.	44,731.9 lf.
Avoidance Streams/Tributaries	34,376 lf.	28,803 lf.	25,305.1 lf.
Linear Feet Impact Difference (Compared to Site Alt.1)	-	+ 5,573 lf.	+ 9,070.9 lf.
Percentage Impact Difference (Compared to Site Alt.1)	-	+ 16\%	+25\%

After consideration of alternative site layouts for the Proposed Project at the Blythewood Industrial Site Alternative Site 1 property, the Applicant has concluded that the Preferred Alternative, Site Layout Alternative 1, incorporating the maximum amount of avoidance and minimization measures given the respective sizes of the proposed facilities and location of the many special aquatic sites on the Property, would best meet the characteristics and criteria (scoring the best) and fulfills the purpose and need of constructing and operating a new rail-served advanced manufacturing facility for an OEM in the automotive industry, with dedicated interchange access, while also limiting the impacts on the environment.

Exhibit A to
 Project Connect
 Revised Alternatives Analysis
 (Traffic Study and Interchange Justification)

Applicant:
South Carolina Department of Commerce
Richland County

I-77 at Exit 26

NEW INTERCHANGE NEED MEMORANDUM

Richland County, South Carolina
August 2023

Purpose

The purpose of this memorandum is to provide the necessary documentation to support the need for a new interchange on Interstate 77 (I-77) at Exit 26 in Richland County, South Carolina. This memorandum will document the analysis methods and results of a 2046 No-Build scenario (the anticipated Design Year) which indicates that the existing interchanges cannot support the traffic demand in the future year.

Background

A new interchange on I-77 at Exit 26 is proposed to support the development of a large-scale manufacturing plant on the west side of I-77 south of Blythewood Road. The proposed development is generally bounded by Blythewood Road to the north and west, Community Road to the east, and existing development to the south. There are two existing interchanges near the proposed manufacturing plant: I-77 at US 21 (Exit 24) and I-77 at Blythewood Road (Exit 27). Without a new interchange at Exit 26, the existing interchanges will experience a significant increase in traffic demand as the manufacturing plant and supporting industrial development are expected to generate approximately 38,000 daily trips including approximately 4,200 daily truck movements by the Design Year 2046 (Attachment A).

Traffic Analysis Assumptions and Methodology

The following sections summarize the traffic development and analysis methodology used to conduct the 2046 No-Build analysis for this memorandum.

Study Area

The study area for this analysis includes I-77 from south of US 21 to north of Blythewood Road and includes the I-77 mainline and ramps as well as the ramp terminal intersections (Figure 1). The following elements are included in the analysis for this memorandum:

Along I-77:

- US 21
- Blythewood Road

Along US 21:

- I-77 Southbound Ramp Terminal
- I-77 Northbound Ramp Terminal

Along Blythewood Road:

- I-77 Southbound Ramp Terminal
- I-77 Northbound Ramp Terminal

Traffic Volume Development

The traffic analysis will include typical AM and PM peak hours. Since the manufacturing plant will have shift changes outside of the typical peak hours, two additional peaks will be analyzed to assess the impact of the manufacturing trips. The following sections discuss the traffic development to support the analysis efforts.

Existing Traffic Volumes

The primary source of traffic data for this project is field traffic counts which were collected in March of 2023. These counts included intersection 13-hour turning movement counts, 48-hour bidirectional arterial counts and ramp counts, and 7-day classification counts for the I-77 mainline and at US 21 and Blythewood Road. These counts were used to establish the existing daily traffic volumes as well as the peak hour traffic volumes for the four analysis time periods associated with the project:

- Typical AM Peak: 7:15-8:15
- Typical PM Peak: 4:15-5:15
- \quad Shift 1 Peak: 5:30-6:30 AM
- Shift 2 Peak: 1:30-2:30 PM

Future Traffic Volumes

Future conditions traffic was developed using growth rates derived from the Central Midlands Council of Governments (CMOG) Metropolitan Planning Organization's Columbia Area Transportation Study (COATS) travel demand forecasting model.

Two modeling scenarios were developed for the project, a "No-Build" scenario which excludes the proposed new interchange and a "Build" scenario which includes the proposed new interchange. Growth rates were derived from the No-Build scenario by comparing the Base Year 2015 and Horizon Year 2045 modeled annual average daily traffic (AADT). Table 1 summarizes the background growth rates selected for the study area roadways.

Table 1 Selected Growth Rates

Location	Recommended Growth Rate $^{\mathbf{1}}$
I-77 Mainline	0.80%
US 21 Ramps	0.80%
Blythewood Road Ramps	1.60%
US 21 Arterial	0.80%
Blythewood Road Arterial	2.40%

${ }^{1}$ Linear Annual Growth Rate

The linear growth rates summarized in Table 1 were applied to the existing daily and peak hour traffic volumes to establish the 2046 "background" traffic for the study area.

The Build condition modeling scenario was used to determine the change in traffic patterns caused by the introduction of a new interchange at Exit 26 which will be documented in the Exit 26 Interchange Justification Report.

Proposed Development Traffic Volumes

Traffic volumes for the proposed manufacturing plant (project trips) were developed by the land developer using the Institute of Transportation Engineers (ITE) Trip Generation Manual 11 th Edition along with
information on trip generation from similar manufacturing plants and documented in a memorandum (Attachment B). The peak period trips produced by the proposed manufacturing plant are summarized in Table 2.

Table 2 Project Trips by Analysis Period

	Shift 1 Peak		AM Peak		Shift 2 Peak		PM Peak	
	Enter	Exit	Enter	Exit	Enter	Exit	Enter	Exit
Manufacturing	2,880	2,880	288	288	2,880	2,880	288	288
Related Industrial	1,465	783	147	78	793	1,626	79	163
Trucks	100	100	100	100	100	100	100	100
Total	$\mathbf{4 , 4 4 5}$	$\mathbf{3 , 7 6 3}$	$\mathbf{5 3 5}$	$\mathbf{4 6 6}$	$\mathbf{3 , 7 7 3}$	$\mathbf{4 , 6 0 6}$	$\mathbf{4 6 7}$	$\mathbf{5 5 1}$

These project trips were distributed to the No-Build roadway network based on the trip distribution provided by the developer in the Trip Distribution Memo (Attachment C) with adjustments that accounted for the absence of the proposed new interchange. An assumption was made such that project trips would not backtrack to reach their destination in the No-Build condition so any project traffic utilizing the new interchange from the south was assigned to US 21 and any project traffic utilizing the new interchange from the north was assigned to Blythewood Road. These project trips were added on top of the background traffic to establish the 2046 No-Build traffic volumes used in the analysis (Figure 2 and Figure 3).

Analysis Procedures and Performance Measures

The primary analysis tools used to perform the No-Build traffic analysis were Highway Capacity Software 7 (HCS 7) and Synchro 11 including SimTraffic. HCS 7 was used to evaluate the I-77 mainline segments and ramp junctions. Synchro 11 was used to evaluate intersection operations within the study area.

Several performance measures were used to establish the operating conditions with the study area and to determine whether the existing interchanges can support the traffic demand in the No-Build scenario. The following summarizes the measures of effectiveness (MOEs) used in this study:

- Freeway mainline, weaving segments, and merge/diverge junctions: Density (passenger cars/mile/lane) and Level of Service (LOS)
- Intersections: Delay (seconds/vehicle), LOS and $95^{\text {th }}$ percentile queues at off-ramp approaches

2046 No-Build Freeway Analysis

The No-Build operational conditions on the I-77 mainline and ramp junctions were assessed using the HCS 7 freeway facilities module. Under the 2046 No-Build conditions, the I-77 mainline and ramps maintain the same geometric configuration as the Existing Conditions. The results of the No-Build HCS analysis are summarized in Table 3. The HCS analysis output is provided in Attachment D.

In the northbound direction, the following segments are expected to operate at LOS E or F in the Design Year 2046, the remaining segments are expected to operate at LOS D or better.

- Northbound off-ramp to US 21 - Shift 1 Peak and Shift 2 Peak
- Northbound off-ramp to Blythewood Road - Typical PM Peak

In the southbound direction, the following segment is expected to operate at LOS E in the Design Year 2046, the remaining segments are expected to operate at LOS D or better.

- I-77 Southbound south of US 21 - Typical AM Peak

Table 32046 No-Build Freeway Analysis Summary

1-77 Segment	Type		AM Peak				PM Peak				Shift 1				Shift 2			
	Coded	Analyzed	Mainline/ Ramp Volume	Average Speed $(\mathrm{mph})^{1}$	Density ${ }^{2}$ ($\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$)	LOS	Mainline/ Ramp Volume	Average Speed $(\mathrm{mph})^{1}$	Density ${ }^{2}$ (pc/mi/ln)	LOS	Mainline/ Ramp Volume	Average Speed $(\mathrm{mph})^{1}$	Density ${ }^{2}$ (pc/mi/ln)	LOS	Mainline/ Ramp Volume	Average Speed $(\mathrm{mph})^{1}$	$\underset{(\mathrm{pc} / \mathrm{mi} / \mathrm{ln})}{\mathrm{Density}^{2}}$ (pc/mi/ln)	LOS
1-77 Northbound																		
South of US 21	Basic	Basic	2265	75	14	B	3935	68.4	25.9	C	2392	74.1	17.3	B	3724	68.4	25.9	c
US 21 Off-Ramp	Diverge	Diverge	890	66.0/62.0	15.9/22.7	C	1276	65.4/60.5	27.1/33.6	D	1979	61.3/58.2	20.9/29.6	F	2010	62.0/57.5	28.6/36.5	F
From US 21 Off-Ramp to NB US 21 On-Ramp	Basic	Basic	1375	74.3	8.5	A	2659	74.2	16.9	B	413	73.9	6.6	A	1714	73.9	12.1	B
NB US 21 On-Ramp	Merge	Merge	170	68.1/65.2	10.3/11.0	B	110	66.9/64.3	19.4/19.2	B	30	68.8/65.4	7.4/7.8	A	60	67.9/65.0	13.8/ 13.9	B
From NB US 21 On-Ramp to SB US 21 OnRamp	Basic	Basic	1545	73.9	9.5	A	2769	73.7	17.6	B	443	74	6.7	A	1774	73.9	12.5	B
SB US 21 On-Ramp	Merge	Merge	90	68.8/66.1	11.0/ 11.8	B	190	67.2/ 64.9	20.5/20.8	C	60	69.2/66.3	7.7/ 8.6	A	90	68.3/65.8	14.3/ 14.9	B
From US 21 to Blythewood Rd (3 lanes)	Basic	Basic	1635	74.9	10.1	A	2959	73.4	18.8	C	503	74.9	7.1	A	1864	74.9	13.1	B
From US 21 to Blythewood Rd (2 lanes)	Basic	Basic	1635	74.8	15.2	B	2959	62.4	33.1	D	503	75	10.7	A	1864	72.6	20.2	C
Blythewood Rd Off-Ramp	Diverge	Diverge	710	62.6/62.6	18.1/22.1	C	1234	60.8/60.8	34.0/38.1	E	452	63.4/63.4	12.7/ 16.4	B	928	61.6/61.6	23.8/27.8	C
From Blythewood Rd Off-Ramp to Blythewood Rd On-Ramp	Basic	Basic	925	74.8	8.6	A	1725	73.8	18	B	51	74.8	6.6	A	936	74.7	11.7	B
Blythewood Rd On-Ramp	Merge	Merge	289	66.0/66.0	12.3/13.4	B	332	63.9/63.9	23.8/24.5	C	715	65.7/ 65.7	14.8/15.6	B	901	64.3/64.3	22.3/22.8	C
North of Blythewood Rd	Basic	Basic	1214	75	11.2	B	2057	72	21.1	c	766	75	12.9	B	1837	72.9	19.7	C
1-77 Southbound																		
North of Blythewood Rd	Basic	Basic	1810	74.6	16	B	1980	73.8	18	B	970	75	9.4	A	1810	74.1	17.2	B
Blythewood Rd Off-Ramp	Diverge	Diverge	260	64.1/64.1	18.7/23.3	C	340	63.9/63.9	20.8/25.6	C	757	62.4/62.4	11.3/14.9	B	756	62.3/62.3	20.5/24.7	C
From Blythewood Rd Off-Ramp to Blythewood Rd On-Ramp	Basic	Basic	1550	74.8	13.7	B	1640	74.8	14.7	B	213	74.8	2.1	A	1054	74.8	9.9	A
Blythewood Rd On-Ramp	Merge	Merge	1354	61.5/ 61.5	29.5/29.0	D	701	63.7/63.7	23.8/24.7	C	658	66.0/66.0	8.4/9.7	A	835	64.8/64.8	19.1/20.3	C
From Blythewood Rd to US 21	Basic	Basic	2904	65.6	29.3	D	2341	71.4	22	C	871	75	8.5	A	1889	73.8	18.1	c
US 21 Off-Ramp	Diverge	Diverge	190	64.4/64.4	29.8/34.9	D	170	64.5/ 64.5	24.4/28.9	D	60	64.9/64.9	9.8/ 12.7	B	100	64.8/64.8	20.6/24.8	C
From US 21 Off-Ramp to SB US 21 On-Ramp	Basic	Basic	2714	68	26.4	D	2171	72.7	20.1	C	811	74.2	7.9	A	1789	74.2	17	B
SB US 21 On-Ramp	Merge	Basic	870	71.7/71.7	21.6/21.6	C	650	74.4/ 74.4	16.6/ 16.6	B	260	74.9/75.0	6.8/6.8	A	290	74.9/75.0	13.0/ 13.0	B
From SB US 21 On-Ramp to NB US 21 On- Ramp	Basic	Basic	3584	71.3	22.2	C	2821	74.2	17	B	1071	75	6.9	A	2079	75	13	B
NB US 21 On-Ramp	Merge	Merge	684	64.2/61.5	28.7/ 29.4	D	606	66.2/63.8	22.7/24.4	C	1556	66.0/64.3	17.1/ 22.2	C	1938	62.0/ 59.4	27.8/31.6	D
South of US 21	Basic	Basic	4268	59.1	37.2	E	3427	69.4	24.7	c	2627	72.4	20.6	c	4017	61.8	33.9	D

${ }^{1}$ Ramp Junction Speed/Ramp Influence Area Speed
${ }^{2}$ Average Freeway Density/Ramp Influence Area Density

2046 No-Build Intersection Analysis

Synchro 11 was used to assess the ramp terminal intersections under the Design Year 2046 No-Build conditions. The No-Build roadway network includes all planned and programmed roadway improvements within the project study area. The only roadway improvement within the project study area is the on-going widening of Blythewood Road from Syrup Mill Road to I-77 from 2/3 lanes to a 5 -lane cross section which was incorporated into the No-Build analysis. In the Design Year, the ramp terminal intersections maintain their existing control strategy and lane configuration. Table 4 summarizes the 2046 No-Build intersection analysis results. For signalized intersections, the overall intersection delay and LOS is reported. For unsignalized intersections, the highest stop-controlled delay and LOS are reported for the intersection. The results of the analysis indicate the existing ramp terminal intersections are expected to fail under future conditions traffic demand. The Synchro analysis output is provided in Attachment E.

Table 42046 No-Build Intersection Analysis Summary

Intersection	AM Peak		PM Peak		Shift 1		Shift 2	
	Delay (sec/veh)	LOS						
US 21 at I-77 SB	22.3	C	32.8	D	337.8	F	304.5	F
US 21 at I-77 NB	227.9	F	442.2	F	1,395.6	F	1,688.3	F
Blythewood Road at I-77 SB	89.6	F	70.1	E	279.4	F	462.9	F
Blythewood Road at I-77 NB	152.8	F	156.7	F	486.8	F	624.1	F

In addition to intersection delay and LOS, the 95th percentile queues for the I-77 off-ramp approaches were estimated using SimTraffic to determine whether queueing would impact I-77 mainline operations under the 2046 No-Build conditions. The 95th percentile queues were determined based on an average of five runs using the default seeding time of three minutes and a one-hour simulation duration. Table 5 summarizes the off-ramp queue lengths in comparison to the actual ramp lengths. As shown in the table, three of the four off-ramps within the study area are expected to experience queues which impact I-77 mainline traffic under the 2046 No-Build conditions. This is consistent with the intersection analysis results indicating that the ramp terminals will fail under the No-Build conditions.

Table 52046 No-Build Off-Ramp Queue Summary

Intersection	Movement	Sim Traffic 95 ${ }^{\text {th }}$ Percentile Queue (ft)				$\begin{gathered} \text { Ramp } \\ \text { Length }(\mathrm{ft})^{1} \end{gathered}$
		AM Peak	PM Peak	Shift 1	Shift 2	
US 21 at I-77 SB Off-Ramp	EBL	112	120	83	89	2,300
	EBR ${ }^{2}$	0	0	0	0	
US 21 at I-77 NB Off-Ramp	WBL	3,007	2,679	2,362	2,360	2,200
	WBR	315	312	329	326	
Blythewood Rd at I-77 SB Off-Ramp	SBL	500	617	2,281	2,395	1,600
	SBR	242	373	402	418	
Blythewood Rd at l-77 NB Off-Ramp	NBL	514	501	420	412	1,600
	NBR	2,096	1,954	399	2,104	

[^64]
Conclusion

This memorandum documented the volume development and analysis for the Design Year 2046 No-Build conditions to evaluate the need for a new interchange at Exit 26 on I-77 in Richland County, South Carolina. As shown in this memorandum, the existing interchanges of I-77 at US 21 and Blythewood Road are not capable of handling the future conditions traffic demand including the proposed development of a largescale manufacturing facility that is expected to add approximately 38,000 vehicles per day to the study area in addition to the background traffic growth expected in the study area. Without a new interchange at Exit 26, the I-77 mainline is expected to experience deficiencies at the northbound off-ramps to US 21 and Blythewood Road and the I-77 southbound mainline segment south of US 21. Additionally, the ramp terminal intersections at the existing interchanges are expected to operate at LOS F for one or more of the analysis peaks. These intersection failures result in off-ramp queueing which is expected to impact I-77 mainline operations for three of the four off-ramps during multiple analysis hours. The analysis results presented in this memorandum indicate the need for a new interchange at Exit 26 to accommodate the future traffic demand for the proposed manufacturing development.

Attachment A: Daily Trip Generation Memorandum

MEMORANDUM

Date: June 21, 2023
To: Alison Busch, PE - Thomas \& Hutton
CC: Michael Dennis, PE - Ramey Kemp Associates
From: Jeff Ingham, PE, PTOE, RSP2I - Ramey Kemp Associates

Reference: Scout Plant Daily Trip Generation

The daily trip generation potential of the Scout factory and Scout-related industrial development was developed based upon information provided by Scout. This trip generation estimate is based on the most recent land plan provided and does not include development on the east side of Interstate 77.

All estimates are based on information presented in the 5/30/23 trip generation memo. The plant is assumed to generate 2,880 entering and 2,880 exiting vehicles during each shift change.

It was previously agreed upon that the peak commute hours (7-8AM, 5-6PM) would represent 10% of the peak shift hours (shown in red). As a further assumption, the other off-peak hours are assumed to reflect 5% of the shift peaks. An assumed hourly breakdown is as follows.

AM	Time	Scout Plant	Related industrial
	12	288	112
	1	288	112
2	288	112	
	3	288	112
	4	288	112
	5	5760	2248
	6	288	112
	7	576	225
	8	288	112
	9	288	112
	10	288	112
	11	288	112
12	288	112	
	1	5760	2419
	2	288	121
	3	288	121
	4	288	121
	5		242

6	288	121
7	288	121
8	288	121
9	5760	2248
10	288	112
11	288	112
Total passenger vehicles	23,904	9,569
Total Trucks	1,400 per shift	

The total daily passenger vehicle estimate using the assumptions above is 33,473 vehicles. The total truck number is assumed to be 4,200 vehicles (700 entering and 700 exiting for each of the 3 shifts). The total vehicle estimate is 37,673 vehicles.

Summary

Based on information from Scout and the assumptions noted above, a daily trip estimate for the Scout site west of I-77 could be approximated at $\mathbf{3 8 , 0 0 0}$ vehicles.

Please contact me if you would like to discuss or amend any of the noted assumptions.
Sincerely,
Ramey Kemp Associates

Jeff Ingham, P.E., PTOE, RSP2I
South Carolina Director
843-819-0270
jingham@rameykemp.com

Attachment B:

Peak Period Trip Generation Memorandum

RAMEY KEMP ASSOCIATES
 TOGETHER WE ARE LIMITLESS

MEMORANDUM

Date: May 30, 2023
To: Alison Busch, PE - Thomas \& Hutton
CC: Michael Dennis, PE - Ramey Kemp Associates
From: Jeff Ingham, PE, PTOE, RSP2I - Ramey Kemp Associates
Reference: Scout Plant Trip Generation - Updated 5-30-23

The trip generation potential of the Scout factory and Scout-related industrial development was developed based upon more recent information provided by Scout.

This trip generation estimate is based on the most recent land plan provided and does not include development on the east side of Interstate 77.

Scout Manufacturing

The following table was provided by Scout as a representation of Phase 1. The numbers represent trips associated with the Scout employees and all associated truck movements (Scout and Scout-related Industrial Support). Phase 2 is anticipated to represent a doubling of the initial phase.

	Shift 1 5:45 AM - 2 PM		Shift 2 1:45 PM - 10 PM		Shift 3 9:45 PM - 6 AM	
	Inbound	Outbound	Inbound	Outbound	Inbound	Outbound
Passenger	1,440	1,440	1,440	1,440	1,440	1,440
Truck	350	350	350	350	350	350

As a general assumption, the typical commuter hours are estimated to be 10% of the plant peaks.

Scout-Related Industrial Development (4,900,000 square feet):

Based on the current plan, approximately $4,900,000$ square feet of support facilities are planned on the west side of I-77 adjacent to the Scout Manufacturing site. A ratio of 1.0 employees per 1,000 square feet of industrial development was utilized for the Scout-related industrial development, for a total of approximately 4,900 employees.

The trip generation for the related uses was estimated based on ITE rates for the peak hour of the generator. Based on updated information from Scout, it will be assumed that the peak periods for the Scout-related Industrial Development will correspond with the shift times for the main plant. The peak "shift" volumes are based on the ITE rates, but assumed to occur during the shift changes. As a conservative assumption, all of the related development is assumed to be constructed as part of

Phase 1. As with the main plant traffic, the typical commuter hours are estimated to be $\mathbf{1 0 \%}$ of the plant peaks.

Trucks

The truck estimates provided by Scout are intended to represent the total number of trucks throughout each shift. Roughly 700 trucks (Phases 1 and 2) will arrive and depart during each shift but will be spread out throughout the 8 -hour period. As a general assumption, $\mathbf{1 0 0}$ trucks are assumed to arrive and depart during each of the peak hours evaluated.

Summary

As noted, Phase 1 includes half of the ultimate Scout Plant traffic and trucks. All of the related industrial facilities are assumed to be built in Phase 1. The table below shows the updated trip estimates $\underline{\text { Phase 1. }}$.

	5:30AM-6:30AMShift peak		7AM-8AM Typical peak		1:30PM-2:30PM Shift peak		5PM-6PM Typical peak	
	Enter	Exit	Enter	Exit	Enter	Exit	Enter	Exit
Scout	1,440	1,440	144*	144*	1,440	1,440	144*	144*
Employees of related Industrial	1,465	783	147*	78*	793	1,626	79*	163*
Trucks	50	50	50	50	50	50	50	50
Totals	2,955	2,273	341	272	2,283	3,116	273	357

*Assumed as 10% of highest peak
The table below shows the updated trip estimates for the build out of Phases $\mathbf{1}$ and $\mathbf{2}$ of the Scout plant and Scout related facilities.

	5:30AM-6:30AM Shift peak		7AM-8AM Typical peak		1:30PM-2:30PM Shift peak		5PM-6PM Typical peak	
	Enter	Exit	Enter	Exit	Enter	Exit	Enter	Exit
Scout	2,880	2,880	288^{*}	288^{*}	2,880	2,880	288^{*}	288^{*}
Employees of related Industrial	1,465	783	147^{*}	78^{*}	793	1,626	79^{*}	163^{*}
Trucks	100	100	100	100	100	100	100	100
Totals	$\mathbf{4 , 4 4 5}$	$\mathbf{3 , 7 6 3}$	535	$\mathbf{4 6 6}$	$\mathbf{3 , 7 7 3}$	$\mathbf{4 , 6 0 6}$	$\mathbf{4 6 7}$	551

[^65]The trips shown in this memorandum are based on the most recent information provided by Scout and the noted assumptions. It is understood that the IJR/IMR may evaluate multiple time periods and may include additional areas east of I-77 to accommodate FHWA regulations. RKA's analysis will include the areas west of I-77 and will focus on the typical commuter peak periods.

Please contact me if you would like to discuss or amend any of the assumptions as we move forward.
Sincerely,

Ramey Kemp Associates

Jeff Ingham, P.E., PTOE, RSP2I
South Carolina Director
843-819-0270
jingham@rameykemp.com

Attachment C:

Trip Distribution Memorandum

MEMORANDUM

Date: May 30, 2023
To: Allison Busch, PE - Thomas\& Hutton
CC: Jeff Ingham, PE, PTOE, RSP2I - Ramey Kemp Associates
From: Michael Dennis, PE - Ramey Kemp Associates

Reference: Scout Plant Trip Distribution - Revised

The original draft distributions were based on the existing COATS M odel, the recent counts taken, and engineering judgement. The revised external trip distribution potential of the Scout factory and Scoutrelated industrial development was developed as a result of consultation with SCDOT's consultant RS\&H after reviewing RKA's original distributions for the project. RKA's original distributions were amended slightly at several locations and further broken down in others. However, in general, both sets of external distributions were very similar. It is noted that the model distribution does not take into account any plant buildup on the eastern side of I-77, or account how vacant land to the west and north/ northeast of the plant may develop.

Draft Vehicle Distribution

The internal and turn movement distributions were developed using the updated trip generation memo (RKA-May 10, 2023) which has a trip generation split of 60\%/40\% (Scout vs Scout-related industries). These distributions were al so developed using theCOATS M odel, the recent counts taken, and engineering judgement. Where needed, intersection distributions have been included to clarify any questions that may arise.

Draft Truck Distribution

The external and internal truck distribution for the Scout plant was based on information provided by Scout (attached). It was assumed that the majority of the truck traffic would use I-77. It was also assumed that the proportionate distribution used for I-77 vehicle distributions would apply for truck traffic as well.

The draft distribution schematics are attached.

Sincerely,

Ramey Kemp Associates

Michael A. Dennis, P.E.
South Carolina Public Traffic Lead
mdennis@rameykemp.com
Gervais Street, Suite 150
Columbia, South Carolina 29201
Phone: (803) 234-6821.

Attachment D:
 2046 No-Build HCS Analysis

HCS Basic Freeway Report

Project Information

Segment Number	5	Segment Name	Btw Killian Rd and US 21
Analysis Period Number	1	Segment Analysis Period	$07: 00-07: 15$

Geometric Data

Number of Lanes (N), In	3	Terrain Type	Level
Segment Length (L), ft	7200	Percent Grade, \%	-
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	0.83
Lane Width, ft	Free-Flow Speed (FFS), mi/h	75.0	
Right-Side Lateral Clearance, ft	-		

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000	
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000	
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000	
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000	
Demand and Capacity				
Demand Volume (V), veh/h	Heavy Vehicle Adjustment Factor (fHV)	0.800		
Peak Hour Factor (PHF)	Flow Rate (vp), pc/h/ln	1049		
Total Trucks, \%	0.90	Capacity (c), pc/h/ln	2400	
Single-Unit Trucks (SUT), \%	25.00	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), \%	Final Adjusted Capacity (cadj), pc/h/ln	2400		
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.44	

Speed and Density

Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	75.0
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	14.0
Total Ramp Density Adjustment	-	Level of Service (LOS)	B
Adjusted Free-Flow Speed (FFSadj), mi/h	75.0		

HCS Freeway Diverge Report

Project Information

Segment Number	6	Segment Name	NB Off to US 21
Analysis Period Number	1	Segment Analysis Period	$07: 00-07: 15$

Geometric Data

	Freeway	Ramp
Number of Lanes (N), In	3	1
Free-Flow Speed (FFS), mi/h	75.0	45.0
Segment Length (L) / Deceleration Length (LD), ft	1500	220
Terrain Type	Level	Level
Percent Grade, \%	-	-
Segment Type / Ramp Type	Freeway	Right-Sided One-Lane

Adjustment Factors

Driver Population		All Familiar	All Familiar	
Weather Type		Non-Severe Weather	Non-Severe Weather	
Incident Type		No Incident	-	
Proportion of CAVs in Traffic Stream		0	-	
Final Speed Adjustment Factor (SAF)		1.000	1.000	
Demand Adjustment Factor (DAF)		1.000	1.000	
Capacity Adjustment Factor for CAVs, CAFCAV		1.000	-	
Final Capacity Adjustment Factor (CAF)		1.000	1.000	
Demand and Capacity				
Demand Volume (Vi), veh/h		2265	890	
Peak Hour Factor (PHF)		0.90	0.90	
Total Trucks, \%		25.00	7.00	
Heavy Vehicle Adjustment Factor (fHV)		0.800	0.935	
Flow Rate (vi), pc/h		3146	1058	
Capacity (cmd), pc/h		7200	2100	
Initial Adjusted Capacity (cmda), pc/h		7200	-	
Final Adjusted Capacity (cmda), pc/h		7200	2100	
Volume-to-Capacity Ratio (v/c)		0.44	0.50	
Speed and Density				
Upstream Equilibrium Distance (LEQ), ft	3812.6	Flow Outer Lanes (vOA), pc/h/ln		766
Downstream Equilibrium Distance (LEQ), ft	-	Off-Ramp Influence Area Speed (S	R), mi/h	62.0
Flow in Lanes 1 and 2 (v12), pc/h	2380	Outer Lanes Freeway Speed (So), m	mi / h	82.3
Flow Entering Ramp-Infl. Area (vR12), pc/h	-	Ramp Junction Speed (S), mi/h		66.0
Number of Outer Lanes on Freeway (NO), In	1	Average Density (D), pc/mi/ln		15.9
Level of Service (LOS)	C	Density in Ramp Influence Area (D)	R), $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$	22.7

HCS Basic Freeway Report

Project Information

Segment Number	7	Segment Name	Btw US 21 NB Off and US 21 NB On
Analysis Period Number	1	Segment Analysis Period	$07: 00-07: 15$

Geometric Data

Number of Lanes (N), In	3	Terrain Type	Level
Segment Length (L), ft	1585	Percent Grade, \%	-
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	1.00
Lane Width, ft	Free-Flow Speed (FFS), mi/h	75.0	
Right-Side Lateral Clearance, ft	-		

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000

Demand and Capacity

Demand Volume (V), veh/h	1375	Heavy Vehicle Adjustment Factor (fHV)	0.800
Peak Hour Factor (PHF)	0.90	Flow Rate (vp), pc/h/ln	637
Total Trucks, \%	25.00	Capacity (c), pc/h/ln	2400
Single-Unit Trucks (SUT), \%	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), \%	-	Final Adjusted Capacity (cadj), pc/h/ln	2400
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.27

Speed and Density

Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	74.3
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	8.5
Total Ramp Density Adjustment	-	Level of Service (LOS)	A
Adjusted Free-Flow Speed (FFSadj), mi/h	75.0		

HCS Freeway Merge Report

Project Information

Segment Number	8	Segment Name	NB On from NB US 21
Analysis Period Number	1	Segment Analysis Period	$07: 00-07: 15$

Geometric Data

	Freeway	Ramp
Number of Lanes (N), In	3	1
Free-Flow Speed (FFS), mi/h	75.0	25.0
Segment Length (L) / Acceleration Length (LA), ft	1500	785
Terrain Type	Level	Level
Percent Grade, \%	-	-
Segment Type / Ramp Type	Freeway	Right-Sided One-Lane
Adjustment Factors	All Familiar	All Familiar
Driver Population	Non-Severe Weather	Non-Severe Weather
Weather Type	No Incident	-
Incident Type	0	-
Proportion of CAVs in Traffic Stream	1.000	1.000
Final Speed Adjustment Factor (SAF)	1.000	1.000
Demand Adjustment Factor (DAF)	1.000	-
Capacity Adjustment Factor for CAVs, CAFCAV	1.000	1.000
Final Capacity Adjustment Factor (CAF)		
Demand and Capacity		

Demand and Capacity

Demand Volume (Vi), veh/h	1375	170
Peak Hour Factor (PHF)	0.90	0.90
Total Trucks, \%	25.00	3.00
Heavy Vehicle Adjustment Factor (fHV)	0.800	0.971
Flow Rate (vi), pc/h	1910	195
Capacity (cmd), pc/h	7200	1900
Adjusted Capacity (cmda), pc/h	7200	1900
Volume-to-Capacity Ratio (v/c)	0.29	0.10

Speed and Density

Upstream Equilibrium Distance (LEQ), ft	0.0	Flow Outer Lanes (vOA), pc/h/ln	766
Downstream Equilibrium Distance (LEQ), ft	-	On-Ramp Influence Area Speed (SR), mi/h	65.2
Flow in Lanes 1 and 2 (v12), pc/h	1144	Outer Lanes Freeway Speed (So), mi/h	74.0
Flow Entering Ramp-Infl. Area (vR12), pc/h	1339	Ramp Junction Speed (S), mi/h	68.1
Number of Outer Lanes on Freeway (No), In	1	Average Density (D), pc/mi/ln	10.3
Level of Service (LOS)	B	Density in Ramp Influence Area (DR), pc/mi/ln	11.0

HCS Basic Freeway Report

Project Information

Segment Number	9	Segment Name	Btw NB US 21 on and SB US 21 On
Analysis Period Number	1	Segment Analysis Period	$07: 00-07: 15$

Geometric Data

Number of Lanes (N), In	3	Terrain Type	Level
Segment Length (L), ft	750	Percent Grade, \%	-
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	0.83
Lane Width, ft	Free-Flow Speed (FFS), mi/h	75.0	
Right-Side Lateral Clearance, ft	-		

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000

Demand and Capacity

Demand Volume (V), veh/h	1545	Heavy Vehicle Adjustment Factor (fHV)	0.800
Peak Hour Factor (PHF)	0.90	Flow Rate (vp), pc/h/ln	715
Total Trucks, \%	25.00	Capacity (c), pc/h/ln	2400
Single-Unit Trucks (SUT), \%	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), \%	-	Final Adjusted Capacity (cadj), pc/h/ln	2400
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.30

Speed and Density

Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	73.9
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	9.5
Total Ramp Density Adjustment	-	Level of Service (LOS)	A
Adjusted Free-Flow Speed (FFSadj), mi/h	75.0		

HCS Freeway Merge Report

Project Information

Segment Number	10	Segment Name	NB On from SB US 21
Analysis Period Number	1	Segment Analysis Period	$07: 00-07: 15$

Geometric Data

	Freeway	Ramp
Number of Lanes (N), In	3	1
Free-Flow Speed (FFS), mi/h	75.0	45.0
Segment Length (L) / Acceleration Length (LA), ft	1500	745
Terrain Type	Level	Level
Percent Grade, \%	-	Right-Sided One-Lane
Segment Type / Ramp Type	Freeway	
Adjustment Factors	All Familiar	All Familiar
Driver Population	Non-Severe Weather	Non-Severe Weather
Weather Type	No Incident	-
Incident Type	0	-
Proportion of CAVs in Traffic Stream	1.000	1.000
Final Speed Adjustment Factor (SAF)	1.000	1.000
Demand Adjustment Factor (DAF)	1.000	-
Capacity Adjustment Factor for CAVs, CAFCAV	1.000	1.000
Final Capacity Adjustment Factor (CAF)		
Demand and Capacity		

Demand and Capacity

Demand Volume (Vi), veh/h	1545	90
Peak Hour Factor (PHF)	0.90	0.90
Total Trucks, \%	25.00	24.00
Heavy Vehicle Adjustment Factor (fHV)	0.800	0.806
Flow Rate (vi), pc/h	2146	124
Capacity (cmd), pc/h	7200	2100
Adjusted Capacity (cmda), pc/h	7200	2100
Volume-to-Capacity Ratio (v/c)	0.32	0.06

Speed and Density

Upstream Equilibrium Distance (LEQ), ft	-	Flow Outer Lanes (vOA), pc/h/ln	863
Downstream Equilibrium Distance (LEQ), ft	4585.0	On-Ramp Influence Area Speed (SR), mi/h	66.1
Flow in Lanes 1 and 2 (v12), pc/h	1283	Outer Lanes Freeway Speed (So), mi/h	73.7
Flow Entering Ramp-Infl. Area (vR12), pc/h	1407	Ramp Junction Speed (S), mi/h	68.8
Number of Outer Lanes on Freeway (No), In	1	Average Density (D), pc/mi/ln	11.0
Level of Service (LOS)	B	Density in Ramp Influence Area (DR), pc/mi/ln	11.8

HCS Basic Freeway Report

Project Information

Segment Number	11	Segment Name	Btw US 21 and Blythewood Rd
Analysis Period Number	1	Segment Analysis Period	$07: 00-07: 15$

Geometric Data

Number of Lanes (N), In	3	Terrain Type	Level
Segment Length (L), ft	3300	Percent Grade, \%	-
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	1.00
Lane Width, ft	Free-Flow Speed (FFS), mi/h	75.0	
Right-Side Lateral Clearance, ft	-		

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000

Demand and Capacity

Demand Volume (V), veh/h	1635	Heavy Vehicle Adjustment Factor (fHV)	0.800
Peak Hour Factor (PHF)	0.90	Flow Rate (vp), pc/h/ln	757
Total Trucks, \%	25.00	Capacity (c), pc/h/ln	2400
Single-Unit Trucks (SUT), \%	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), \%	-	Final Adjusted Capacity (cadj), pc/h/ln	2400
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.32

Speed and Density

Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	74.9
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	10.1
Total Ramp Density Adjustment	-	Level of Service (LOS)	A
Adjusted Free-Flow Speed (FFSadj), mi/h	75.0		

HCS Basic Freeway Report

Project Information

Segment Number	12	Segment Name	Btw US 21 and Blythewood Rd
Analysis Period Number	1	Segment Analysis Period	$07: 00-07: 15$

Geometric Data

Number of Lanes (N), In	2	Terrain Type	Level
Segment Length (L), ft	6580	Percent Grade, \%	-
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	0.83
Lane Width, ft	Free-Flow Speed (FFS), mi/h	75.0	
Right-Side Lateral Clearance, ft	-		

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000

Demand and Capacity

Demand Volume (V), veh/h	1635	Heavy Vehicle Adjustment Factor (fHV)	0.800
Peak Hour Factor (PHF)	0.90	Flow Rate (vp), pc/h/ln	1136
Total Trucks, \%	25.00	Capacity (c), pc/h/ln	2400
Single-Unit Trucks (SUT), \%	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), \%	-	Final Adjusted Capacity (cadj), pc/h/ln	2400
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.47

Speed and Density

Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	74.8
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	15.2
Total Ramp Density Adjustment	-	Level of Service (LOS)	B
Adjusted Free-Flow Speed (FFSadj), mi/h	75.0		

HCS Freeway Diverge Report

Project Information

Segment Number	13	Segment Name	NB Off to Blythewood Rd
Analysis Period Number	1	Segment Analysis Period	$07: 00-07: 15$

Geometric Data

	Freeway	Ramp
Number of Lanes (N), In	2	1
Free-Flow Speed (FFS), mi/h	75.0	45.0
Segment Length (L) / Deceleration Length (LD), ft	1500	190
Terrain Type	Level	Level
Percent Grade, \%	-	-
Segment Type / Ramp Type	Freeway	Right-Sided One-Lane
Adjustment Factors	All Familiar	All Familiar
Driver Population	Non-Severe Weather	Non-Severe Weather
Weather Type	No Incident	-
Incident Type	0	-
Proportion of CAVs in Traffic Stream	1.000	1.000
Final Speed Adjustment Factor (SAF)	1.000	1.000
Demand Adjustment Factor (DAF)	1.000	-
Capacity Adjustment Factor for CAVs, CAFCAV	1.000	1.000
Final Capacity Adjustment Factor (CAF)		

Demand and Capacity

Demand Volume (Vi), veh/h	1635	710
Peak Hour Factor (PHF)	0.90	0.90
Total Trucks, \%	25.00	10.00
Heavy Vehicle Adjustment Factor (fHV)	0.800	0.909
Flow Rate (vi), pc/h	2271	868
Capacity (cmd), pc/h	4800	2100
Initial Adjusted Capacity (cmda), pc/h	4800	-
Final Adjusted Capacity (cmda), pc/h	4800	2100
Volume-to-Capacity Ratio (v/c)	0.47	0.41

Speed and Density

Upstream Equilibrium Distance (LEQ), ft	-	Flow Outer Lanes (vOA), pc/h/ln	-
Downstream Equilibrium Distance (LEQ), ft	-	Off-Ramp Influence Area Speed (SR), mi/h	62.6
Flow in Lanes 1 and 2 (v12), pc/h	2271	Outer Lanes Freeway Speed (So), mi/h	82.3
Flow Entering Ramp-Infl. Area (vR12), pc/h	-	Ramp Junction Speed (S), mi/h	62.6
Number of Outer Lanes on Freeway (No), In	0	Average Density (D), pc/mi/ln	18.1
Level of Service (LOS)	C	Density in Ramp Influence Area (DR), pc/mi/ln	22.1

HCS Basic Freeway Report

Project Information

Segment Number	14	Segment Name	Btw Blythewood NB Off and NB On
Analysis Period Number	1	Segment Analysis Period	$07: 00-07: 15$

Geometric Data

Number of Lanes (N), In	2	Terrain Type	Level
Segment Length (L), ft	3380	Percent Grade, \%	-
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	0.67
Lane Width, ft	Free-Flow Speed (FFS), mi/h	75.0	
Right-Side Lateral Clearance, ft	-		

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000

Demand and Capacity

Demand Volume (V), veh/h	925	Heavy Vehicle Adjustment Factor (fHV)	0.800
Peak Hour Factor (PHF)	0.90	Flow Rate (vp), pc/h/ln	642
Total Trucks, \%	25.00	Capacity (c), pc/h/ln	2400
Single-Unit Trucks (SUT), \%	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), \%	-	Final Adjusted Capacity (cadj), pc/h/ln	2400
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.27

Speed and Density

Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	74.8
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	8.6
Total Ramp Density Adjustment	-	Level of Service (LOS)	A
Adjusted Free-Flow Speed (FFSadj), mi/h	75.0		

HCS Freeway Merge Report

Project Information

Segment Number	15	Segment Name	NB On from Blythewood Rd
Analysis Period Number	1	Segment Analysis Period	$07: 00-07: 15$

Geometric Data

	Freeway	Ramp
Number of Lanes (N), In	2	1
Free-Flow Speed (FFS), mi/h	75.0	45.0
Segment Length (L) / Acceleration Length (LA), ft	1500	740
Terrain Type	Level	Level
Percent Grade, \%	-	Right-Sided One-Lane
Segment Type / Ramp Type	Freeway	
Adjustment Factors	All Familiar	All Familiar
Driver Population	Non-Severe Weather	Non-Severe Weather
Weather Type	No Incident	-
Incident Type	0	-
Proportion of CAVs in Traffic Stream	1.000	1.000
Final Speed Adjustment Factor (SAF)	1.000	1.000
Demand Adjustment Factor (DAF)	1.000	-
Capacity Adjustment Factor for CAVs, CAFCAV	1.000	1.000
Final Capacity Adjustment Factor (CAF)		
Demand		

Demand and Capacity

Demand Volume (Vi), veh/h	925	289
Peak Hour Factor (PHF)	0.90	0.90
Total Trucks, \%	25.00	5.00
Heavy Vehicle Adjustment Factor (fHV)	0.800	0.952
Flow Rate (vi), pc/h	1285	337
Capacity (cmd), pc/h	4800	2100
Adjusted Capacity (cmda), pc/h	4800	2100
Volume-to-Capacity Ratio (v/c)	0.34	0.16

Speed and Density

Upstream Equilibrium Distance (LEQ), ft	-	Flow Outer Lanes (vOA), pc/h/ln	-
Downstream Equilibrium Distance (LEQ), ft	-	On-Ramp Influence Area Speed (SR), mi/h	66.0
Flow in Lanes 1 and 2 (v12), pc/h	1285	Outer Lanes Freeway Speed (So), mi/h	75.0
Flow Entering Ramp-Infl. Area (vR12), pc/h	1622	Ramp Junction Speed (S), mi/h	66.0
Number of Outer Lanes on Freeway (No), In	0	Average Density (D), pc/mi/ln	12.3
Level of Service (LOS)	D	Density in Ramp Influence Area (DR), pc/mi/ln	13.4

HCS Basic Freeway Report

Project Information

Segment Number	16	Segment Name	Btw Blythewood Rd and E Peach Rd
Analysis Period Number	1	Segment Analysis Period	$07: 00-07: 15$

Geometric Data

Number of Lanes (N), In	2	Terrain Type	Level
Segment Length (L), ft	19090	Percent Grade, \%	-
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	0.67
Lane Width, ft	-	Free-Flow Speed (FFS), mi/h	75.0
Right-Side Lateral Clearance, ft	-		

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000

Demand and Capacity

Demand Volume (V), veh/h	1214	Heavy Vehicle Adjustment Factor (fHV)	0.800
Peak Hour Factor (PHF)	0.90	Flow Rate (vp), pc/h/ln	843
Total Trucks, \%	25.00	Capacity (c), pc/h/ln	2400
Single-Unit Trucks (SUT), \%	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), \%	-	Final Adjusted Capacity (cadj), pc/h/ln	2400
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.35

Speed and Density

Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	75.0
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	11.2
Total Ramp Density Adjustment	-	Level of Service (LOS)	B
Adjusted Free-Flow Speed (FFSadj), mi/h	75.0		

HCS Basic Freeway Report

Project Information

Segment Number	5	Segment Name	Btw E Peach Rd and Blythewood Rd
Analysis Period Number	1	Segment Analysis Period	$07: 00-07: 15$

Geometric Data

Number of Lanes (N), In	2	Terrain Type	Level
Segment Length (L), ft	19290	Percent Grade, \%	-
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	0.67
Lane Width, ft	-	Free-Flow Speed (FFS), mi/h	75.0
Right-Side Lateral Clearance, ft	-		

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000

Demand and Capacity

Demand Volume (V), veh/h	1810	Heavy Vehicle Adjustment Factor (fHV)	0.840
Peak Hour Factor (PHF)	0.90	Flow Rate (vp), pc/h/ln	1197
Total Trucks, \%	19.00	Capacity (c), pc/h/ln	2400
Single-Unit Trucks (SUT), \%	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), \%	-	Final Adjusted Capacity (cadj), pc/h/ln	2400
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.50

Speed and Density

Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	74.6
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	16.0
Total Ramp Density Adjustment	-	Level of Service (LOS)	B
Adjusted Free-Flow Speed (FFSadj), mi/h	75.0		

HCS Freeway Diverge Report

Project Information

Segment Number	6	Segment Name	SB Off to Blythewood Rd
Analysis Period Number	1	Segment Analysis Period	$07: 00-07: 15$

Geometric Data

	Freeway	Ramp
Number of Lanes (N), In	2	1
Free-Flow Speed (FFS), mi/h	75.0	45.0
Segment Length (L) / Deceleration Length (LD), ft	1500	170
Terrain Type	Level	Level
Percent Grade, \%	-	-
Segment Type / Ramp Type	Freeway	All Familiar
Adjustment Factors	All Familiar	Non-Severe Weather
Driver Population	Non-Severe Weather	-
Weather Type	No Incident	-
Incident Type	0	1.000
Proportion of CAVs in Traffic Stream	1.000	1.000
Final Speed Adjustment Factor (SAF)	1.000	-
Demand Adjustment Factor (DAF)	1.000	1.000
Capacity Adjustment Factor for CAVs, CAFCAV	1.000	
Final Capacity Adjustment Factor (CAF)		

Demand and Capacity

Demand Volume (Vi), veh/h	1810	260
Peak Hour Factor (PHF)	0.90	0.90
Total Trucks, \%	19.00	18.00
Heavy Vehicle Adjustment Factor (fHV)	0.840	0.847
Flow Rate (vi), pc/h	2394	341
Capacity (cmd), pc/h	4800	2100
Initial Adjusted Capacity (cmda), pc/h	4800	-
Final Adjusted Capacity (cmda), pc/h	4800	2100
Volume-to-Capacity Ratio (v/c)	0.50	0.16

Speed and Density

Upstream Equilibrium Distance (LEQ), ft	-	Flow Outer Lanes (vOA), pc/h/ln	-
Downstream Equilibrium Distance (LEQ), ft	-	Off-Ramp Influence Area Speed (SR), mi/h	64.1
Flow in Lanes 1 and 2 (v12), pc/h	2394	Outer Lanes Freeway Speed (So), mi/h	82.3
Flow Entering Ramp-Infl. Area (vR12), pc/h	-	Ramp Junction Speed (S), mi/h	64.1
Number of Outer Lanes on Freeway (No), In	0	Average Density (D), pc/mi/ln	18.7
Level of Service (LOS)	C	Density in Ramp Influence Area (DR), pc/mi/ln	23.3

HCS Basic Freeway Report

Project Information

Segment Number	7	Segment Name	Btw Blythewood SB Off and SB On
Analysis Period Number	1	Segment Analysis Period	$07: 00-07: 15$

Geometric Data

Number of Lanes (N), In	2	Terrain Type	Level
Segment Length (L), ft	3645	Percent Grade, \%	-
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	0.50
Lane Width, ft	Free-Flow Speed (FFS), mi/h	75.0	
Right-Side Lateral Clearance, ft	-		

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000

Demand and Capacity

Demand Volume (V), veh/h	1550	Heavy Vehicle Adjustment Factor (fHV)	0.840
Peak Hour Factor (PHF)	0.90	Flow Rate (vp), pc/h/ln	1025
Total Trucks, \%	19.00	Capacity (c), pc/h/ln	2400
Single-Unit Trucks (SUT), \%	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), \%	-	Final Adjusted Capacity (cadj), pc/h/ln	2400
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.43

Speed and Density

Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	74.8
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	13.7
Total Ramp Density Adjustment	-	Level of Service (LOS)	B
Adjusted Free-Flow Speed (FFSadj), mi/h	75.0		

HCS Freeway Merge Report

Project Information

Segment Number	8	Segment Name	SB On from Blythewood
Analysis Period Number	1	Segment Analysis Period	$07: 00-07: 15$

Geometric Data

	Freeway	Ramp
Number of Lanes (N), In	2	1
Free-Flow Speed (FFS), mi/h	75.0	45.0
Segment Length (L) / Acceleration Length (LA), ft	1500	660
Terrain Type	Level	Level
Percent Grade, \%	-	Right-Sided One-Lane
Segment Type / Ramp Type	Freeway	
Adjustment Factors	All Familiar	All Familiar
Driver Population	Non-Severe Weather	Non-Severe Weather
Weather Type	No Incident	-
Incident Type	0	-
Proportion of CAVs in Traffic Stream	1.000	1.000
Final Speed Adjustment Factor (SAF)	1.000	1.000
Demand Adjustment Factor (DAF)	1.000	-
Capacity Adjustment Factor for CAVs, CAFCAV	1.000	1.000
Final Capacity Adjustment Factor (CAF)		
Demand and Capacity		

Demand and Capacity

Demand Volume (Vi), veh/h	1550	1354
Peak Hour Factor (PHF)	0.90	0.90
Total Trucks, \%	19.00	5.00
Heavy Vehicle Adjustment Factor (fHV)	0.840	0.952
Flow Rate (vi), pc/h	2050	1580
Capacity (cmd), pc/h	4800	2100
Adjusted Capacity (cmda), pc/h	4800	2100
Volume-to-Capacity Ratio (v/c)	0.76	0.75

Speed and Density

Upstream Equilibrium Distance (LEQ), ft	-	Flow Outer Lanes (vOA), pc/h/ln	-
Downstream Equilibrium Distance (LEQ), ft	-	On-Ramp Influence Area Speed (SR), mi/h	61.5
Flow in Lanes 1 and 2 (v12), pc/h	2050	Outer Lanes Freeway Speed (So), mi/h	75.0
Flow Entering Ramp-Infl. Area (vR12), pc/h	3630	Ramp Junction Speed (S), mi/h	61.5
Number of Outer Lanes on Freeway (No), In	0	Average Density (D), pc/mi/ln	29.5
Level of Service (LOS)	Density in Ramp Influence Area (DR), pc/mi/ln	29.0	

HCS Basic Freeway Report

Project Information

Segment Number	9	Segment Name	Btw Blythewood Rd and US 21
Analysis Period Number	1	Segment Analysis Period	$07: 00-07: 15$

Geometric Data

Number of Lanes (N), In	2	Terrain Type	Level
Segment Length (L), ft	9920	Percent Grade, \%	-
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	0.83
Lane Width, ft	Free-Flow Speed (FFS), mi/h	75.0	
Right-Side Lateral Clearance, ft	-		

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000

Demand and Capacity

Demand Volume (V), veh/h	2904	Heavy Vehicle Adjustment Factor (fHV)	0.840
Peak Hour Factor (PHF)	0.90	Flow Rate (vp), pc/h/ln	1920
Total Trucks, \%	19.00	Capacity (c), pc/h/ln	2400
Single-Unit Trucks (SUT), \%	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), \%	-	Final Adjusted Capacity (cadj), pc/h/ln	2400
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.80

Speed and Density

Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	65.6
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	29.3
Total Ramp Density Adjustment	-	Level of Service (LOS)	D
Adjusted Free-Flow Speed (FFSadj), mi/h	75.0		

HCS Freeway Diverge Report

Project Information

Segment Number	10	Segment Name	SB Off to US 21
Analysis Period Number	1	Segment Analysis Period	07:00-07:15

Geometric Data

	Freeway	Ramp
Number of Lanes (N), In	2	1
Free-Flow Speed (FFS), mi/h	75.0	45.0
Segment Length (L) / Deceleration Length (LD), ft	1500	270
Terrain Type	Level	Level
Percent Grade, \%	-	-
Segment Type / Ramp Type	Freeway	Right-Sided One-Lane

Adjustment Factors

Driver Population		All Familiar	All Familiar	
Weather Type		Non-Severe Weather	Non-Severe Weather	
Incident Type		No Incident	-	
Proportion of CAVs in Traffic Stream		0	-	
Final Speed Adjustment Factor (SAF)		1.000	1.000	
Demand Adjustment Factor (DAF)		1.000	1.000	
Capacity Adjustment Factor for CAVs, CAFCAV		1.000	-	
Final Capacity Adjustment Factor (CAF)		1.000	1.000	
Demand and Capacity				
Demand Volume (Vi), veh/h		2904	190	
Peak Hour Factor (PHF)		0.90	0.90	
Total Trucks, \%		19.00	13.00	
Heavy Vehicle Adjustment Factor (fHV)		0.840	0.885	
Flow Rate (vi), pc/h		3841	239	
Capacity (cmd), pc/h		4800	2100	
Initial Adjusted Capacity (cmda), pc/h		4800	-	
Final Adjusted Capacity (cmda), pc/h		4800	2100	
Volume-to-Capacity Ratio (v/c)		0.80	0.11	
Speed and Density				
Upstream Equilibrium Distance (LEQ), ft	-	Flow Outer Lanes (vOA), pc/h/ln		-
Downstream Equilibrium Distance (LEQ), ft	-	Off-Ramp Influence Area Speed (S	R), mi/h	64.4
Flow in Lanes 1 and 2 (v12), pc/h	3841	Outer Lanes Freeway Speed (So), m	mi / h	82.3
Flow Entering Ramp-Infl. Area (vR12), pc/h	-	Ramp Junction Speed (S), mi/h		64.4
Number of Outer Lanes on Freeway (NO), In	0	Average Density (D), pc/mi/ln		29.8
Level of Service (LOS)	D	Density in Ramp Influence Area (D)	R), $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$	34.9

HCS Basic Freeway Report

Project Information

Segment Number	11	Segment Name	Btw US 21 SB Off and On from SB US 21
Analysis Period Number	1	Segment Analysis Period	$07: 00-07: 15$

Geometric Data

Number of Lanes (N), In	2	Terrain Type	Level
Segment Length (L), ft	1569	Percent Grade, \%	-
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	0.83
Lane Width, ft	Free-Flow Speed (FFS), mi/h	75.0	
Right-Side Lateral Clearance, ft	-		

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000

Demand and Capacity

Demand Volume (V), veh/h	2714	Heavy Vehicle Adjustment Factor (fHV)	0.840
Peak Hour Factor (PHF)	0.90	Flow Rate (vp), pc/h/ln	1795
Total Trucks, \%	19.00	Capacity (c), pc/h/ln	2400
Single-Unit Trucks (SUT), \%	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), \%	-	Final Adjusted Capacity (cadj), pc/h/ln	2400
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.75

Speed and Density

Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	68.0
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	26.4
Total Ramp Density Adjustment	-	Level of Service (LOS)	D
Adjusted Free-Flow Speed (FFSadj), mi/h	75.0		

HCS Basic Freeway Report

Project Information

Segment Number	12	Segment Name	SB On from SB US 21
Analysis Period Number	1	Segment Analysis Period	$07: 00-07: 15$

Geometric Data

	Freeway	Ramp
Number of Lanes (N), In	3	1
Free-Flow Speed (FFS), mi/h	75.0	25.0
Segment Length (L) / Acceleration Length (LA), ft	1500	800
Terrain Type	Level	Level
Percent Grade, \%	-	Right-Sided One-Lane
Segment Type / Ramp Type	Freeway	
Adjustment Factors	All Familiar	All Familiar
Driver Population	Non-Severe Weather	Non-Severe Weather
Weather Type	No Incident	-
Incident Type	0	-
Proportion of CAVs in Traffic Stream	1.000	1.000
Final Speed Adjustment Factor (SAF)	1.000	1.000
Demand Adjustment Factor (DAF)	1.000	-
Capacity Adjustment Factor for CAVs, CAFCAV	1.000	1.000
Final Capacity Adjustment Factor (CAF)		

Demand and Capacity

Demand Volume (Vi), veh/h	2714	870
Peak Hour Factor (PHF)	0.90	0.90
Total Trucks, \%	19.00	9.00
Heavy Vehicle Adjustment Factor (fHV)	0.840	0.917
Flow Rate (vi), pc/h	3590	1054
Capacity (cmd), pc/h	7200	1900
Adjusted Capacity (cmda), pc/h	7200	1900
Volume-to-Capacity Ratio (v/c)	0.65	0.55

Speed and Density

Upstream Equilibrium Distance (LEQ), ft	9999.0	Flow Outer Lanes (vOA), pc/h/ln	0
Downstream Equilibrium Distance (LEQ), ft	9999.0	On-Ramp Influence Area Speed (SR), mi/h	71.7
Flow in Lanes 1 and 2 (v12), pc/h	0	Outer Lanes Freeway Speed (So), mi/h	75.0
Flow Entering Ramp-Infl. Area (vR12), pc/h	0	Ramp Junction Speed (S), mi/h	71.7
Number of Outer Lanes on Freeway (NO), In	1	Average Density (D), pc/mi/ln	21.6
Level of Service (LOS)	C	Density in Ramp Influence Area (DR), pc/mi/ln	21.6

HCS Basic Freeway Report

Project Information

Segment Number	13	Segment Name	Btw SB on from SB US 21 and SB On from NB US 21
Analysis Period Number	1	Segment Analysis Period	$07: 00-07: 15$

Geometric Data

Number of Lanes (N), In	3	Terrain Type	Level
Segment Length (L), ft	1055	Percent Grade, \%	-
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	1.00
Lane Width, ft	Free-Flow Speed (FFS), mi/h	75.0	
Right-Side Lateral Clearance, ft	-		

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000

Demand and Capacity

Demand Volume (V), veh/h	3584	Heavy Vehicle Adjustment Factor (fHV)	0.840
Peak Hour Factor (PHF)	0.90	Flow Rate (vp), pc/h/ln	1580
Total Trucks, \%	19.00	Capacity (c), pc/h/ln	2400
Single-Unit Trucks (SUT), \%	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), \%	-	Final Adjusted Capacity (cadj), pc/h/ln	2400
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.66

Speed and Density

Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	71.3
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	22.2
Total Ramp Density Adjustment	-	Level of Service (LOS)	C
Adjusted Free-Flow Speed (FFSadj), mi/h	75.0		

HCS Freeway Merge Report

Project Information

Segment Number	14	Segment Name	SB On from NB US 21
Analysis Period Number	1	Segment Analysis Period	$07: 00-07: 15$

Geometric Data

	Freeway	Ramp
Number of Lanes (N), In	3	1
Free-Flow Speed (FFS), mi/h	75.0	45.0
Segment Length (L) / Acceleration Length (LA), ft	1500	630
Terrain Type	Level	Level
Percent Grade, \%	-	Right-Sided One-Lane
Segment Type / Ramp Type	Freeway	
Adjustment Factors	All Familiar	All Familiar
Driver Population	Non-Severe Weather	Non-Severe Weather
Weather Type	No Incident	-
Incident Type	0	-
Proportion of CAVs in Traffic Stream	1.000	1.000
Final Speed Adjustment Factor (SAF)	1.000	1.000
Demand Adjustment Factor (DAF)	1.000	-
Capacity Adjustment Factor for CAVs, CAFCAV	1.000	1.000
Final Capacity Adjustment Factor (CAF)		
Demand		

Demand and Capacity

Demand Volume (Vi), veh/h	3584	684
Peak Hour Factor (PHF)	0.90	0.90
Total Trucks, \%	19.00	4.00
Heavy Vehicle Adjustment Factor (fHV)	0.840	0.962
Flow Rate (vi), pc/h	4741	790
Capacity (cmd), pc/h	7200	2100
Adjusted Capacity (cmda), pc/h	7200	2100
Volume-to-Capacity Ratio (v/c)	0.77	0.38

Speed and Density

Upstream Equilibrium Distance (LEQ), ft	-	Flow Outer Lanes (vOA), pc/h/ln	1920
Downstream Equilibrium Distance (LEQ), ft	1847.4	On-Ramp Influence Area Speed (SR), mi/h	61.5
Flow in Lanes 1 and 2 (v12), pc/h	2821	Outer Lanes Freeway Speed (So), mi/h	69.9
Flow Entering Ramp-Infl. Area (vR12), pc/h	3611	Ramp Junction Speed (S), mi/h	64.2
Number of Outer Lanes on Freeway (No), In	1	Average Density (D), pc/mi/ln	28.7
Level of Service (LOS)	D	Density in Ramp Influence Area (DR), pc/mi/ln	29.4

HCS Basic Freeway Report

Project Information

Segment Number	15	Segment Name	Btw US 21 and Killian Rd
Analysis Period Number	1	Segment Analysis Period	$07: 00-07: 15$

Geometric Data

Number of Lanes (N), In	3	Terrain Type	Level
Segment Length (L), ft	6900	Percent Grade, \%	-
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	0.83
Lane Width, ft	Free-Flow Speed (FFS), mi/h	75.0	
Right-Side Lateral Clearance, ft	-		

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000	
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000	
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000	
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000	
Demand and Capacity				
Demand Volume (V), veh/h	Heavy Vehicle Adjustment Factor (fHV)	0.719		
Peak Hour Factor (PHF)	Flow Rate (vp), pc/h/ln	2199		
Total Trucks, \%	0.90	Capacity (c), pc/h/ln	2400	
Single-Unit Trucks (SUT), \%	39.00	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), \%	-	Final Adjusted Capacity (cadj), pc/h/ln	2400	
Passenger Car Equivalent (ET)	2.00		0.92	

Speed and Density

Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	59.1
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	37.2
Total Ramp Density Adjustment	-	Level of Service (LOS)	E
Adjusted Free-Flow Speed (FFSadj), mi/h	75.0		

HCS Basic Freeway Report

Project Information

Segment Number	5	Segment Name	Btw Killian Rd and US 21
Analysis Period Number	1	Segment Analysis Period	$16: 15-16: 30$

Geometric Data

Number of Lanes (N), In	3	Terrain Type	Level
Segment Length (L), ft	7200	Percent Grade, \%	-
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	0.83
Lane Width, ft	Free-Flow Speed (FFS), mi/h	75.0	
Right-Side Lateral Clearance, ft	-		

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000	
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000	
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000	
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000	
Demand and Capacity				
Demand Volume (V), veh/h	Heavy Vehicle Adjustment Factor (fHV)	0.855		
Peak Hour Factor (PHF)	Flow Rate (vp), pc/h/ln	1774		
Total Trucks, \%	0.90	Capacity (c), pc/h/ln	2400	
Single-Unit Trucks (SUT), \%	17.00	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), \%	Final Adjusted Capacity (cadj), pc/h/ln	2400		
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.74	

Speed and Density

Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	68.4
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	25.9
Total Ramp Density Adjustment	-	Level of Service (LOS)	C
Adjusted Free-Flow Speed (FFSadj), mi/h	75.0		

HCS Freeway Diverge Report

Project Information

Segment Number	6	Segment Name	NB Off to US 21
Analysis Period Number	1	Segment Analysis Period	$16: 15-16: 30$

Geometric Data

	Freeway	Ramp
Number of Lanes (N), In	3	1
Free-Flow Speed (FFS), mi/h	75.0	45.0
Segment Length (L) / Deceleration Length (LD), ft	1500	220
Terrain Type	Level	Level
Percent Grade, \%	-	-
Segment Type / Ramp Type	Freeway	Right-Sided One-Lane

Adjustment Factors

Driver Population		All Familiar	All Familiar	
Weather Type		Non-Severe Weather	Non-Severe Weather	
Incident Type		No Incident	-	
Proportion of CAVs in Traffic Stream		0	-	
Final Speed Adjustment Factor (SAF)		1.000	1.000	
Demand Adjustment Factor (DAF)		1.000	1.000	
Capacity Adjustment Factor for CAVs, CAFCAV		1.000	-	
Final Capacity Adjustment Factor (CAF)		1.000	1.000	
Demand and Capacity				
Demand Volume (Vi), veh/h		3935	1276	
Peak Hour Factor (PHF)		0.90	0.90	
Total Trucks, \%		17.00	10.00	
Heavy Vehicle Adjustment Factor (fHV)		0.855	0.909	
Flow Rate (vi), pc/h		5114	1560	
Capacity (cmd), pc/h		7200	2100	
Initial Adjusted Capacity (cmda), pc/h		7200	-	
Final Adjusted Capacity (cmda), pc/h		7200	2100	
Volume-to-Capacity Ratio (v/c)		0.74	0.74	
Speed and Density				
Upstream Equilibrium Distance (LEQ), ft	5157.3	Flow Outer Lanes (vOA), pc/h/ln		1674
Downstream Equilibrium Distance (LEQ), ft	-	Off-Ramp Influence Area Speed (S	R), mi/h	60.5
Flow in Lanes 1 and 2 (v12), pc/h	3648	Outer Lanes Freeway Speed (So), m	mi / h	79.6
Flow Entering Ramp-Infl. Area (vR12), pc/h	-	Ramp Junction Speed (S), mi/h		65.4
Number of Outer Lanes on Freeway (NO), In	1	Average Density (D), pc/mi/ln		27.1
Level of Service (LOS)	D	Density in Ramp Influence Area (D)	R), $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$	33.6

HCS Basic Freeway Report

Project Information

Segment Number	7	Segment Name	Btw US 21 NB Off and US 21 NB On
Analysis Period Number	1	Segment Analysis Period	$16: 15-16: 30$

Geometric Data

Number of Lanes (N), In	3	Terrain Type	Level
Segment Length (L), ft	1585	Percent Grade, \%	-
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	1.00
Lane Width, ft	Free-Flow Speed (FFS), mi/h	75.0	
Right-Side Lateral Clearance, ft	-		

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000

Demand and Capacity

Demand Volume (V), veh/h	2659	Heavy Vehicle Adjustment Factor (fHV)	0.855
Peak Hour Factor (PHF)	0.90	Flow Rate (vp), pc/h/ln	1254
Total Trucks, \%	17.00	Capacity (c), pc/h/ln	2400
Single-Unit Trucks (SUT), \%	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), \%	-	Final Adjusted Capacity (cadj), pc/h/ln	2400
Passenger Car Equivalent (ET)	Volume-to-Capacity Ratio (v/c)	0.52	
Speed and Density	2.00	Average Speed (S), mi/h	
Lane Width Adjustment (fLw)	Density (D), pc/mi/ln	74.2	
Right-Side Lateral Clearance Adj. (fRLC)	-	Level of Service (LOS)	16.9
Total Ramp Density Adjustment	-		B
Adjusted Free-Flow Speed (FFSadj), mi/h	75.0		

HCS Freeway Merge Report

Project Information

Segment Number	8	Segment Name	NB On from NB US 21
Analysis Period Number	1	Segment Analysis Period	$16: 15-16: 30$

Geometric Data

	Freeway	Ramp
Number of Lanes (N), In	3	1
Free-Flow Speed (FFS), mi/h	75.0	25.0
Segment Length (L) / Acceleration Length (LA), ft	1500	785
Terrain Type	Level	Level
Percent Grade, \%	-	Right-Sided One-Lane
Segment Type / Ramp Type	Freeway	
Adjustment Factors	All Familiar	All Familiar
Driver Population	Non-Severe Weather	Non-Severe Weather
Weather Type	No Incident	-
Incident Type	0	-
Proportion of CAVs in Traffic Stream	1.000	1.000
Final Speed Adjustment Factor (SAF)	1.000	1.000
Demand Adjustment Factor (DAF)	1.000	-
Capacity Adjustment Factor for CAVs, CAFCAV	1.000	1.000
Final Capacity Adjustment Factor (CAF)		

Demand and Capacity

Demand Volume (Vi), veh/h	2659	110
Peak Hour Factor (PHF)	0.90	0.90
Total Trucks, \%	17.00	11.00
Heavy Vehicle Adjustment Factor (fHV)	0.855	0.901
Flow Rate (vi), pc/h	3455	136
Capacity (cmd), pc/h	7200	1900
Adjusted Capacity (cmda), pc/h	7200	1900
Volume-to-Capacity Ratio (v/c)	0.54	0.07

Speed and Density

Upstream Equilibrium Distance (LEQ), ft	87.7	Flow Outer Lanes (vOA), pc/h/ln	1509
Downstream Equilibrium Distance (LEQ), ft	-	On-Ramp Influence Area Speed (SR), mi/h	64.3
Flow in Lanes 1 and 2 (v12), pc/h	2253	Outer Lanes Freeway Speed (So), mi/h	71.4
Flow Entering Ramp-Infl. Area (vR12), pc/h	2389	Ramp Junction Speed (S), mi/h	66.9
Number of Outer Lanes on Freeway (No), In	1	Average Density (D), pc/mi/ln	19.4
Level of Service (LOS)	B	Density in Ramp Influence Area (DR), pc/mi/ln	19.2

HCS Basic Freeway Report

Project Information

Segment Number	9	Segment Name	Btw NB US 21 on and SB US 21 On
Analysis Period Number	1	Segment Analysis Period	$16: 15-16: 30$

Geometric Data

Number of Lanes (N), In	3	Terrain Type	Level
Segment Length (L), ft	750	Percent Grade, \%	-
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	0.83
Lane Width, ft	Free-Flow Speed (FFS), mi/h	75.0	
Right-Side Lateral Clearance, ft	-		

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000

Demand and Capacity

Demand Volume (V), veh/h	2769	Heavy Vehicle Adjustment Factor (fHV)	0.855
Peak Hour Factor (PHF)	0.90	Flow Rate (vp), pc/h/ln	1299
Total Trucks, \%	17.00	Capacity (c), pc/h/ln	2400
Single-Unit Trucks (SUT), \%	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), \%	-	Final Adjusted Capacity (cadj), pc/h/ln	2400
Passenger Car Equivalent (ET)	Volume-to-Capacity Ratio (v/c)	0.54	
Speed and Density	Average Speed (S), mi/h		
Lane Width Adjustment (fLw)	Density (D), pc/mi/ln	73.7	
Right-Side Lateral Clearance Adj. (fRLC)	-	Level of Service (LOS)	17.6
Total Ramp Density Adjustment	-		B
Adjusted Free-Flow Speed (FFSadj), mi/h	75.0		

HCS Freeway Merge Report

Project Information

Segment Number	10	Segment Name	NB On from SB US 21
Analysis Period Number	1	Segment Analysis Period	$16: 15-16: 30$

Geometric Data

	Freeway	Ramp
Number of Lanes (N), In	3	1
Free-Flow Speed (FFS), mi/h	75.0	45.0
Segment Length (L) / Acceleration Length (LA), ft	1500	745
Terrain Type	Level	Level
Percent Grade, \%	-	Right-Sided One-Lane
Segment Type / Ramp Type	Freeway	
Adjustment Factors	All Familiar	All Familiar
Driver Population	Non-Severe Weather	Non-Severe Weather
Weather Type	No Incident	-
Incident Type	0	-
Proportion of CAVs in Traffic Stream	1.000	1.000
Final Speed Adjustment Factor (SAF)	1.000	1.000
Demand Adjustment Factor (DAF)	1.000	-
Capacity Adjustment Factor for CAVs, CAFCAV	1.000	1.000
Final Capacity Adjustment Factor (CAF)		
Demand and Capacity		

Demand and Capacity

Demand Volume (Vi), veh/h	2769	190
Peak Hour Factor (PHF)	0.90	0.90
Total Trucks, \%	17.00	11.00
Heavy Vehicle Adjustment Factor (fHV)	0.855	0.901
Flow Rate (vi), pc/h	3598	234
Capacity (cmd), pc/h	7200	2100
Adjusted Capacity (cmda), pc/h	7200	2100
Volume-to-Capacity Ratio (v/c)	0.57	0.11

Speed and Density

Upstream Equilibrium Distance (LEQ), ft	-	Flow Outer Lanes (vOA), pc/h/ln	1567
Downstream Equilibrium Distance (LEQ), ft	7822.9	On-Ramp Influence Area Speed (SR), mi/h	64.9
Flow in Lanes 1 and 2 (v12), pc/h	2331	Outer Lanes Freeway Speed (So), mi/h	71.2
Flow Entering Ramp-Infl. Area (vR12), pc/h	2565	Ramp Junction Speed (S), mi/h	67.2
Number of Outer Lanes on Freeway (No), In	1	Average Density (D), pc/mi/ln	20.5
Level of Service (LOS)	C	Density in Ramp Influence Area (DR), pc/mi/ln	20.8

HCS Basic Freeway Report

Project Information

Segment Number	11	Segment Name	Btw US 21 and Blythewood Rd
Analysis Period Number	1	Segment Analysis Period	$16: 15-16: 30$

Geometric Data

Number of Lanes (N), In	3	Terrain Type	Level
Segment Length (L), ft	3300	Percent Grade, \%	-
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	1.00
Lane Width, ft	Free-Flow Speed (FFS), mi/h	75.0	
Right-Side Lateral Clearance, ft	-		

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000

Demand and Capacity

Demand Volume (V), veh/h	2959	Heavy Vehicle Adjustment Factor (fHV)	0.855
Peak Hour Factor (PHF)	0.90	Flow Rate (vp), pc/h/ln	1377
Total Trucks, \%	17.00	Capacity (c), pc/h/ln	2400
Single-Unit Trucks (SUT), \%	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), \%	-	Final Adjusted Capacity (cadj), pc/h/ln	2400
Passenger Car Equivalent (ET)	Volume-to-Capacity Ratio (v/c)	0.57	
Speed and Density	2.00	Average Speed (S), mi/h	
Lane Width Adjustment (fLw)	Density (D), pc/mi/ln	73.4	
Right-Side Lateral Clearance Adj. (fRLC)	-	Level of Service (LOS)	18.8
Total Ramp Density Adjustment	-		C
Adjusted Free-Flow Speed (FFSadj), mi/h	75.0		

HCS Basic Freeway Report

Project Information

Segment Number	12	Segment Name	Btw US 21 and Blythewood Rd
Analysis Period Number	1	Segment Analysis Period	$16: 15-16: 30$

Geometric Data

Number of Lanes (N), In	2	Terrain Type	Level
Segment Length (L), ft	6580	Percent Grade, \%	-
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	0.83
Lane Width, ft	Free-Flow Speed (FFS), mi/h	75.0	
Right-Side Lateral Clearance, ft	-		

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000

Demand and Capacity

| Demand Volume (V), veh/h | 2959 | Heavy Vehicle Adjustment Factor (fHV) | 0.855 |
| :--- | :--- | :--- | :--- | :--- |
| Peak Hour Factor (PHF) | 0.90 | Flow Rate (vp), pc/h/ln | 2066 |
| Total Trucks, \% | 17.00 | Capacity (c), pc/h/ln | 2400 |
| Single-Unit Trucks (SUT), \% | - | Initial Adjusted Capacity (cadj), pc/h/ln | 2400 |
| Tractor-Trailers (TT), \% | - | Final Adjusted Capacity (cadj), pc/h/ln | 2400 |
| Passenger Car Equivalent (ET) | Volume-to-Capacity Ratio (v/c) | 0.86 | |
| Speed and Density | 2.00 | Average Speed (S), mi/h | |
| Lane Width Adjustment (fLw) | Density (D), pc/mi/ln | 62.4 | |
| Right-Side Lateral Clearance Adj. (fRLC) | - | Level of Service (LOS) | 33.1 |
| Total Ramp Density Adjustment | - | | D |
| Adjusted Free-Flow Speed (FFSadj), mi/h | 75.0 | | |

HCS Freeway Diverge Report

Project Information

Segment Number	13	Segment Name	NB Off to Blythewood Rd
Analysis Period Number	1	Segment Analysis Period	16:15-16:30

Geometric Data

	Freeway	Ramp
Number of Lanes (N), In	2	1
Free-Flow Speed (FFS), mi/h	75.0	45.0
Segment Length (L) / Deceleration Length (LD), ft	1500	190
Terrain Type	Level	Level
Percent Grade, \%	-	-
Segment Type / Ramp Type	Freeway	Right-Sided One-Lane
Adjustment Factors	All Familiar	All Familiar
Driver Population	Non-Severe Weather	Non-Severe Weather
Weather Type	No Incident	-
Incident Type	0	-
Proportion of CAVs in Traffic Stream	1.000	1.000
Final Speed Adjustment Factor (SAF)	1.000	1.000
Demand Adjustment Factor (DAF)	1.000	-
Capacity Adjustment Factor for CAVs, CAFCAV	1.000	1.000
Final Capacity Adjustment Factor (CAF)		

Demand and Capacity

Demand Volume (Vi), veh/h	2959	1234
Peak Hour Factor (PHF)	0.90	0.90
Total Trucks, \%	17.00	8.00
Heavy Vehicle Adjustment Factor (fHV)	0.855	0.926
Flow Rate (vi), pc/h	3845	1481
Capacity (cmd), pc/h	4800	2100
Initial Adjusted Capacity (cmda), pc/h	4800	-
Final Adjusted Capacity (cmda), pc/h	4800	2100
Volume-to-Capacity Ratio (v/c)	0.86	0.71

Speed and Density

Upstream Equilibrium Distance (LEQ), ft	-	Flow Outer Lanes (vOA), pc/h/ln	-
Downstream Equilibrium Distance (LEQ), ft	-	Off-Ramp Influence Area Speed (SR), mi/h	60.8
Flow in Lanes 1 and 2 (v12), pc/h	4132	Outer Lanes Freeway Speed (So), mi/h	82.3
Flow Entering Ramp-Infl. Area (vR12), pc/h	-	Ramp Junction Speed (S), mi/h	60.8
Number of Outer Lanes on Freeway (No), In	0	Average Density (D), pc/mi/ln	34.0
Level of Service (LOS)	E	Density in Ramp Influence Area (DR), pc/mi/ln	38.1

HCS Basic Freeway Report

Project Information

Segment Number	14	Segment Name	Btw Blythewood NB Off and NB On
Analysis Period Number	1	Segment Analysis Period	$16: 15-16: 30$

Geometric Data

Number of Lanes (N), In	2	Terrain Type	Level
Segment Length (L), ft	3380	Percent Grade, \%	-
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	0.67
Lane Width, ft	Free-Flow Speed (FFS), mi/h	75.0	
Right-Side Lateral Clearance, ft	-		

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000

Demand and Capacity

Demand Volume (V), veh/h	1725	Heavy Vehicle Adjustment Factor (fHV)	0.855
Peak Hour Factor (PHF)	0.90	Flow Rate (vp), pc/h/ln	1326
Total Trucks, \%	17.00	Capacity (c), pc/h/ln	2400
Single-Unit Trucks (SUT), \%	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), \%	-	Final Adjusted Capacity (cadj), pc/h/ln	2400
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.55

Speed and Density

Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	73.8
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	18.0
Total Ramp Density Adjustment	-	Level of Service (LOS)	B
Adjusted Free-Flow Speed (FFSadj), mi/h	75.0		

HCS Freeway Merge Report

Project Information

Segment Number	15	Segment Name	NB On from Blythewood Rd
Analysis Period Number	1	Segment Analysis Period	16:15-16:30

Geometric Data

	Freeway	Ramp
Number of Lanes (N), In	2	1
Free-Flow Speed (FFS), mi/h	75.0	45.0
Segment Length (L) / Acceleration Length (LA), ft	1500	740
Terrain Type	Level	Level
Percent Grade, \%	-	Right-Sided One-Lane
Segment Type / Ramp Type	Freeway	
Adjustment Factors	All Familiar	All Familiar
Driver Population	Non-Severe Weather	Non-Severe Weather
Weather Type	No Incident	-
Incident Type	0	-
Proportion of CAVs in Traffic Stream	1.000	1.000
Final Speed Adjustment Factor (SAF)	1.000	1.000
Demand Adjustment Factor (DAF)	1.000	-
Capacity Adjustment Factor for CAVs, CAFCAV	1.000	1.000
Final Capacity Adjustment Factor (CAF)		

Demand and Capacity

Demand Volume (Vi), veh/h	1725	332
Peak Hour Factor (PHF)	0.90	0.90
Total Trucks, \%	17.00	6.00
Heavy Vehicle Adjustment Factor (fHV)	0.855	0.943
Flow Rate (vi), pc/h	2242	391
Capacity (cmd), pc/h	4800	2100
Adjusted Capacity (cmda), pc/h	4800	2100
Volume-to-Capacity Ratio (v/c)	0.63	0.19

Speed and Density

Upstream Equilibrium Distance (LEQ), ft	-	Flow Outer Lanes (vOA), pc/h/ln	-
Downstream Equilibrium Distance (LEQ), ft	-	On-Ramp Influence Area Speed (SR), mi/h	63.9
Flow in Lanes 1 and 2 (v12), pc/h	2651	Outer Lanes Freeway Speed (So), mi/h	75.0
Flow Entering Ramp-Infl. Area (vR12), pc/h	3042	Ramp Junction Speed (S), mi/h	63.9
Number of Outer Lanes on Freeway (No), In	0	Average Density (D), pc/mi/ln	23.8
Level of Service (LOS)	C	Density in Ramp Influence Area (DR), pc/mi/ln	24.5

HCS Basic Freeway Report

Project Information

Segment Number	16	Segment Name	Btw Blythewood Rd and E Peach Rd
Analysis Period Number	1	Segment Analysis Period	$16: 15-16: 30$

Geometric Data

Number of Lanes (N), In	2	Terrain Type	Level
Segment Length (L), ft	19090	Percent Grade, \%	-
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	0.67
Lane Width, ft	Free-Flow Speed (FFS), mi/h	75.0	
Right-Side Lateral Clearance, ft	-		

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000

Demand and Capacity

Demand Volume (V), veh/h	2057	Heavy Vehicle Adjustment Factor (fHV)	0.855
Peak Hour Factor (PHF)	0.90	Flow Rate (vp), pc/h/ln	1521
Total Trucks, \%	17.00	Capacity (c), pc/h/ln	2400
Single-Unit Trucks (SUT), \%	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), \%	-	Final Adjusted Capacity (cadj), pc/h/ln	2400
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.63

Speed and Density

Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	72.0
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	21.1
Total Ramp Density Adjustment	-	Level of Service (LOS)	C
Adjusted Free-Flow Speed (FFSadj), mi/h	75.0		

HCS Basic Freeway Report

Project Information

Segment Number	5	Segment Name	Btw E Peach Rd and Blythewood Rd
Analysis Period Number	1	Segment Analysis Period	$16: 15-16: 30$

Geometric Data

Number of Lanes (N), In	2	Terrain Type	Level
Segment Length (L), ft	19290	Percent Grade, \%	-
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	0.67
Lane Width, ft	-	Free-Flow Speed (FFS), mi/h	75.0
Right-Side Lateral Clearance, ft	-		

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000

Demand and Capacity

Demand Volume (V), veh/h	1980	Heavy Vehicle Adjustment Factor (fHV)	0.826
Peak Hour Factor (PHF)	0.90	Flow Rate (vp), pc/h/ln	1332
Total Trucks, \%	21.00	Capacity (c), pc/h/ln	2400
Single-Unit Trucks (SUT), \%	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), \%	-	Final Adjusted Capacity (cadj), pc/h/ln	2400
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.55

Speed and Density

Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	73.8
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	18.0
Total Ramp Density Adjustment	-	Level of Service (LOS)	B
Adjusted Free-Flow Speed (FFSadj), mi/h	75.0		

HCS Freeway Diverge Report

Project Information

Segment Number	6	Segment Name	SB Off to Blythewood Rd
Analysis Period Number	1	Segment Analysis Period	16:15-16:30

Geometric Data

	Freeway	Ramp
Number of Lanes (N), In	2	1
Free-Flow Speed (FFS), mi/h	75.0	45.0
Segment Length (L) / Deceleration Length (LD), ft	1500	170
Terrain Type	Level	Level
Percent Grade, \%	-	-
Segment Type / Ramp Type	Freeway	All Familiar
Adjustment Factors	All Familiar	Non-Severe Weather
Driver Population	Non-Severe Weather	-
Weather Type	No Incident	-
Incident Type	0	1.000
Proportion of CAVs in Traffic Stream	1.000	1.000
Final Speed Adjustment Factor (SAF)	1.000	-
Demand Adjustment Factor (DAF)	1.000	1.000
Capacity Adjustment Factor for CAVs, CAFCAV	1.000	
Final Capacity Adjustment Factor (CAF)		

Demand and Capacity

Demand Volume (Vi), veh/h	1980	340
Peak Hour Factor (PHF)	0.90	0.90
Total Trucks, \%	21.00	14.00
Heavy Vehicle Adjustment Factor (fHV)	0.826	0.877
Flow Rate (vi), pc/h	2663	431
Capacity (cmd), pc/h	4800	2100
Initial Adjusted Capacity (cmda), pc/h	4800	-
Final Adjusted Capacity (cmda), pc/h	4800	2100
Volume-to-Capacity Ratio (v/c)	0.55	0.21

Speed and Density

Upstream Equilibrium Distance (LEQ), ft	-	Flow Outer Lanes (vOA), pc/h/ln	-
Downstream Equilibrium Distance (LEQ), ft	-	Off-Ramp Influence Area Speed (SR), mi/h	63.9
Flow in Lanes 1 and 2 (v12), pc/h	2663	Outer Lanes Freeway Speed (So), mi/h	82.3
Flow Entering Ramp-Infl. Area (vR12), pc/h	-	Ramp Junction Speed (S), mi/h	63.9
Number of Outer Lanes on Freeway (No), In	0	Average Density (D), pc/mi/ln	20.8
Level of Service (LOS)	C	Density in Ramp Influence Area (DR), pc/mi/ln	25.6

HCS Basic Freeway Report

Project Information

Segment Number	7	Segment Name	Btw Blythewood SB Off and SB On
Analysis Period Number	1	Segment Analysis Period	$16: 15-16: 30$

Geometric Data

Number of Lanes (N), In	2	Terrain Type	Level
Segment Length (L), ft	3645	Percent Grade, \%	-
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	0.50
Lane Width, ft	Free-Flow Speed (FFS), mi/h	75.0	
Right-Side Lateral Clearance, ft	-		

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000

Demand and Capacity

Demand Volume (V), veh/h	1640	Heavy Vehicle Adjustment Factor (fHV)	0.826
Peak Hour Factor (PHF)	0.90	Flow Rate (vp), pc/h/ln	1103
Total Trucks, \%	21.00	Capacity (c), pc/h/ln	2400
Single-Unit Trucks (SUT), \%	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), \%	-	Final Adjusted Capacity (cadj), pc/h/ln	2400
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.46

Speed and Density

Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	74.8
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	14.7
Total Ramp Density Adjustment	-	Level of Service (LOS)	B
Adjusted Free-Flow Speed (FFSadj), mi/h	75.0		

HCS Freeway Merge Report

Project Information

Segment Number	8	Segment Name	SB On from Blythewood
Analysis Period Number	1	Segment Analysis Period	$16: 15-16: 30$

Geometric Data

	Freeway	Ramp
Number of Lanes (N), In	2	1
Free-Flow Speed (FFS), mi/h	75.0	45.0
Segment Length (L) / Acceleration Length (LA), ft	1500	660
Terrain Type	Level	Level
Percent Grade, \%	-	Right-Sided One-Lane
Segment Type / Ramp Type	Freeway	
Adjustment Factors	All Familiar	All Familiar
Driver Population	Non-Severe Weather	Non-Severe Weather
Weather Type	No Incident	-
Incident Type	0	-
Proportion of CAVs in Traffic Stream	1.000	1.000
Final Speed Adjustment Factor (SAF)	1.000	1.000
Demand Adjustment Factor (DAF)	1.000	-
Capacity Adjustment Factor for CAVs, CAFCAV	1.000	1.000
Final Capacity Adjustment Factor (CAF)		

Demand and Capacity

Demand Volume (Vi), veh/h	1640	701
Peak Hour Factor (PHF)	0.90	0.90
Total Trucks, \%	21.00	6.00
Heavy Vehicle Adjustment Factor (fHV)	0.826	0.943
Flow Rate (vi), pc/h	2206	826
Capacity (cmd), pc/h	4800	2100
Adjusted Capacity (cmda), pc/h	4800	2100
Volume-to-Capacity Ratio (v/c)	0.63	0.39

Speed and Density

Upstream Equilibrium Distance (LEQ), ft	-	Flow Outer Lanes (vOA), pc/h/ln	-
Downstream Equilibrium Distance (LEQ), ft	-	On-Ramp Influence Area Speed (SR), mi/h	63.7
Flow in Lanes 1 and 2 (v12), pc/h	2206	Outer Lanes Freeway Speed (So), mi/h	75.0
Flow Entering Ramp-Infl. Area (vR12), pc/h	3032	Ramp Junction Speed (S), mi/h	63.7
Number of Outer Lanes on Freeway (No), In	0	Average Density (D), pc/mi/ln	23.8
Level of Service (LOS)	C	Density in Ramp Influence Area (DR), pc/mi/ln	24.7

HCS Basic Freeway Report

Project Information

Segment Number	9	Segment Name	Btw Blythewood Rd and US 21
Analysis Period Number	1	Segment Analysis Period	$16: 15-16: 30$

Geometric Data

Number of Lanes (N), In	2	Terrain Type	Level
Segment Length (L), ft	9920	Percent Grade, \%	-
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	0.83
Lane Width, ft	Free-Flow Speed (FFS), mi/h	75.0	
Right-Side Lateral Clearance, ft	-		

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000

Demand and Capacity

Demand Volume (V), veh/h	2341	Heavy Vehicle Adjustment Factor (fHV)	0.826
Peak Hour Factor (PHF)	0.90	Flow Rate (vp), pc/h/ln	1574
Total Trucks, \%	21.00	Capacity (c), pc/h/ln	2400
Single-Unit Trucks (SUT), \%	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), \%	Final Adjusted Capacity (cadj), pc/h/ln	2400	
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.66

Speed and Density

Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	71.4
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	22.0
Total Ramp Density Adjustment	-	Level of Service (LOS)	C
Adjusted Free-Flow Speed (FFSadj), mi/h	75.0		

HCS Freeway Diverge Report

Project Information

Segment Number	10	Segment Name	SB Off to US 21
Analysis Period Number	1	Segment Analysis Period	$16: 15-16: 30$

Geometric Data

	Freeway	Ramp
Number of Lanes (N), In	2	1
Free-Flow Speed (FFS), mi/h	75.0	45.0
Segment Length (L) / Deceleration Length (LD), ft	1500	270
Terrain Type	Level	Level
Percent Grade, \%	-	-
Segment Type / Ramp Type	Freeway	Right-Sided One-Lane

Adjustment Factors

Driver Population		All Familiar	All Familiar	
Weather Type		Non-Severe Weather	Non-Severe Weather	
Incident Type		No Incident	-	
Proportion of CAVs in Traffic Stream		0	-	
Final Speed Adjustment Factor (SAF)		1.000	1.000	
Demand Adjustment Factor (DAF)		1.000	1.000	
Capacity Adjustment Factor for CAVs, CAFCAV		1.000	-	
Final Capacity Adjustment Factor (CAF)		1.000	1.000	
Demand and Capacity				
Demand Volume (Vi), veh/h		2341	170	
Peak Hour Factor (PHF)		0.90	0.90	
Total Trucks, \%		21.00	18.00	
Heavy Vehicle Adjustment Factor (fHV)		0.826	0.847	
Flow Rate (vi), pc/h		3149	223	
Capacity (cmd), pc/h		4800	2100	
Initial Adjusted Capacity (cmda), pc/h		4800	-	
Final Adjusted Capacity (cmda), pc/h		4800	2100	
Volume-to-Capacity Ratio (v/c)		0.66	0.11	
Speed and Density				
Upstream Equilibrium Distance (LEQ), ft	-	Flow Outer Lanes (vOA), pc/h/ln		-
Downstream Equilibrium Distance (LEQ), ft	-	Off-Ramp Influence Area Speed (S	R), mi/h	64.5
Flow in Lanes 1 and 2 (v12), pc/h	3149	Outer Lanes Freeway Speed (So), m	mi / h	82.3
Flow Entering Ramp-Infl. Area (vR12), pc/h	-	Ramp Junction Speed (S), mi/h		64.5
Number of Outer Lanes on Freeway (No), In	0	Average Density (D), pc/mi/ln		24.4
Level of Service (LOS)	D	Density in Ramp Influence Area (D)	R), $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$	28.9

HCS Basic Freeway Report

Project Information

Segment Number	11	Segment Name	Btw US 21 SB Off and On from SB US 21
Analysis Period Number	1	Segment Analysis Period	$16: 15-16: 30$

Geometric Data

Number of Lanes (N), In	2	Terrain Type	Level
Segment Length (L), ft	1569	Percent Grade, \%	-
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	0.83
Lane Width, ft	Free-Flow Speed (FFS), mi/h	75.0	
Right-Side Lateral Clearance, ft	-		

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000

Demand and Capacity

Demand Volume (V), veh/h	2171	Heavy Vehicle Adjustment Factor (fHV)	0.826
Peak Hour Factor (PHF)	0.90	Flow Rate (vp), pc/h/ln	1460
Total Trucks, \%	21.00	Capacity (c), pc/h/ln	2400
Single-Unit Trucks (SUT), \%	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), \%	-	Final Adjusted Capacity (cadj), pc/h/ln	2400
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.61

Speed and Density

Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	72.7
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	20.1
Total Ramp Density Adjustment	-	Level of Service (LOS)	C
Adjusted Free-Flow Speed (FFSadj), mi/h	75.0		

HCS Basic Freeway Report

Project Information

Segment Number	12	Segment Name	SB On from SB US 21
Analysis Period Number	1	Segment Analysis Period	$16: 15-16: 30$

Geometric Data

	Freeway	Ramp
Number of Lanes (N), In	3	1
Free-Flow Speed (FFS), mi/h	75.0	25.0
Segment Length (L) / Acceleration Length (LA), ft	1500	800
Terrain Type	Level	Level
Percent Grade, \%	-	Right-Sided One-Lane
Segment Type / Ramp Type	Freeway	
Adjustment Factors	All Familiar	All Familiar
Driver Population	Non-Severe Weather	Non-Severe Weather
Weather Type	No Incident	-
Incident Type	0	-
Proportion of CAVs in Traffic Stream	1.000	1.000
Final Speed Adjustment Factor (SAF)	1.000	1.000
Demand Adjustment Factor (DAF)	1.000	-
Capacity Adjustment Factor for CAVs, CAFCAV	1.000	1.000
Final Capacity Adjustment Factor (CAF)		

Demand and Capacity

Demand Volume (Vi), veh/h	2171	650
Peak Hour Factor (PHF)	0.90	0.90
Total Trucks, \%	21.00	10.00
Heavy Vehicle Adjustment Factor (fHV)	0.826	0.909
Flow Rate (vi), pc/h	2920	795
Capacity (cmd), pc/h	7200	1900
Adjusted Capacity (cmda), pc/h	7200	1900
Volume-to-Capacity Ratio (v/c)	0.52	0.42

Speed and Density

Upstream Equilibrium Distance (LEQ), ft	9999.0	Flow Outer Lanes (vOA), pc/h/ln	0
Downstream Equilibrium Distance (LEQ), ft	9999.0	On-Ramp Influence Area Speed (SR), mi/h	74.4
Flow in Lanes 1 and 2 (v12), pc/h	0	Outer Lanes Freeway Speed (So), mi/h	75.0
Flow Entering Ramp-Infl. Area (vR12), pc/h	0	Ramp Junction Speed (S), mi/h	74.4
Number of Outer Lanes on Freeway (No), In	1	Average Density (D), pc/mi/ln	16.6
Level of Service (LOS)	B	Density in Ramp Influence Area (DR), pc/mi/ln	16.6

HCS Basic Freeway Report

Project Information

Segment Number	13	Segment Name	Btw SB on from SB US 21 and SB On from NB US 21
Analysis Period Number	1	Segment Analysis Period	$16: 15-16: 30$

Geometric Data

Number of Lanes (N), In	3	Terrain Type	Level
Segment Length (L), ft	1055	Percent Grade, \%	-
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	1.00
Lane Width, ft	Free-Flow Speed (FFS), mi/h	75.0	
Right-Side Lateral Clearance, ft	-		

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000

Demand and Capacity

Demand Volume (V), veh/h	2821	Heavy Vehicle Adjustment Factor (fHV)	0.826
Peak Hour Factor (PHF)	0.90	Flow Rate (vp), pc/h/ln	1265
Total Trucks, \%	21.00	Capacity (c), pc/h/ln	2400
Single-Unit Trucks (SUT), \%	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), \%	Final Adjusted Capacity (cadj), pc/h/ln	2400	
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.53

Speed and Density

Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	74.2
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	17.0
Total Ramp Density Adjustment	-	Level of Service (LOS)	B
Adjusted Free-Flow Speed (FFSadj), mi/h	75.0		

HCS Freeway Merge Report

Project Information

Segment Number	14	Segment Name	SB On from NB US 21
Analysis Period Number	1	Segment Analysis Period	$16: 15-16: 30$

Geometric Data

	Freeway	Ramp
Number of Lanes (N), In	3	1
Free-Flow Speed (FFS), mi/h	75.0	45.0
Segment Length (L) / Acceleration Length (LA), ft	1500	630
Terrain Type	Level	Level
Percent Grade, \%	-	Right-Sided One-Lane
Segment Type / Ramp Type	Freeway	
Adjustment Factors	All Familiar	All Familiar
Driver Population	Non-Severe Weather	Non-Severe Weather
Weather Type	No Incident	-
Incident Type	0	-
Proportion of CAVs in Traffic Stream	1.000	1.000
Final Speed Adjustment Factor (SAF)	1.000	1.000
Demand Adjustment Factor (DAF)	1.000	-
Capacity Adjustment Factor for CAVs, CAFCAV	1.000	1.000
Final Capacity Adjustment Factor (CAF)		
Demand and Capacity		

Demand and Capacity

Demand Volume (Vi), veh/h	2821	606
Peak Hour Factor (PHF)	0.90	0.90
Total Trucks, \%	21.00	5.00
Heavy Vehicle Adjustment Factor (fHV)	0.826	0.952
Flow Rate (vi), pc/h	3795	707
Capacity (cmd), pc/h	7200	2100
Adjusted Capacity (cmda), pc/h	7200	2100
Volume-to-Capacity Ratio (v/c)	0.63	0.34

Speed and Density

Upstream Equilibrium Distance (LEQ), ft	-	Flow Outer Lanes (vOA), pc/h/ln	1537
Downstream Equilibrium Distance (LEQ), ft	2570.5	On-Ramp Influence Area Speed (SR), mi/h	63.8
Flow in Lanes 1 and 2 (v12), pc/h	2258	Outer Lanes Freeway Speed (So), mi/h	71.3
Flow Entering Ramp-Infl. Area (vR12), pc/h	2965	Ramp Junction Speed (S), mi/h	66.2
Number of Outer Lanes on Freeway (No), In	1	Average Density (D), pc/mi/ln	22.7
Level of Service (LOS)	C	Density in Ramp Influence Area (DR), pc/mi/ln	24.4

HCS Basic Freeway Report

Project Information

Segment Number	15	Segment Name	Btw US 21 and Killian Rd
Analysis Period Number	1	Segment Analysis Period	$16: 15-16: 30$

Geometric Data

Number of Lanes (N), In	3	Terrain Type	Level
Segment Length (L), ft	6900	Percent Grade, \%	-
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	0.83
Lane Width, ft	Free-Flow Speed (FFS), mi/h	75.0	
Right-Side Lateral Clearance, ft	-		

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000	
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000	
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000	
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000	
Demand and Capacity				
Demand Volume (V), veh/h	Heavy Vehicle Adjustment Factor (fHV)	0.741		
Peak Hour Factor (PHF)	Flow Rate (vp), pc/h/ln	1713		
Total Trucks, \%	0.90	Capacity (c), pc/h/ln	2400	
Single-Unit Trucks (SUT), \%	35.00	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), \%	-	Final Adjusted Capacity (cadj), pc/h/ln	2400	
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.71	

Speed and Density

Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	69.4
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	24.7
Total Ramp Density Adjustment	-	Level of Service (LOS)	C
Adjusted Free-Flow Speed (FFSadj), mi/h	75.0		

HCS Basic Freeway Report

Project Information

Segment Number	5	Segment Name	Btw Killian Rd and US 21
Analysis Period Number	1	Segment Analysis Period	$05: 30-05: 45$

Geometric Data

Number of Lanes (N), In	3	Terrain Type	Level
Segment Length (L), ft	7200	Percent Grade, \%	-
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	0.83
Lane Width, ft	Free-Flow Speed (FFS), mi/h	75.0	
Right-Side Lateral Clearance, ft	-		

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000	
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000	
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000	
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000	
Demand and Capacity				
Demand Volume (V), veh/h	Heavy Vehicle Adjustment Factor (fHV)	0.719		
Peak Hour Factor (PHF)	Flow Rate (vp), pc/h/ln	1279		
Total Trucks, \%	0.90	Capacity (c), pc/h/ln	2400	
Single-Unit Trucks (SUT), \%	39.00	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), \%	Final Adjusted Capacity (cadj), pc/h/ln	2400		
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.53	
Sole\|				

Speed and Density

Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	74.1
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	17.3
Total Ramp Density Adjustment	-	Level of Service (LOS)	B
Adjusted Free-Flow Speed (FFSadj), mi/h	75.0		

HCS Freeway Diverge Report

Project Information

Segment Number	6	Segment Name	NB Off to US 21
Analysis Period Number	1	Segment Analysis Period	$05: 30-05: 45$

Geometric Data

	Freeway	Ramp
Number of Lanes (N), In	3	1
Free-Flow Speed (FFS), mi/h	75.0	45.0
Segment Length (L) / Deceleration Length (LD), ft	1500	220
Terrain Type	Level	Level
Percent Grade, \%	-	-
Segment Type / Ramp Type	Freeway	Right-Sided One-Lane

Adjustment Factors

Driver Population		All Familiar	All Familiar	
Weather Type		Non-Severe Weather	Non-Severe Weather	
Incident Type		No Incident	-	
Proportion of CAVs in Traffic Stream		0	-	
Final Speed Adjustment Factor (SAF)		1.000	1.000	
Demand Adjustment Factor (DAF)		1.000	1.000	
Capacity Adjustment Factor for CAVs, CAFCAV		1.000	-	
Final Capacity Adjustment Factor (CAF)		1.000	1.000	
Demand and Capacity				
Demand Volume (Vi), veh/h		2392	1979	
Peak Hour Factor (PHF)		0.90	0.90	
Total Trucks, \%		39.00	7.00	
Heavy Vehicle Adjustment Factor (fHV)		0.719	0.935	
Flow Rate (vi), pc/h		3696	2352	
Capacity (cmd), pc/h		7200	2100	
Initial Adjusted Capacity (cmda), pc/h		7200	-	
Final Adjusted Capacity (cmda), pc/h		7200	2100	
Volume-to-Capacity Ratio (v/c)		0.53	1.12	
Speed and Density				
Upstream Equilibrium Distance (LEQ), ft	0.0	Flow Outer Lanes (voA)		659
Downstream Equilibrium Distance (LEQ), ft	-	Off-Ramp Influence A), mi/h	58.2
Flow in Lanes 1 and 2 (v12), pc/h	3178	Outer Lanes Freeway	mi/h	82.3
Flow Entering Ramp-Infl. Area (vR12), pc/h	-	Ramp Junction Speed		61.3
Number of Outer Lanes on Freeway (NO), In	1	Average Density (D), p		20.9
Level of Service (LOS)	F	Density in Ramp Influe	R), $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$	29.6

HCS Basic Freeway Report

Project Information

Segment Number	7	Segment Name	Btw US 21 NB Off and US 21 NB On
Analysis Period Number	1	Segment Analysis Period	$05: 30-05: 45$

Geometric Data

Number of Lanes (N), In	3	Terrain Type	Level
Segment Length (L), ft	1585	Percent Grade, \%	-
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	1.00
Lane Width, ft	Free-Flow Speed (FFS), mi/h	75.0	
Right-Side Lateral Clearance, ft	-		

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000

Demand and Capacity

Demand Volume (V), veh/h	413	Heavy Vehicle Adjustment Factor (fHV)	0.719
Peak Hour Factor (PHF)	0.90	Flow Rate (vp), pc/h/ln	495
Total Trucks, \%	39.00	Capacity (c), pc/h/ln	2400
Single-Unit Trucks (SUT), \%	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), \%	-	Final Adjusted Capacity (cadj), pc/h/ln	2400
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.21

Speed and Density

Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	73.9
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	6.6
Total Ramp Density Adjustment	-	Level of Service (LOS)	A
Adjusted Free-Flow Speed (FFSadj), mi/h	75.0		

HCS Freeway Merge Report

Project Information

Segment Number	8	Segment Name	NB On from NB US 21
Analysis Period Number	1	Segment Analysis Period	$05: 30-05: 45$

Geometric Data

	Freeway	Ramp
Number of Lanes (N), In	3	1
Free-Flow Speed (FFS), mi/h	75.0	25.0
Segment Length (L) / Acceleration Length (LA), ft	1500	785
Terrain Type	Level	Level
Percent Grade, \%	-	Right-Sided One-Lane
Segment Type / Ramp Type	Freeway	
Adjustment Factors	All Familiar	All Familiar
Driver Population	Non-Severe Weather	Non-Severe Weather
Weather Type	No Incident	-
Incident Type	0	-
Proportion of CAVs in Traffic Stream	1.000	1.000
Final Speed Adjustment Factor (SAF)	1.000	1.000
Demand Adjustment Factor (DAF)	1.000	-
Capacity Adjustment Factor for CAVs, CAFCAV	1.000	1.000
Final Capacity Adjustment Factor (CAF)		
Demand		

Demand and Capacity

Demand Volume (Vi), veh/h	413	30
Peak Hour Factor (PHF)	0.90	0.90
Total Trucks, \%	39.00	0.00
Heavy Vehicle Adjustment Factor (fHV)	0.719	1.000
Flow Rate (vi), pc/h	638	33
Capacity (cmd), pc/h	7200	1900
Adjusted Capacity (cmda), pc/h	7200	1900
Volume-to-Capacity Ratio (v/c)	0.21	0.02

Speed and Density

Upstream Equilibrium Distance (LEQ), ft	0.0	Flow Outer Lanes (vOA), pc/h/ln	595
Downstream Equilibrium Distance (LEQ), ft	-	On-Ramp Influence Area Speed (SR), mi/h	65.4
Flow in Lanes 1 and 2 (v12), pc/h	890	Outer Lanes Freeway Speed (So), mi/h	74.7
Flow Entering Ramp-Infl. Area (vR12), pc/h	923	Ramp Junction Speed (S), mi/h	68.8
Number of Outer Lanes on Freeway (No), In	1	Average Density (D), pc/mi/ln	7.4
Level of Service (LOS)	A	Density in Ramp Influence Area (DR), pc/mi/ln	7.8

HCS Basic Freeway Report

Project Information

Segment Number	9	Segment Name	Btw NB US 21 on and SB US 21 On
Analysis Period Number	1	Segment Analysis Period	$05: 30-05: 45$

Geometric Data

Number of Lanes (N), In	3	Terrain Type	Level
Segment Length (L), ft	750	Percent Grade, \%	-
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	0.83
Lane Width, ft	Free-Flow Speed (FFS), mi/h	75.0	
Right-Side Lateral Clearance, ft	-		

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000

Demand and Capacity

Demand Volume (V), veh/h	443	Heavy Vehicle Adjustment Factor (fHV)	0.719
Peak Hour Factor (PHF)	0.90	Flow Rate (vp), pc/h/ln	506
Total Trucks, \%	39.00	Capacity (c), pc/h/ln	2400
Single-Unit Trucks (SUT), \%	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), \%	-	Final Adjusted Capacity (cadj), pc/h/ln	2400
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.21

Speed and Density

Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	74.0
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	6.7
Total Ramp Density Adjustment	-	Level of Service (LOS)	A
Adjusted Free-Flow Speed (FFSadj), mi/h	75.0		

HCS Freeway Merge Report

Project Information

Segment Number	10	Segment Name	NB On from SB US 21
Analysis Period Number	1	Segment Analysis Period	$05: 30-05: 45$

Geometric Data

	Freeway	Ramp
Number of Lanes (N), In	3	1
Free-Flow Speed (FFS), mi/h	75.0	45.0
Segment Length (L) / Acceleration Length (LA), ft	1500	745
Terrain Type	Level	Level
Percent Grade, \%	-	Right-Sided One-Lane
Segment Type / Ramp Type	Freeway	
Adjustment Factors	All Familiar	All Familiar
Driver Population	Non-Severe Weather	Non-Severe Weather
Weather Type	No Incident	-
Incident Type	0	-
Proportion of CAVs in Traffic Stream	1.000	1.000
Final Speed Adjustment Factor (SAF)	1.000	1.000
Demand Adjustment Factor (DAF)	1.000	-
Capacity Adjustment Factor for CAVs, CAFCAV	1.000	1.000
Final Capacity Adjustment Factor (CAF)		
Demand and Capacity		

Demand and Capacity

Demand Volume (Vi), veh/h	443	60
Peak Hour Factor (PHF)	0.90	0.90
Total Trucks, \%	39.00	35.00
Heavy Vehicle Adjustment Factor (fHV)	0.719	0.741
Flow Rate (vi), pc/h	685	90
Capacity (cmd), pc/h	7200	2100
Adjusted Capacity (cmda), pc/h	7200	2100
Volume-to-Capacity Ratio (v/c)	0.22	0.04

Speed and Density

Upstream Equilibrium Distance (LEQ), ft	-	Flow Outer Lanes (vOA), pc/h/ln	610
Downstream Equilibrium Distance (LEQ), ft	3238.0	On-Ramp Influence Area Speed (SR), mi/h	66.3
Flow in Lanes 1 and 2 (v12), pc/h	908	Outer Lanes Freeway Speed (So), mi/h	74.6
Flow Entering Ramp-Infl. Area (vR12), pc/h	998	Ramp Junction Speed (S), mi/h	69.2
Number of Outer Lanes on Freeway (No), In	1	Average Density (D), pc/mi/ln	7.7
Level of Service (LOS)	Density in Ramp Influence Area (DR), pc/mi/ln	8.6	

HCS Basic Freeway Report

Project Information

Segment Number	11	Segment Name	Btw US 21 and Blythewood Rd
Analysis Period Number	1	Segment Analysis Period	$05: 30-05: 45$

Geometric Data

Number of Lanes (N), In	3	Terrain Type	Level
Segment Length (L), ft	3300	Percent Grade, \%	-
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	1.00
Lane Width, ft	Free-Flow Speed (FFS), mi/h	75.0	
Right-Side Lateral Clearance, ft	-		

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000

Demand and Capacity

Demand Volume (V), veh/h	503	Heavy Vehicle Adjustment Factor (fHV)	0.719
Peak Hour Factor (PHF)	0.90	Flow Rate (vp), pc/h/ln	536
Total Trucks, \%	39.00	Capacity (c), pc/h/ln	2400
Single-Unit Trucks (SUT), \%	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), \%	-	Final Adjusted Capacity (cadj), pc/h/ln	2400
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.22

Speed and Density

Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	74.9
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	7.1
Total Ramp Density Adjustment	-	Level of Service (LOS)	A
Adjusted Free-Flow Speed (FFSadj), mi/h	75.0		

HCS Basic Freeway Report

Project Information

Segment Number	12	Segment Name	Btw US 21 and Blythewood Rd
Analysis Period Number	1	Segment Analysis Period	$05: 30-05: 45$

Geometric Data

Number of Lanes (N), In	2	Terrain Type	Level
Segment Length (L), ft	6580	Percent Grade, \%	-
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	0.83
Lane Width, ft	Free-Flow Speed (FFS), mi/h	75.0	
Right-Side Lateral Clearance, ft	-		

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000

Demand and Capacity

Demand Volume (V), veh/h	503	Heavy Vehicle Adjustment Factor (fHV)	0.719
Peak Hour Factor (PHF)	0.90	Flow Rate (vp), pc/h/ln	804
Total Trucks, \%	39.00	Capacity (c), pc/h/ln	2400
Single-Unit Trucks (SUT), \%	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), \%	-	Final Adjusted Capacity (cadj), pc/h/ln	2400
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.34

Speed and Density

Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	75.0
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	10.7
Total Ramp Density Adjustment	-	Level of Service (LOS)	A
Adjusted Free-Flow Speed (FFSadj), mi/h	75.0		

HCS Freeway Diverge Report

Project Information

Segment Number	13	Segment Name	NB Off to Blythewood Rd
Analysis Period Number	1	Segment Analysis Period	$05: 30-05: 45$

Geometric Data

	Freeway	Ramp
Number of Lanes (N), In	2	1
Free-Flow Speed (FFS), mi/h	75.0	45.0
Segment Length (L) / Deceleration Length (LD), ft	1500	190
Terrain Type	Level	Level
Percent Grade, \%	-	-
Segment Type / Ramp Type	Freeway	Right-Sided One-Lane
Adjustment Factors	All Familiar	All Familiar
Driver Population	Non-Severe Weather	Non-Severe Weather
Weather Type	No Incident	-
Incident Type	0	-
Proportion of CAVs in Traffic Stream	1.000	1.000
Final Speed Adjustment Factor (SAF)	1.000	1.000
Demand Adjustment Factor (DAF)	1.000	-
Capacity Adjustment Factor for CAVs, CAFCAV	1.000	1.000
Final Capacity Adjustment Factor (CAF)		

Demand and Capacity

Demand Volume (Vi), veh/h	503	452
Peak Hour Factor (PHF)	0.90	0.90
Total Trucks, \%	39.00	22.00
Heavy Vehicle Adjustment Factor (fHV)	0.719	0.820
Flow Rate (vi), pc/h	777	612
Capacity (cmd), pc/h	4800	2100
Initial Adjusted Capacity (cmda), pc/h	4800	-
Final Adjusted Capacity (cmda), pc/h	4800	2100
Volume-to-Capacity Ratio (v/c)	0.34	0.29

Speed and Density

Upstream Equilibrium Distance (LEQ), ft	-	Flow Outer Lanes (vOA), pc/h/ln	-
Downstream Equilibrium Distance (LEQ), ft	-	Off-Ramp Influence Area Speed (SR), mi/h	63.4
Flow in Lanes 1 and 2 (v12), pc/h	1608	Outer Lanes Freeway Speed (So), mi/h	82.3
Flow Entering Ramp-Infl. Area (vR12), pc/h	-	Ramp Junction Speed (S), mi/h	63.4
Number of Outer Lanes on Freeway (No), In	0	Average Density (D), pc/mi/ln	12.7
Level of Service (LOS)	B	Density in Ramp Influence Area (DR), pc/mi/ln	16.4

HCS Basic Freeway Report

Project Information

Segment Number	14	Segment Name	Btw Blythewood NB Off and NB On
Analysis Period Number	1	Segment Analysis Period	$05: 30-05: 45$

Geometric Data

Number of Lanes (N), In	2	Terrain Type	Level
Segment Length (L), ft	3380	Percent Grade, \%	-
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	0.67
Lane Width, ft	Free-Flow Speed (FFS), mi/h	75.0	
Right-Side Lateral Clearance, ft	-		

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000

Demand and Capacity

Demand Volume (V), veh/h	51	Heavy Vehicle Adjustment Factor (fHV)	0.719
Peak Hour Factor (PHF)	0.90	Flow Rate (vp), pc/h/ln	498
Total Trucks, \%	39.00	Capacity (c), pc/h/ln	2400
Single-Unit Trucks (SUT), \%	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), \%	-	Final Adjusted Capacity (cadj), pc/h/ln	2400
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.21

Speed and Density

Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	74.8
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	6.6
Total Ramp Density Adjustment	-	Level of Service (LOS)	A
Adjusted Free-Flow Speed (FFSadj), mi/h	75.0		

HCS Freeway Merge Report

Project Information

Segment Number	15	Segment Name	NB On from Blythewood Rd
Analysis Period Number	1	Segment Analysis Period	$05: 30-05: 45$

Geometric Data

	Freeway	Ramp
Number of Lanes (N), In	2	1
Free-Flow Speed (FFS), mi/h	75.0	45.0
Segment Length (L) / Acceleration Length (LA), ft	1500	740
Terrain Type	Level	Level
Percent Grade, \%	-	Right-Sided One-Lane
Segment Type / Ramp Type	Freeway	
Adjustment Factors	All Familiar	All Familiar
Driver Population	Non-Severe Weather	Non-Severe Weather
Weather Type	No Incident	-
Incident Type	0	-
Proportion of CAVs in Traffic Stream	1.000	1.000
Final Speed Adjustment Factor (SAF)	1.000	1.000
Demand Adjustment Factor (DAF)	1.000	-
Capacity Adjustment Factor for CAVs, CAFCAV	1.000	1.000
Final Capacity Adjustment Factor (CAF)		
Demand and Capacity		

Demand and Capacity

Demand Volume (Vi), veh/h	51	715
Peak Hour Factor (PHF)	0.90	0.90
Total Trucks, \%	39.00	19.00
Heavy Vehicle Adjustment Factor (fHV)	0.719	0.840
Flow Rate (vi), pc/h	79	946
Capacity (cmd), pc/h	4800	2100
Adjusted Capacity (cmda), pc/h	4800	2100
Volume-to-Capacity Ratio (v/c)	0.40	0.45

Speed and Density

Upstream Equilibrium Distance (LEQ), ft	-	Flow Outer Lanes (vOA), pc/h/ln	-
Downstream Equilibrium Distance (LEQ), ft	-	On-Ramp Influence Area Speed (SR), mi/h	65.7
Flow in Lanes 1 and 2 (v12), pc/h	996	Outer Lanes Freeway Speed (So), mi/h	75.0
Flow Entering Ramp-Infl. Area (vR12), pc/h	1942	Ramp Junction Speed (S), mi/h	65.7
Number of Outer Lanes on Freeway (No), In	0	Average Density (D), pc/mi/ln	14.8
Level of Service (LOS)	D	Density in Ramp Influence Area (DR), pc/mi/ln	15.6

HCS Basic Freeway Report

Project Information

Segment Number	16	Segment Name	Btw Blythewood Rd and E Peach Rd
Analysis Period Number	1	Segment Analysis Period	$05: 30-05: 45$

Geometric Data

Number of Lanes (N), In	2	Terrain Type	Level
Segment Length (L), ft	19090	Percent Grade, \%	-
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	0.67
Lane Width, ft	Free-Flow Speed (FFS), mi/h	75.0	
Right-Side Lateral Clearance, ft	-		

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000

Demand and Capacity

Demand Volume (V), veh/h	766	Heavy Vehicle Adjustment Factor (fHV)	0.719
Peak Hour Factor (PHF)	0.90	Flow Rate (vp), pc/h/ln	971
Total Trucks, \%	39.00	Capacity (c), pc/h/ln	2400
Single-Unit Trucks (SUT), \%	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), \%	-	Final Adjusted Capacity (cadj), pc/h/ln	2400
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.40

Speed and Density

Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	75.0
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	12.9
Total Ramp Density Adjustment	-	Level of Service (LOS)	B
Adjusted Free-Flow Speed (FFSadj), mi/h	75.0		

HCS Basic Freeway Report

Project Information

Segment Number	5	Segment Name	Btw E Peach Rd and Blythewood Rd
Analysis Period Number	1	Segment Analysis Period	$05: 30-05: 45$

Geometric Data

Number of Lanes (N), In	2	Terrain Type	Level
Segment Length (L), ft	19290	Percent Grade, \%	-
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	0.67
Lane Width, ft	-	Free-Flow Speed (FFS), mi/h	75.0
Right-Side Lateral Clearance, ft	-		

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000

Demand and Capacity

Demand Volume (V), veh/h	970	Heavy Vehicle Adjustment Factor (fHV)	0.763
Peak Hour Factor (PHF)	0.90	Flow Rate (vp), pc/h/ln	706
Total Trucks, \%	31.00	Capacity (c), pc/h/ln	2400
Single-Unit Trucks (SUT), \%	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), \%	-	Final Adjusted Capacity (cadj), pc/h/ln	2400
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.29

Speed and Density

Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	75.0
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	9.4
Total Ramp Density Adjustment	-	Level of Service (LOS)	A
Adjusted Free-Flow Speed (FFSadj), mi/h	75.0		

HCS Freeway Diverge Report

Project Information

Segment Number	6	Segment Name	SB Off to Blythewood Rd
Analysis Period Number	1	Segment Analysis Period	05:30-05:45

Geometric Data

	Freeway	Ramp
Number of Lanes (N), In	2	1
Free-Flow Speed (FFS), mi/h	75.0	45.0
Segment Length (L) / Deceleration Length (LD), ft	1500	170
Terrain Type	Level	Level
Percent Grade, \%	-	Right-Sided One-Lane
Segment Type / Ramp Type	Freeway	
Adjustment Factors	All Familiar	All Familiar
Driver Population	Non-Severe Weather	Non-Severe Weather
Weather Type	No Incident	-
Incident Type	0	-
Proportion of CAVs in Traffic Stream	1.000	1.000
Final Speed Adjustment Factor (SAF)	1.000	1.000
Demand Adjustment Factor (DAF)	1.000	-
Capacity Adjustment Factor for CAVs, CAFCAV	1.000	1.000
Final Capacity Adjustment Factor (CAF)		

Demand and Capacity

Demand Volume (Vi), veh/h	970	757
Peak Hour Factor (PHF)	0.90	0.90
Total Trucks, \%	31.00	10.00
Heavy Vehicle Adjustment Factor (fHV)	0.763	0.909
Flow Rate (vi), pc/h	1413	925
Capacity (cmd), pc/h	4800	2100
Initial Adjusted Capacity (cmda), pc/h	4800	-
Final Adjusted Capacity (cmda), pc/h	4800	2100
Volume-to-Capacity Ratio (v/c)	0.29	0.44

Speed and Density

Upstream Equilibrium Distance (LEQ), ft	-	Flow Outer Lanes (vOA), pc/h/ln	-
Downstream Equilibrium Distance (LEQ), ft	-	Off-Ramp Influence Area Speed (SR), mi/h	62.4
Flow in Lanes 1 and 2 (v12), pc/h	1413	Outer Lanes Freeway Speed (So), mi/h	82.3
Flow Entering Ramp-Infl. Area (vR12), pc/h	-	Ramp Junction Speed (S), mi/h	62.4
Number of Outer Lanes on Freeway (NO), In	0	Average Density (D), pc/mi/ln	11.3
Level of Service (LOS)	Density in Ramp Influence Area (DR), pc/mi/ln	14.9	

HCS Basic Freeway Report

Project Information

Segment Number	7	Segment Name	Btw Blythewood SB Off and SB On
Analysis Period Number	1	Segment Analysis Period	$05: 30-05: 45$

Geometric Data

Number of Lanes (N), In	2	Terrain Type	Level
Segment Length (L), ft	3645	Percent Grade, \%	-
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	0.50
Lane Width, ft	Free-Flow Speed (FFS), mi/h	75.0	
Right-Side Lateral Clearance, ft	-		

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000

Demand and Capacity

Demand Volume (V), veh/h	213	Heavy Vehicle Adjustment Factor (fHV)	0.763
Peak Hour Factor (PHF)	0.90	Flow Rate (vp), pc/h/ln	155
Total Trucks, \%	31.00	Capacity (c), pc/h/ln	2400
Single-Unit Trucks (SUT), \%	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), \%	-	Final Adjusted Capacity (cadj), pc/h/ln	2400
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.06

Speed and Density

Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	74.8
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	2.1
Total Ramp Density Adjustment	-	Level of Service (LOS)	A
Adjusted Free-Flow Speed (FFSadj), mi/h	75.0		

HCS Freeway Merge Report

Project Information

Segment Number	8	Segment Name	SB On from Blythewood
Analysis Period Number	1	Segment Analysis Period	$05: 30-05: 45$

Geometric Data

	Freeway	Ramp
Number of Lanes (N), In	2	1
Free-Flow Speed (FFS), mi/h	75.0	45.0
Segment Length (L) / Acceleration Length (LA), ft	1500	660
Terrain Type	Level	Level
Percent Grade, \%	-	Right-Sided One-Lane
Segment Type / Ramp Type	Freeway	
Adjustment Factors	All Familiar	All Familiar
Driver Population	Non-Severe Weather	Non-Severe Weather
Weather Type	No Incident	-
Incident Type	0	-
Proportion of CAVs in Traffic Stream	1.000	1.000
Final Speed Adjustment Factor (SAF)	1.000	1.000
Demand Adjustment Factor (DAF)	1.000	-
Capacity Adjustment Factor for CAVs, CAFCAV	1.000	1.000
Final Capacity Adjustment Factor (CAF)		
Demand and Capacity		

Demand and Capacity

Demand Volume (Vi), veh/h	213	658
Peak Hour Factor (PHF)	0.90	0.90
Total Trucks, \%	31.00	10.00
Heavy Vehicle Adjustment Factor (fHV)	0.763	0.909
Flow Rate (vi), pc/h	310	804
Capacity (cmd), pc/h	4800	2100
Adjusted Capacity (cmda), pc/h	4800	2100
Volume-to-Capacity Ratio (v/c)	0.23	0.38

Speed and Density

Upstream Equilibrium Distance (LEQ), ft	-	Flow Outer Lanes (vOA), pc/h/ln	-
Downstream Equilibrium Distance (LEQ), ft	-	On-Ramp Influence Area Speed (SR), mi/h	66.0
Flow in Lanes 1 and 2 (v12), pc/h	310	Outer Lanes Freeway Speed (So), mi/h	75.0
Flow Entering Ramp-Infl. Area (vR12), pc/h	1114	Ramp Junction Speed (S), mi/h	66.0
Number of Outer Lanes on Freeway (No), In	0	Average Density (D), pc/mi/ln	8.4
Level of Service (LOS)	A	Density in Ramp Influence Area (DR), pc/mi/ln	9.7

HCS Basic Freeway Report

Project Information

Segment Number	9	Segment Name	Btw Blythewood Rd and US 21
Analysis Period Number	1	Segment Analysis Period	$05: 30-05: 45$

Geometric Data

Number of Lanes (N), In	2	Terrain Type	Level
Segment Length (L), ft	9920	Percent Grade, \%	-
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	0.83
Lane Width, ft	Free-Flow Speed (FFS), mi/h	75.0	
Right-Side Lateral Clearance, ft	-		

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000

Demand and Capacity

Demand Volume (V), veh/h	871	Heavy Vehicle Adjustment Factor (fHV)	0.763
Peak Hour Factor (PHF)	0.90	Flow Rate (vp), pc/h/ln	634
Total Trucks, \%	31.00	Capacity (c), pc/h/ln	2400
Single-Unit Trucks (SUT), \%	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), \%	-	Final Adjusted Capacity (cadj), pc/h/ln	2400
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.26

Speed and Density

Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	75.0
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	8.5
Total Ramp Density Adjustment	-	Level of Service (LOS)	A
Adjusted Free-Flow Speed (FFSadj), mi/h	75.0		

HCS Freeway Diverge Report

Project Information

Segment Number	10	Segment Name	SB Off to US 21
Analysis Period Number	1	Segment Analysis Period	$05: 30-05: 45$

Geometric Data

	Freeway	Ramp
Number of Lanes (N), In	2	1
Free-Flow Speed (FFS), mi/h	75.0	45.0
Segment Length (L) / Deceleration Length (LD), ft	1500	270
Terrain Type	Level	Level
Percent Grade, \%	-	-
Segment Type / Ramp Type	Freeway	Right-Sided One-Lane
Adjustment Factors	All Familiar	All Familiar
Driver Population	Non-Severe Weather	Non-Severe Weather
Weather Type	No Incident	-
Incident Type	0	-
Proportion of CAVs in Traffic Stream	1.000	1.000
Final Speed Adjustment Factor (SAF)	1.000	1.000
Demand Adjustment Factor (DAF)	1.000	-
Capacity Adjustment Factor for CAVs, CAFCAV	1.000	1.000
Final Capacity Adjustment Factor (CAF)		
Demand and Capacity		

Demand and Capacity

Demand Volume (Vi), veh/h	871	60
Peak Hour Factor (PHF)	0.90	0.90
Total Trucks, \%	31.00	19.00
Heavy Vehicle Adjustment Factor (fHV)	0.763	0.840
Flow Rate (vi), pc/h	1268	79
Capacity (cmd), pc/h	4800	2100
Initial Adjusted Capacity (cmda), pc/h	4800	-
Final Adjusted Capacity (cmda), pc/h	4800	2100
Volume-to-Capacity Ratio (v/c)	0.26	0.04

Speed and Density

Upstream Equilibrium Distance (LEQ), ft	-	Flow Outer Lanes (vOA), pc/h/ln	-
Downstream Equilibrium Distance (LEQ), ft	-	Off-Ramp Influence Area Speed (SR), mi/h	64.9
Flow in Lanes 1 and 2 (v12), pc/h	1268	Outer Lanes Freeway Speed (So), mi/h	82.3
Flow Entering Ramp-Infl. Area (vR12), pc/h	-	Ramp Junction Speed (S), mi/h	64.9
Number of Outer Lanes on Freeway (No), In	0	Average Density (D), pc/mi/ln	9.8
Level of Service (LOS)	B	Density in Ramp Influence Area (DR), pc/mi/ln	12.7

HCS Basic Freeway Report

Project Information

Segment Number	11	Segment Name	Btw US 21 SB Off and On from SB US 21
Analysis Period Number	1	Segment Analysis Period	$05: 30-05: 45$

Geometric Data

Number of Lanes (N), In	2	Terrain Type	Level
Segment Length (L), ft	1569	Percent Grade, \%	-
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	0.83
Lane Width, ft	Free-Flow Speed (FFS), mi/h	75.0	
Right-Side Lateral Clearance, ft	-		

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000

Demand and Capacity

Demand Volume (V), veh/h	811	Heavy Vehicle Adjustment Factor (fHV)	0.763
Peak Hour Factor (PHF)	0.90	Flow Rate (vp), pc/h/ln	590
Total Trucks, \%	31.00	Capacity (c), pc/h/ln	2400
Single-Unit Trucks (SUT), \%	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), \%	-	Final Adjusted Capacity (cadj), pc/h/ln	2400
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.25

Speed and Density

Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	74.2
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	7.9
Total Ramp Density Adjustment	-	Level of Service (LOS)	A
Adjusted Free-Flow Speed (FFSadj), mi/h	75.0		

HCS Basic Freeway Report

Project Information

Segment Number	12	Segment Name	SB On from SB US 21
Analysis Period Number	1	Segment Analysis Period	$05: 30-05: 45$

Geometric Data

	Freeway	Ramp
Number of Lanes (N), In	3	1
Free-Flow Speed (FFS), mi/h	75.0	25.0
Segment Length (L) / Acceleration Length (LA), ft	1500	800
Terrain Type	Level	Level
Percent Grade, \%	-	Right-Sided One-Lane
Segment Type / Ramp Type	Freeway	All Familiar
Adjustment Factors	All Familiar	Non-Severe Weather
Driver Population	Non-Severe Weather	-
Weather Type	No Incident	-
Incident Type	0	1.000
Proportion of CAVs in Traffic Stream	1.000	1.000
Final Speed Adjustment Factor (SAF)	1.000	-
Demand Adjustment Factor (DAF)	1.000	1.000
Capacity Adjustment Factor for CAVs, CAFCAV	1.000	
Final Capacity Adjustment Factor (CAF)		
Demand and Capacity		

Demand and Capacity

Demand Volume (Vi), veh/h	811	260
Peak Hour Factor (PHF)	0.90	0.90
Total Trucks, \%	31.00	19.00
Heavy Vehicle Adjustment Factor (fHV)	0.763	0.840
Flow Rate (vi), pc/h	1181	344
Capacity (cmd), pc/h	7200	1900
Adjusted Capacity (cmda), pc/h	7200	1900
Volume-to-Capacity Ratio (v/c)	0.21	0.18

Speed and Density

Upstream Equilibrium Distance (LEQ), ft	9999.0	Flow Outer Lanes (vOA), pc/h/ln	0
Downstream Equilibrium Distance (LEQ), ft	9999.0	On-Ramp Influence Area Speed (SR), mi/h	75.0
Flow in Lanes 1 and 2 (v12), pc/h	0	Outer Lanes Freeway Speed (So), mi/h	75.0
Flow Entering Ramp-Infl. Area (vR12), pc/h	0	Ramp Junction Speed (S), mi/h	74.9
Number of Outer Lanes on Freeway (No), In	1	Average Density (D), pc/mi/ln	6.8
Level of Service (LOS)	A	Density in Ramp Influence Area (DR), pc/mi/ln	6.8

HCS Basic Freeway Report

Project Information

Segment Number	13	Segment Name	Btw SB on from SB US 21 and SB On from NB US 21
Analysis Period Number	1	Segment Analysis Period	$05: 30-05: 45$

Geometric Data

Number of Lanes (N), In	3	Terrain Type	Level
Segment Length (L), ft	1055	Percent Grade, \%	-
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	1.00
Lane Width, ft	Free-Flow Speed (FFS), mi/h	75.0	
Right-Side Lateral Clearance, ft	-		

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000

Demand and Capacity

Demand Volume (V), veh/h	1071	Heavy Vehicle Adjustment Factor (fHV)	0.763
Peak Hour Factor (PHF)	0.90	Flow Rate (vp), pc/h/ln	520
Total Trucks, \%	31.00	Capacity (c), pc/h/ln	2400
Single-Unit Trucks (SUT), \%	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), \%	-	Final Adjusted Capacity (cadj), pc/h/ln	2400
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.22

Speed and Density

Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	75.0
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	6.9
Total Ramp Density Adjustment	-	Level of Service (LOS)	A
Adjusted Free-Flow Speed (FFSadj), mi/h	75.0		

HCS Freeway Merge Report

Project Information

Segment Number	14	Segment Name	SB On from NB US 21
Analysis Period Number	1	Segment Analysis Period	$05: 30-05: 45$

Geometric Data

	Freeway	Ramp
Number of Lanes (N), In	3	1
Free-Flow Speed (FFS), mi/h	75.0	45.0
Segment Length (L) / Acceleration Length (LA), ft	1500	630
Terrain Type	Level	Level
Percent Grade, \%	-	Right-Sided One-Lane
Segment Type / Ramp Type	Freeway	
Adjustment Factors	All Familiar	All Familiar
Driver Population	Non-Severe Weather	Non-Severe Weather
Weather Type	No Incident	-
Incident Type	0	-
Proportion of CAVs in Traffic Stream	1.000	1.000
Final Speed Adjustment Factor (SAF)	1.000	1.000
Demand Adjustment Factor (DAF)	1.000	-
Capacity Adjustment Factor for CAVs, CAFCAV	1.000	1.000
Final Capacity Adjustment Factor (CAF)		
Demand and Capacity		

Demand and Capacity

Demand Volume (Vi), veh/h	1071	1556
Peak Hour Factor (PHF)	0.90	0.90
Total Trucks, \%	31.00	5.00
Heavy Vehicle Adjustment Factor (fHV)	0.763	0.952
Flow Rate (vi), pc/h	1560	1816
Capacity (cmd), pc/h	7200	2100
Adjusted Capacity (cmda), pc/h	7200	2100
Volume-to-Capacity Ratio (v/c)	0.47	0.86

Speed and Density

Upstream Equilibrium Distance (LEQ), ft	-	Flow Outer Lanes (vOA), pc/h/ln	632
Downstream Equilibrium Distance (LEQ), ft	661.0	On-Ramp Influence Area Speed (SR), mi/h	64.3
Flow in Lanes 1 and 2 (v12), pc/h	928	Outer Lanes Freeway Speed (So), mi/h	74.5
Flow Entering Ramp-Infl. Area (vR12), pc/h	2744	Ramp Junction Speed (S), mi/h	66.0
Number of Outer Lanes on Freeway (No), In	1	Average Density (D), pc/mi/ln	17.1
Level of Service (LOS)	C	Density in Ramp Influence Area (DR), pc/mi/ln	22.2

HCS Basic Freeway Report

Project Information

Segment Number	15	Segment Name	Btw US 21 and Killian Rd
Analysis Period Number	1	Segment Analysis Period	$05: 30-05: 45$

Geometric Data

Number of Lanes (N), In	3	Terrain Type	Level
Segment Length (L), ft	6900	Percent Grade, \%	-
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	0.83
Lane Width, ft	Free-Flow Speed (FFS), mi/h	75.0	
Right-Side Lateral Clearance, ft	-		

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000	
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000	
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000	
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000	
Demand and Capacity				
Demand Volume (V), veh/h	Heavy Vehicle Adjustment Factor (fHV)	0.654		
Peak Hour Factor (PHF)	Flow Rate (vp), pc/h/ln	1488		
Total Trucks, \%	0.90	Capacity (c), pc/h/ln	2400	
Single-Unit Trucks (SUT), \%	53.00	Initial Adjusted Capacity (cadj), pc/h/ln	2400	
Tractor-Trailers (TT), \%	Final Adjusted Capacity (cadj), pc/h/ln	2400		
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.62	

Speed and Density

Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	72.4
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	20.6
Total Ramp Density Adjustment	-	Level of Service (LOS)	C
Adjusted Free-Flow Speed (FFSadj), mi/h	75.0		

HCS Basic Freeway Report

Project Information

Segment Number	5	Segment Name	Btw Killian Rd and US 21
Analysis Period Number	1	Segment Analysis Period	$13: 30-13: 45$

Geometric Data

Number of Lanes (N), In	3	Terrain Type	Level
Segment Length (L), ft	7200	Percent Grade, \%	-
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	0.83
Lane Width, ft	Free-Flow Speed (FFS), mi/h	75.0	
Right-Side Lateral Clearance, ft	-		

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000	
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000	
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000	
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000	
Demand and Capacity				
Demand Volume (V), veh/h	Heavy Vehicle Adjustment Factor (fHV)	0.813		
Peak Hour Factor (PHF)	Flow Rate (vp), pc/h/ln	1775		
Total Trucks, \%	0.90	Capacity (c), pc/h/ln	2400	
Single-Unit Trucks (SUT), \%	23.00	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), \%	Final Adjusted Capacity (cadj), pc/h/ln	2400		
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.74	

Speed and Density

Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	68.4
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	25.9
Total Ramp Density Adjustment	-	Level of Service (LOS)	C
Adjusted Free-Flow Speed (FFSadj), mi/h	75.0		

HCS Freeway Diverge Report

Project Information

Segment Number	6	Segment Name	NB Off to US 21
Analysis Period Number	1	Segment Analysis Period	$13: 30-13: 45$

Geometric Data

	Freeway	Ramp
Number of Lanes (N), In	3	1
Free-Flow Speed (FFS), mi/h	75.0	45.0
Segment Length (L) / Deceleration Length (LD), ft	1500	220
Terrain Type	Level	Level
Percent Grade, \%	-	-
Segment Type / Ramp Type	Freeway	Right-Sided One-Lane

Adjustment Factors

Driver Population		All Familiar	All Familiar	
Weather Type		Non-Severe Weather	Non-Severe Weather	
Incident Type		No Incident	-	
Proportion of CAVs in Traffic Stream		0	-	
Final Speed Adjustment Factor (SAF)		1.000	1.000	
Demand Adjustment Factor (DAF)		1.000	1.000	
Capacity Adjustment Factor for CAVs, CAFCAV		1.000	-	
Final Capacity Adjustment Factor (CAF)		1.000	1.000	
Demand and Capacity				
Demand Volume (Vi), veh/h		3724	2010	
Peak Hour Factor (PHF)		0.90	0.90	
Total Trucks, \%		23.00	16.00	
Heavy Vehicle Adjustment Factor (fHV)		0.813	0.862	
Flow Rate (vi), pc/h		5090	2591	
Capacity (cmd), pc/h		7200	2100	
Initial Adjusted Capacity (cmda), pc/h		7200	-	
Final Adjusted Capacity (cmda), pc/h		7200	2100	
Volume-to-Capacity Ratio (v/c)		0.74	1.23	
Speed and Density				
Upstream Equilibrium Distance (LEQ), ft	0.0	Flow Outer Lanes (vOA), pc/h/ln		1345
Downstream Equilibrium Distance (LEQ), ft	-	Off-Ramp Influence Area Speed (S	R), mi/h	57.5
Flow in Lanes 1 and 2 (v12), pc/h	3979	Outer Lanes Freeway Speed (So), m	mi / h	80.9
Flow Entering Ramp-Infl. Area (vR12), pc/h	-	Ramp Junction Speed (S), mi/h		62.0
Number of Outer Lanes on Freeway (NO), In	1	Average Density (D), pc/mi/ln		28.6
Level of Service (LOS)	F	Density in Ramp Influence Area (D)	R), $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$	36.5

HCS Basic Freeway Report

Project Information

Segment Number	7	Segment Name	Btw US 21 NB Off and US 21 NB On
Analysis Period Number	1	Segment Analysis Period	$13: 30-13: 45$

Geometric Data

Number of Lanes (N), In	3	Terrain Type	Level
Segment Length (L), ft	1585	Percent Grade, \%	-
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	1.00
Lane Width, ft	Free-Flow Speed (FFS), mi/h	75.0	
Right-Side Lateral Clearance, ft	-		

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000

Demand and Capacity

Demand Volume (V), veh/h	1714	Heavy Vehicle Adjustment Factor (fHV)	0.813
Peak Hour Factor (PHF)	0.90	Flow Rate (vp), pc/h/ln	911
Total Trucks, \%	23.00	Capacity (c), pc/h/ln	2400
Single-Unit Trucks (SUT), \%	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), \%	-	Final Adjusted Capacity (cadj), pc/h/ln	2400
Passenger Car Equivalent (ET)	Volume-to-Capacity Ratio (v/c)	0.38	
Speed and Density	2.00	Average Speed (S), mi/h	
Lane Width Adjustment (fLw)	Density (D), pc/mi/ln	73.9	
Right-Side Lateral Clearance Adj. (fRLC)	-	Level of Service (LOS)	12.1
Total Ramp Density Adjustment	-		B
Adjusted Free-Flow Speed (FFSadj), mi/h	75.0		

HCS Freeway Merge Report

Project Information

Segment Number	8	Segment Name	NB On from NB US 21
Analysis Period Number	1	Segment Analysis Period	$13: 30-13: 45$

Geometric Data

	Freeway	Ramp
Number of Lanes (N), In	3	1
Free-Flow Speed (FFS), mi/h	75.0	25.0
Segment Length (L) / Acceleration Length (LA), ft	1500	785
Terrain Type	Level	Level
Percent Grade, \%	-	Right-Sided One-Lane
Segment Type / Ramp Type	Freeway	
Adjustment Factors	All Familiar	All Familiar
Driver Population	Non-Severe Weather	Non-Severe Weather
Weather Type	No Incident	-
Incident Type	0	-
Proportion of CAVs in Traffic Stream	1.000	1.000
Final Speed Adjustment Factor (SAF)	1.000	1.000
Demand Adjustment Factor (DAF)	1.000	-
Capacity Adjustment Factor for CAVs, CAFCAV	1.000	1.000
Final Capacity Adjustment Factor (CAF)		

Demand and Capacity

Demand Volume (Vi), veh/h	1714	60
Peak Hour Factor (PHF)	0.90	0.90
Total Trucks, \%	23.00	6.00
Heavy Vehicle Adjustment Factor (fHV)	0.813	0.943
Flow Rate (vi), pc/h	2342	71
Capacity (cmd), pc/h	7200	1900
Adjusted Capacity (cmda), pc/h	7200	1900
Volume-to-Capacity Ratio (v/c)	0.39	0.04

Speed and Density

Upstream Equilibrium Distance (LEQ), ft	0.0	Flow Outer Lanes (vOA), pc/h/ln	1096
Downstream Equilibrium Distance (LEQ), ft	-	On-Ramp Influence Area Speed (SR), mi/h	65.0
Flow in Lanes 1 and 2 (v12), pc/h	1637	Outer Lanes Freeway Speed (So), mi/h	72.9
Flow Entering Ramp-Infl. Area (vR12), pc/h	1708	Ramp Junction Speed (S), mi/h	67.9
Number of Outer Lanes on Freeway (No), In	1	Average Density (D), pc/mi/ln	13.8
Level of Service (LOS)	B	Density in Ramp Influence Area (DR), pc/mi/ln	13.9

HCS Basic Freeway Report

Project Information

Segment Number	9	Segment Name	Btw NB US 21 on and SB US 21 On
Analysis Period Number	1	Segment Analysis Period	$13: 30-13: 45$

Geometric Data

Number of Lanes (N), In	3	Terrain Type	Level
Segment Length (L), ft	750	Percent Grade, \%	-
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	0.83
Lane Width, ft	Free-Flow Speed (FFS), mi/h	75.0	
Right-Side Lateral Clearance, ft	-		

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000

Demand and Capacity

Demand Volume (V), veh/h	1774	Heavy Vehicle Adjustment Factor (fHV)	0.813
Peak Hour Factor (PHF)	0.90	Flow Rate (vp), pc/h/ln	935
Total Trucks, \%	23.00	Capacity (c), pc/h/ln	2400
Single-Unit Trucks (SUT), \%	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), \%	-	Final Adjusted Capacity (cadj), pc/h/ln	2400
Passenger Car Equivalent (ET)	Volume-to-Capacity Ratio (v/c)	0.39	
Speed and Density	Average Speed (S), mi/h		
Lane Width Adjustment (fLw)	Density (D), pc/mi/ln	73.9	
Right-Side Lateral Clearance Adj. (fRLC)	-	Level of Service (LOS)	12.5
Total Ramp Density Adjustment	-		B
Adjusted Free-Flow Speed (FFSadj), mi/h	75.0		

HCS Freeway Merge Report

Project Information

Segment Number	10	Segment Name	NB On from SB US 21
Analysis Period Number	1	Segment Analysis Period	$13: 30-13: 45$

Geometric Data

	Freeway	Ramp
Number of Lanes (N), In	3	1
Free-Flow Speed (FFS), mi/h	75.0	45.0
Segment Length (L) / Acceleration Length (LA), ft	1500	745
Terrain Type	Level	Level
Percent Grade, \%	-	Right-Sided One-Lane
Segment Type / Ramp Type	Freeway	
Adjustment Factors	All Familiar	All Familiar
Driver Population	Non-Severe Weather	Non-Severe Weather
Weather Type	No Incident	-
Incident Type	0	-
Proportion of CAVs in Traffic Stream	1.000	1.000
Final Speed Adjustment Factor (SAF)	1.000	1.000
Demand Adjustment Factor (DAF)	1.000	-
Capacity Adjustment Factor for CAVs, CAFCAV	1.000	1.000
Final Capacity Adjustment Factor (CAF)		
Demand and Capacity		

Demand and Capacity

Demand Volume (Vi), veh/h	1774	90
Peak Hour Factor (PHF)	0.90	0.90
Total Trucks, \%	23.00	33.00
Heavy Vehicle Adjustment Factor (fHV)	0.813	0.752
Flow Rate (vi), pc/h	2424	133
Capacity (cmd), pc/h	7200	2100
Adjusted Capacity (cmda), pc/h	7200	2100
Volume-to-Capacity Ratio (v/c)	0.41	0.06

Speed and Density

Upstream Equilibrium Distance (LEQ), ft	-	Flow Outer Lanes (vOA), pc/h/ln	1127
Downstream Equilibrium Distance (LEQ), ft	6264.7	On-Ramp Influence Area Speed (SR), mi/h	65.8
Flow in Lanes 1 and 2 (v12), pc/h	1677	Outer Lanes Freeway Speed (So), mi/h	72.7
Flow Entering Ramp-Infl. Area (vR12), pc/h	1810	Ramp Junction Speed (S), mi/h	68.3
Number of Outer Lanes on Freeway (No), In	1	Average Density (D), pc/mi/ln	14.3
Level of Service (LOS)	B	Density in Ramp Influence Area (DR), pc/mi/ln	14.9

HCS Basic Freeway Report

Project Information

Segment Number	11	Segment Name	Btw US 21 and Blythewood Rd
Analysis Period Number	1	Segment Analysis Period	$13: 30-13: 45$

Geometric Data

Number of Lanes (N), In	3	Terrain Type	Level
Segment Length (L), ft	3300	Percent Grade, \%	-
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	1.00
Lane Width, ft	Free-Flow Speed (FFS), mi/h	75.0	
Right-Side Lateral Clearance, ft	-		

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000

Demand and Capacity

Demand Volume (V), veh/h	1864	Heavy Vehicle Adjustment Factor (fHV)	0.813
Peak Hour Factor (PHF)	0.90	Flow Rate (vp), pc/h/ln	979
Total Trucks, \%	23.00	Capacity (c), pc/h/ln	2400
Single-Unit Trucks (SUT), \%	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), \%	-	Final Adjusted Capacity (cadj), pc/h/ln	2400
Passenger Car Equivalent (ET)	Volume-to-Capacity Ratio (v/c)	0.41	
Speed and Density	2.00	Average Speed (S), mi/h	
Lane Width Adjustment (fLw)	Density (D), pc/mi/ln	74.9	
Right-Side Lateral Clearance Adj. (fRLC)	-	Level of Service (LOS)	13.1
Total Ramp Density Adjustment	-		B
Adjusted Free-Flow Speed (FFSadj), mi/h	75.0		

HCS Basic Freeway Report

Project Information

Segment Number	12	Segment Name	Btw US 21 and Blythewood Rd
Analysis Period Number	1	Segment Analysis Period	$13: 30-13: 45$

Geometric Data

Number of Lanes (N), In	2	Terrain Type	Level
Segment Length (L), ft	6580	Percent Grade, \%	-
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	0.83
Lane Width, ft	Free-Flow Speed (FFS), mi/h	75.0	
Right-Side Lateral Clearance, ft	-		

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000

Demand and Capacity

Demand Volume (V), veh/h	1864	Heavy Vehicle Adjustment Factor (fHV)	0.813
Peak Hour Factor (PHF)	0.90	Flow Rate (vp), pc/h/ln	1469
Total Trucks, \%	23.00	Capacity (c), pc/h/ln	2400
Single-Unit Trucks (SUT), \%	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), \%	-	Final Adjusted Capacity (cadj), pc/h/ln	2400
Passenger Car Equivalent (ET)	Volume-to-Capacity Ratio (v/c)	0.61	
Speed and Density	2.00	Average Speed (S), mi/h	
Lane Width Adjustment (fLw)	Density (D), pc/mi/ln	72.6	
Right-Side Lateral Clearance Adj. (fRLC)	-	Level of Service (LOS)	20.2
Total Ramp Density Adjustment	-		C
Adjusted Free-Flow Speed (FFSadj), mi/h	75.0		

HCS Freeway Diverge Report

Project Information

Segment Number	13	Segment Name	NB Off to Blythewood Rd
Analysis Period Number	1	Segment Analysis Period	$13: 30-13: 45$

Geometric Data

	Freeway	Ramp
Number of Lanes (N), In	2	1
Free-Flow Speed (FFS), mi/h	75.0	45.0
Segment Length (L) / Deceleration Length (LD), ft	1500	190
Terrain Type	Level	Level
Percent Grade, \%	-	Right-Sided One-Lane
Segment Type / Ramp Type	Freeway	
Adjustment Factors	All Familiar	All Familiar
Driver Population	Non-Severe Weather	Non-Severe Weather
Weather Type	No Incident	-
Incident Type	0	-
Proportion of CAVs in Traffic Stream	1.000	1.000
Final Speed Adjustment Factor (SAF)	1.000	1.000
Demand Adjustment Factor (DAF)	1.000	-
Capacity Adjustment Factor for CAVs, CAFCAV	1.000	1.000
Final Capacity Adjustment Factor (CAF)		

Demand and Capacity

Demand Volume (Vi), veh/h	1864	928
Peak Hour Factor (PHF)	0.90	0.90
Total Trucks, \%	23.00	15.00
Heavy Vehicle Adjustment Factor (fHV)	0.813	0.870
Flow Rate (vi), pc/h	2547	1185
Capacity (cmd), pc/h	4800	2100
Initial Adjusted Capacity (cmda), pc/h	4800	-
Final Adjusted Capacity (cmda), pc/h	4800	2100
Volume-to-Capacity Ratio (v/c)	0.61	0.56

Speed and Density

Upstream Equilibrium Distance (LEQ), ft	-	Flow Outer Lanes (vOA), pc/h/ln	-
Downstream Equilibrium Distance (LEQ), ft	-	Off-Ramp Influence Area Speed (SR), mi/h	61.6
Flow in Lanes 1 and 2 (v12), pc/h	2937	Outer Lanes Freeway Speed (So), mi/h	82.3
Flow Entering Ramp-Infl. Area (vR12), pc/h	-	Ramp Junction Speed (S), mi/h	61.6
Number of Outer Lanes on Freeway (No), In	0	Average Density (D), pc/mi/ln	23.8
Level of Service (LOS)	C	Density in Ramp Influence Area (DR), pc/mi/ln	27.8

HCS Basic Freeway Report

Project Information

Segment Number	14	Segment Name	Btw Blythewood NB Off and NB On
Analysis Period Number	1	Segment Analysis Period	$13: 30-13: 45$

Geometric Data

Number of Lanes (N), In	2	Terrain Type	Level
Segment Length (L), ft	3380	Percent Grade, \%	-
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	0.67
Lane Width, ft	Free-Flow Speed (FFS), mi/h	75.0	
Right-Side Lateral Clearance, ft	-		

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000

Demand and Capacity

Demand Volume (V), veh/h	936	Heavy Vehicle Adjustment Factor (fHV)	0.813
Peak Hour Factor (PHF)	0.90	Flow Rate (vp), pc/h/ln	876
Total Trucks, \%	23.00	Capacity (c), pc/h/ln	2400
Single-Unit Trucks (SUT), \%	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), \%	-	Final Adjusted Capacity (cadj), pc/h/ln	2400
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.36

Speed and Density

Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	74.7
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	11.7
Total Ramp Density Adjustment	-	Level of Service (LOS)	B
Adjusted Free-Flow Speed (FFSadj), mi/h	75.0		

HCS Freeway Merge Report

Project Information

Segment Number	15	Segment Name	NB On from Blythewood Rd
Analysis Period Number	1	Segment Analysis Period	$13: 30-13: 45$

Geometric Data

	Freeway	Ramp
Number of Lanes (N), In	2	1
Free-Flow Speed (FFS), mi/h	75.0	45.0
Segment Length (L) / Acceleration Length (LA), ft	1500	740
Terrain Type	Level	Level
Percent Grade, \%	-	Right-Sided One-Lane
Segment Type / Ramp Type	Freeway	
Adjustment Factors	All Familiar	All Familiar
Driver Population	Non-Severe Weather	Non-Severe Weather
Weather Type	No Incident	-
Incident Type	0	-
Proportion of CAVs in Traffic Stream	1.000	1.000
Final Speed Adjustment Factor (SAF)	1.000	1.000
Demand Adjustment Factor (DAF)	1.000	-
Capacity Adjustment Factor for CAVs, CAFCAV	1.000	1.000
Final Capacity Adjustment Factor (CAF)		
Demand and Capacity		

Demand and Capacity

Demand Volume (Vi), veh/h	936	901
Peak Hour Factor (PHF)	0.90	0.90
Total Trucks, \%	23.00	12.00
Heavy Vehicle Adjustment Factor (fHV)	0.813	0.893
Flow Rate (vi), pc/h	1279	1121
Capacity (cmd), pc/h	4800	2100
Adjusted Capacity (cmda), pc/h	4800	2100
Volume-to-Capacity Ratio (v/c)	0.60	0.53

Speed and Density

Upstream Equilibrium Distance (LEQ), ft	-	Flow Outer Lanes (vOA), pc/h/ln	-
Downstream Equilibrium Distance (LEQ), ft	-	On-Ramp Influence Area Speed (SR), mi/h	64.3
Flow in Lanes 1 and 2 (v12), pc/h	1752	Outer Lanes Freeway Speed (So), mi/h	75.0
Flow Entering Ramp-Infl. Area (vR12), pc/h	2873	Ramp Junction Speed (S), mi/h	64.3
Number of Outer Lanes on Freeway (No), In	0	Average Density (D), pc/mi/ln	22.3
Level of Service (LOS)	C	Density in Ramp Influence Area (DR), pc/mi/ln	22.8

HCS Basic Freeway Report

Project Information

Segment Number	16	Segment Name	Btw Blythewood Rd and E Peach Rd
Analysis Period Number	1	Segment Analysis Period	$13: 30-13: 45$

Geometric Data

Number of Lanes (N), In	2	Terrain Type	Level
Segment Length (L), ft	19090	Percent Grade, \%	-
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	0.67
Lane Width, ft	Free-Flow Speed (FFS), mi/h	75.0	
Right-Side Lateral Clearance, ft	-		

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000

Demand and Capacity

Demand Volume (V), veh/h	1837	Heavy Vehicle Adjustment Factor (fHV)	0.813
Peak Hour Factor (PHF)	0.90	Flow Rate (vp), pc/h/ln	1437
Total Trucks, \%	23.00	Capacity (c), pc/h/ln	2400
Single-Unit Trucks (SUT), \%	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), \%	-	Final Adjusted Capacity (cadj), pc/h/ln	2400
Passenger Car Equivalent (ET)	Volume-to-Capacity Ratio (v/c)	0.60	
Speed and Density	2.00	Average Speed (S), mi/h	
Lane Width Adjustment (fLw)	Density (D), pc/mi/ln	72.9	
Right-Side Lateral Clearance Adj. (fRLC)	-	Level of Service (LOS)	19.7
Total Ramp Density Adjustment	-		C
Adjusted Free-Flow Speed (FFSadj), mi/h	75.0		

HCS Basic Freeway Report

Project Information

Segment Number	5	Segment Name	Btw E Peach Rd and Blythewood Rd
Analysis Period Number	1	Segment Analysis Period	$13: 30-13: 45$

Geometric Data

Number of Lanes (N), In	2	Terrain Type	Level
Segment Length (L), ft	19290	Percent Grade, \%	-
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	0.67
Lane Width, ft	-	Free-Flow Speed (FFS), mi/h	75.0
Right-Side Lateral Clearance, ft	-		

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000

Demand and Capacity

Demand Volume (V), veh/h	1810	Heavy Vehicle Adjustment Factor (fHV)	0.787
Peak Hour Factor (PHF)	0.90	Flow Rate (vp), pc/h/ln	1278
Total Trucks, \%	27.00	Capacity (c), pc/h/ln	2400
Single-Unit Trucks (SUT), \%	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), \%	-	Final Adjusted Capacity (cadj), pc/h/ln	2400
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.53

Speed and Density

Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	74.1
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	17.2
Total Ramp Density Adjustment	-	Level of Service (LOS)	B
Adjusted Free-Flow Speed (FFSadj), mi/h	75.0		

HCS Freeway Diverge Report

Project Information

Segment Number	6	Segment Name	SB Off to Blythewood Rd
Analysis Period Number	1	Segment Analysis Period	$13: 30-13: 45$

Geometric Data

	Freeway	Ramp
Number of Lanes (N), In	2	1
Free-Flow Speed (FFS), mi/h	75.0	45.0
Segment Length (L) / Deceleration Length (LD), ft	1500	170
Terrain Type	Level	Level
Percent Grade, \%	-	Right-Sided One-Lane
Segment Type / Ramp Type	Freeway	
Adjustment Factors	All Familiar	All Familiar
Driver Population	Non-Severe Weather	Non-Severe Weather
Weather Type	No Incident	-
Incident Type	0	-
Proportion of CAVs in Traffic Stream	1.000	1.000
Final Speed Adjustment Factor (SAF)	1.000	1.000
Demand Adjustment Factor (DAF)	1.000	-
Capacity Adjustment Factor for CAVs, CAFCAV	1.000	1.000
Final Capacity Adjustment Factor (CAF)		

Demand and Capacity

Demand Volume (Vi), veh/h	1810	756
Peak Hour Factor (PHF)	0.90	0.90
Total Trucks, \%	27.00	16.00
Heavy Vehicle Adjustment Factor (fHV)	0.787	0.862
Flow Rate (vi), pc/h	2555	974
Capacity (cmd), pc/h	4800	2100
Initial Adjusted Capacity (cmda), pc/h	4800	-
Final Adjusted Capacity (cmda), pc/h	4800	2100
Volume-to-Capacity Ratio (v/c)	0.53	0.46

Speed and Density

Upstream Equilibrium Distance (LEQ), ft	-	Flow Outer Lanes (vOA), pc/h/ln	-
Downstream Equilibrium Distance (LEQ), ft	-	Off-Ramp Influence Area Speed (SR), mi/h	62.3
Flow in Lanes 1 and 2 (v12), pc/h	2555	Outer Lanes Freeway Speed (So), mi/h	82.3
Flow Entering Ramp-Infl. Area (vR12), pc/h	-	Ramp Junction Speed (S), mi/h	62.3
Number of Outer Lanes on Freeway (No), In	0	Average Density (D), pc/mi/ln	20.5
Level of Service (LOS)	C	Density in Ramp Influence Area (DR), pc/mi/ln	24.7

HCS Basic Freeway Report

Project Information

Segment Number	7	Segment Name	Btw Blythewood SB Off and SB On
Analysis Period Number	1	Segment Analysis Period	$13: 30-13: 45$

Geometric Data

Number of Lanes (N), In	2	Terrain Type	Level
Segment Length (L), ft	3645	Percent Grade, \%	-
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	0.50
Lane Width, ft	Free-Flow Speed (FFS), mi/h	75.0	
Right-Side Lateral Clearance, ft	-		

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000

Demand and Capacity

Demand Volume (V), veh/h	1054	Heavy Vehicle Adjustment Factor (fHV)	0.787
Peak Hour Factor (PHF)	0.90	Flow Rate (vp), pc/h/ln	744
Total Trucks, \%	27.00	Capacity (c), pc/h/ln	2400
Single-Unit Trucks (SUT), \%	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), \%	-	Final Adjusted Capacity (cadj), pc/h/ln	2400
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.31

Speed and Density

Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	74.8
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	9.9
Total Ramp Density Adjustment	-	Level of Service (LOS)	A
Adjusted Free-Flow Speed (FFSadj), mi/h	75.0		

HCS Freeway Merge Report

Project Information

Segment Number	8	Segment Name	SB On from Blythewood
Analysis Period Number	1	Segment Analysis Period	$13: 30-13: 45$

Geometric Data

	Freeway	Ramp
Number of Lanes (N), In	2	1
Free-Flow Speed (FFS), mi/h	75.0	45.0
Segment Length (L) / Acceleration Length (LA), ft	1500	660
Terrain Type	Level	Level
Percent Grade, \%	-	-
Segment Type / Ramp Type	Freeway	Right-Sided One-Lane

Adjustment Factors

Driver Population		All Familiar	All Familiar	
Weather Type		Non-Severe Weather	Non-Severe Weather	
Incident Type		No Incident	-	
Proportion of CAVs in Traffic Stream		0	-	
Final Speed Adjustment Factor (SAF)		1.000	1.000	
Demand Adjustment Factor (DAF)		1.000	1.000	
Capacity Adjustment Factor for CAVs, CAFCAV		1.000	-	
Final Capacity Adjustment Factor (CAF)		1.000	1.000	
Demand and Capacity				
Demand Volume (Vi), veh/h		1054	835	
Peak Hour Factor (PHF)		0.90	0.90	
Total Trucks, \%		27.00	7.00	
Heavy Vehicle Adjustment Factor (fHV)		0.787	0.935	
Flow Rate (vi), pc/h		1488	992	
Capacity (cmd), pc/h		4800	2100	
Adjusted Capacity (cmda), pc/h		4800	2100	
Volume-to-Capacity Ratio (v/c)		0.52	0.47	
Speed and Density				
Upstream Equilibrium Distance (LEQ), ft	-	Flow Outer Lanes (voA), pc/h/ln		-
Downstream Equilibrium Distance (LEQ), ft	-	On-Ramp Influence Area Speed (S®)), mi/h	64.8
Flow in Lanes 1 and 2 (v12), pc/h	1488	Outer Lanes Freeway Speed (So),	mi/h	75.0
Flow Entering Ramp-Infl. Area (vR12), pc/h	2480	Ramp Junction Speed (S), mi/h		64.8
Number of Outer Lanes on Freeway (No), In	0	Average Density (D), pc/mi/ln		19.1
Level of Service (LOS)	C	Density in Ramp Influence Area (D)), pc/mi/ln	20.3

HCS Basic Freeway Report

Project Information

Segment Number	9	Segment Name	Btw Blythewood Rd and US 21
Analysis Period Number	1	Segment Analysis Period	$13: 30-13: 45$

Geometric Data

Number of Lanes (N), In	2	Terrain Type	Level
Segment Length (L), ft	9920	Percent Grade, \%	-
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	0.83
Lane Width, ft	Free-Flow Speed (FFS), mi/h	75.0	
Right-Side Lateral Clearance, ft	-		

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000

Demand and Capacity

Demand Volume (V), veh/h	1889	Heavy Vehicle Adjustment Factor (fHV)	0.787
Peak Hour Factor (PHF)	0.90	Flow Rate (vp), pc/h/ln	1334
Total Trucks, \%	27.00	Capacity (c), pc/h/ln	2400
Single-Unit Trucks (SUT), \%	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), \%	-	Final Adjusted Capacity (cadj), pc/h/ln	2400
Passenger Car Equivalent (ET)	Volume-to-Capacity Ratio (v/c)	0.56	
Speed and Density	2.00	Average Speed (S), mi/h	
Lane Width Adjustment (fLw)	Density (D), pc/mi/ln	73.8	
Right-Side Lateral Clearance Adj. (fRLC)	-	Level of Service (LOS)	18.1
Total Ramp Density Adjustment	-		C
Adjusted Free-Flow Speed (FFSadj), mi/h	75.0		

HCS Freeway Diverge Report

Project Information

Segment Number	10	Segment Name	SB Off to US 21
Analysis Period Number	1	Segment Analysis Period	$13: 30-13: 45$

Geometric Data

	Freeway	Ramp
Number of Lanes (N), In	2	1
Free-Flow Speed (FFS), mi/h	75.0	45.0
Segment Length (L) / Deceleration Length (LD), ft	1500	270
Terrain Type	Level	Level
Percent Grade, \%	-	-
Segment Type / Ramp Type	Freeway	Right-Sided One-Lane

Adjustment Factors

HCS Basic Freeway Report

Project Information

Segment Number	11	Segment Name	Btw US 21 SB Off and On from SB US 21
Analysis Period Number	1	Segment Analysis Period	$13: 30-13: 45$

Geometric Data

Number of Lanes (N), In	2	Terrain Type	Level
Segment Length (L), ft	1569	Percent Grade, \%	-
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	0.83
Lane Width, ft	-	Free-Flow Speed (FFS), mi/h	75.0
Right-Side Lateral Clearance, ft	-		

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000

Demand and Capacity

Demand Volume (V), veh/h	1789	Heavy Vehicle Adjustment Factor (fHV)	0.787
Peak Hour Factor (PHF)	0.90	Flow Rate (vp), pc/h/ln	1263
Total Trucks, \%	27.00	Capacity (c), pc/h/ln	2400
Single-Unit Trucks (SUT), \%	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), \%	-	Final Adjusted Capacity (cadj), pc/h/ln	2400
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.53

Speed and Density

Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	74.2
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	17.0
Total Ramp Density Adjustment	-	Level of Service (LOS)	B
Adjusted Free-Flow Speed (FFSadj), mi/h	75.0		

HCS Basic Freeway Report

Project Information

Segment Number	12	Segment Name	SB On from SB US 21
Analysis Period Number	1	Segment Analysis Period	$13: 30-13: 45$

Geometric Data

	Freeway	Ramp
Number of Lanes (N), In	3	1
Free-Flow Speed (FFS), mi/h	75.0	25.0
Segment Length (L) / Acceleration Length (LA), ft	1500	800
Terrain Type	Level	Level
Percent Grade, \%	-	Right-Sided One-Lane
Segment Type / Ramp Type	Freeway	
Adjustment Factors	All Familiar	All Familiar
Driver Population	Non-Severe Weather	Non-Severe Weather
Weather Type	No Incident	-
Incident Type	0	-
Proportion of CAVs in Traffic Stream	1.000	1.000
Final Speed Adjustment Factor (SAF)	1.000	1.000
Demand Adjustment Factor (DAF)	1.000	-
Capacity Adjustment Factor for CAVs, CAFCAV	1.000	1.000
Final Capacity Adjustment Factor (CAF)		

Demand and Capacity

Demand Volume (Vi), veh/h	1789	290
Peak Hour Factor (PHF)	0.90	0.90
Total Trucks, \%	27.00	23.00
Heavy Vehicle Adjustment Factor (fHV)	0.787	0.813
Flow Rate (vi), pc/h	2526	396
Capacity (cmd), pc/h	7200	1900
Adjusted Capacity (cmda), pc/h	7200	1900
Volume-to-Capacity Ratio (v/c)	0.41	0.21

Speed and Density

Upstream Equilibrium Distance (LEQ), ft	9999.0	Flow Outer Lanes (vOA), pc/h/ln	0
Downstream Equilibrium Distance (LEQ), ft	9999.0	On-Ramp Influence Area Speed (SR), mi/h	75.0
Flow in Lanes 1 and 2 (v12), pc/h	0	Outer Lanes Freeway Speed (So), mi/h	75.0
Flow Entering Ramp-Infl. Area (vR12), pc/h	0	Ramp Junction Speed (S), mi/h	74.9
Number of Outer Lanes on Freeway (No), In	1	Average Density (D), pc/mi/ln	13.0
Level of Service (LOS)	B	Density in Ramp Influence Area (DR), pc/mi/ln	13.0

HCS Basic Freeway Report

Project Information

Segment Number	13	Segment Name	Btw SB on from SB US 21 and SB On from NB US 21
Analysis Period Number	1	Segment Analysis Period	$13: 30-13: 45$

Geometric Data

Number of Lanes (N), In	3	Terrain Type	Level
Segment Length (L), ft	1055	Percent Grade, \%	-
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	-
Lane Width, ft	Free-Flow Speed (FFS), mi/h	75.0	
Right-Side Lateral Clearance, ft	-		

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000

Demand and Capacity

Demand Volume (V), veh/h	2079	Heavy Vehicle Adjustment Factor (fHV)	0.787
Peak Hour Factor (PHF)	0.90	Flow Rate (vp), pc/h/ln	978
Total Trucks, \%	27.00	Capacity (c), pc/h/ln	2400
Single-Unit Trucks (SUT), \%	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), \%	-	Final Adjusted Capacity (cadj), pc/h/ln	2400
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.41

Speed and Density

Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	75.0
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	13.0
Total Ramp Density Adjustment	-	Level of Service (LOS)	B
Adjusted Free-Flow Speed (FFSadj), mi/h	75.0		

HCS Freeway Merge Report

Project Information

Segment Number	14	Segment Name	SB On from NB US 21
Analysis Period Number	1	Segment Analysis Period	$13: 30-13: 45$

Geometric Data

	Freeway	Ramp
Number of Lanes (N), In	3	1
Free-Flow Speed (FFS), mi/h	75.0	45.0
Segment Length (L) / Acceleration Length (LA), ft	1500	630
Terrain Type	Level	Level
Percent Grade, \%	-	Right-Sided One-Lane
Segment Type / Ramp Type	Freeway	
Adjustment Factors	All Familiar	All Familiar
Driver Population	Non-Severe Weather	Non-Severe Weather
Weather Type	No Incident	-
Incident Type	0	-
Proportion of CAVs in Traffic Stream	1.000	1.000
Final Speed Adjustment Factor (SAF)	1.000	1.000
Demand Adjustment Factor (DAF)	1.000	-
Capacity Adjustment Factor for CAVs, CAFCAV	1.000	1.000
Final Capacity Adjustment Factor (CAF)		
Demand and Capacity		

Demand and Capacity

Demand Volume (Vi), veh/h	2079	1938
Peak Hour Factor (PHF)	0.90	0.90
Total Trucks, \%	27.00	4.00
Heavy Vehicle Adjustment Factor (fHV)	0.787	0.962
Flow Rate (vi), pc/h	2935	2238
Capacity (cmd), pc/h	7200	2100
Adjusted Capacity (cmda), pc/h	7200	2100
Volume-to-Capacity Ratio (v/c)	0.72	1.00

Speed and Density

Upstream Equilibrium Distance (LEQ), ft	-	Flow Outer Lanes (vOA), pc/h/ln	1189
Downstream Equilibrium Distance (LEQ), ft	1892.6	On-Ramp Influence Area Speed (SR), mi/h	59.4
Flow in Lanes 1 and 2 (v12), pc/h	1746	Outer Lanes Freeway Speed (So), mi/h	72.5
Flow Entering Ramp-Infl. Area (vR12), pc/h	3984	Ramp Junction Speed (S), mi/h	62.0
Number of Outer Lanes on Freeway (NO), In	1	Average Density (D), pc/mi/ln	27.8
Level of Service (LOS)	Density in Ramp Influence Area (DR), pc/mi/ln	31.6	

HCS Basic Freeway Report

Project Information

Segment Number	15	Segment Name	Btw US 21 and Killian Rd
Analysis Period Number	1	Segment Analysis Period	$13: 30-13: 45$

Geometric Data

Number of Lanes (N), In	3	Terrain Type	Level
Segment Length (L), ft	6900	Percent Grade, \%	-
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	-
Lane Width, ft	Free-Flow Speed (FFS), mi/h	75.0	
Right-Side Lateral Clearance, ft	-		

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000	
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000	
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000	
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000	
Demand and Capacity				
Demand Volume (V), veh/h	Heavy Vehicle Adjustment Factor (fHV)	0.690		
Peak Hour Factor (PHF)	Flow Rate (vp), pc/h/ln	2092		
Total Trucks, \%	0.90	Capacity (c), pc/h/ln	2400	
Single-Unit Trucks (SUT), \%	45.00	Initial Adjusted Capacity (cadj), pc/h/ln	2400	
Tractor-Trailers (TT), \%	-	Final Adjusted Capacity (cadj), pc/h/ln	2400	
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.87	

Speed and Density

Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	61.8
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	33.9
Total Ramp Density Adjustment	-	Level of Service (LOS)	D
Adjusted Free-Flow Speed (FFSadj), mi/h	75.0		

Attachment E:

2046 No-Build Synchro Analysis

Intersection													
Int Delay，s／veh	1.6												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	${ }^{7}$		「					个个	F＇		个4		
Traffic Vol，veh／h	90	0	100	0	0	0	0	490	684	0	711	0	
Future Vol，veh／h	90	0	100	0	0	0	0	490	684	0	711	0	
Conflicting Peds，\＃／hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	－	－	Free	－	－	None	－	－	Free	－	－	None	
Storage Length	0	－	0	－	－	－	－	－	200	－	－	－	
Veh in Median Storage，\＃	\＃－	1	－	－	0	－	－	0	－	－	0	－	
Grade，\％	－	0	－	－	0	－	－	0	－	－	0	－	
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90	
Heavy Vehicles，\％	12	0	11	0	0	0	0	3	7	0	7	4	
Mvmt Flow	100	0	111	0	0	0	0	544	760	0	790	0	

Intersection													
Int Delay, s/veh	44.6												

HCM 6th Signalized Intersection Summary
204: Blythewood Rd \& I-77 SB Ramps

	\rangle			7				\dagger			\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow	「	\%	\uparrow						\uparrow	F
Traffic Volume (veh/h)	0	812	619	735	1236	0	0	0	0	130	0	130
Future Volume (veh/h)	0	812	619	735	1236	0	0	0	0	130	0	130
Initial $Q(Q b)$, veh	0	0	0	0	0	0				0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00				1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00				1.00	1.00	1.00
Work Zone On Approach		No			No						No	
Adj Sat Flow, veh/h/ln	0	1841	1870	1870	1856	0				1811	1900	1618
Adj Flow Rate, veh/h	0	902	0	817	1373	0				144	0	144
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90				0.90	0.90	0.90
Percent Heavy Veh, \%	0	4	2	2	3	0				6	0	19
Cap, veh/h	0	758		624	1445	0				220	0	167
Arrive On Green	0.00	0.41	0.00	0.32	0.78	0.00				0.12	0.00	0.12
Sat Flow, veh/h	0	1841	1585	1781	1856	0				1810	0	1372
Grp Volume(v), veh/h	0	902	0	817	1373	0				144	0	144
Grp Sat Flow(s),veh/h/ln	0	1841	1585	1781	1856	0				1810	0	1372
Q Serve(g_s), s	0.0	49.4	0.0	38.0	75.6	0.0				9.1	0.0	12.4
Cycle Q Clear(g_c), s	0.0	49.4	0.0	38.0	75.6	0.0				9.1	0.0	12.4
Prop In Lane	0.00		1.00	1.00		0.00				1.00		1.00
Lane Grp Cap(c), veh/h	0	758		624	1445	0				220	0	167
VIC Ratio(X)	0.00	1.19		1.31	0.95	0.00				0.65	0.00	0.86
Avail Cap(c_a), veh/h	0	758		624	1445	0				241	0	183
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00				1.00	1.00	1.00
Upstream Filter(I)	0.00	1.00	0.00	0.09	0.09	0.00				1.00	0.00	1.00
Uniform Delay (d), s/veh	0.0	35.3	0.0	36.2	11.3	0.0				50.3	0.0	51.7
Incr Delay (d2), s/veh	0.0	98.4	0.0	140.2	2.0	0.0				5.5	0.0	30.5
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0				0.0	0.0	0.0
\%oile BackOfQ(50%),veh/ln	0.0	42.0	0.0	42.1	23.4	0.0				4.5	0.0	5.7
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	0.0	133.7	0.0	176.4	13.3	0.0				55.8	0.0	82.3
LnGrp LOS	A	F		F	B	A				E	A	F
Approach Vol, veh/h		902			2190						288	
Approach Delay, s/veh		133.7			74.2						69.0	
Approach LOS		F			E						E	
Timer - Assigned Phs	1	2		4		6						
Phs Duration ($\mathrm{G}+\mathrm{Y}+\mathrm{Rc}$), s	44.0	55.4		20.6		99.4						
Change Period ($\mathrm{Y}+\mathrm{Rc}$), s	6.0	6.0		6.0		6.0						
Max Green Setting (Gmax), s	38.0	48.0		16.0		92.0						
Max Q Clear Time (g_c+11), s	40.0	51.4		14.4		77.6						
Green Ext Time (p_c), s	0.0	0.0		0.2		12.2						
Intersection Summary												
HCM 6th Ctrr DelayHCM 6th LOS			89.6									

Notes

Unsignalized Delay for [EBR] is excluded from calculations of the approach delay and intersection delay.

HCM 6th Signalized Intersection Summary
205: I-77 NB Ramps \& Blythewood Rd

	$\stackrel{ }{*}$	\rightarrow					4	\dagger			\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	\uparrow			4	「		\uparrow	「			
Traffic Volume (veh/h)	114	828	0	0	1591	175	380	-	330	0	0	0
Future Volume (veh/h)	114	828	0	0	1591	175	380	0	330	0	0	0
Initial $Q(Q b)$, veh	0	0	0	0	0	0	0	0	0			
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00			
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
Work Zone On Approach		No			No			No				
Adj Sat Flow, veh/h/n	1574	1826	0	0	1856	1826	1841	1900	1796			
Adj Flow Rate, veh/h	127	920	0	0	1768	0	422	0	367			
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90			
Percent Heavy Veh, \%	22	5	0	0	3	5	4	0	7			
Cap, veh/h	60	1324	0	0	1345		317	0	266			
Arrive On Green	0.73	0.73	0.00	0.00	0.73	0.00	0.17	0.00	0.17			
Sat Flow, veh/h	227	1826	0	0	1856	1547	1810	0	1522			
Grp Volume(v), veh/h	127	920	0	0	1768	0	422	0	367			
Grp Sat Flow(s),veh/h/ln	227	1826	0	0	1856	1547	1810	0	1522			
Q Serve(g_s), s	0.0	33.5	0.0	0.0	87.0	0.0	21.0	0.0	21.0			
Cycle Q Clear(g_c), s	87.0	33.5	0.0	0.0	87.0	0.0	21.0	0.0	21.0			
Prop In Lane	1.00		0.00	0.00		1.00	1.00		1.00			
Lane Grp Cap(c), veh/h	60	1324	0	0	1345		317	0	266			
V/C Ratio(X)	2.12	0.69	0.00	0.00	1.31		1.33	0.00	1.38			
Avail Cap(c_a), veh/h	60	1324	0	0	1345		317	0	266			
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
Upstream Filter(l)	0.09	0.09	0.00	0.00	1.00	0.00	1.00	0.00	1.00			
Uniform Delay (d), s/veh	60.0	9.1	0.0	0.0	16.5	0.0	49.5	0.0	49.5			
Incr Delay (d2), s/veh	507.6	0.3	0.0	0.0	146.8	0.0	169.8	0.0	191.8			
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
\%ile BackOfQ (50%),veh/ln	10.3	11.3	0.0	0.0	85.5	0.0	24.4	0.0	22.1			
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	567.6	9.4	0.0	0.0	163.3	0.0	219.3	0.0	241.3			
LnGrp LOS	F	A	A	A	F		F	A	F			
Approach Vol, veh/h		1047			1768			789				
Approach Delay, s/veh		77.1			163.3			229.5				
Approach LOS		E			F			F				
Timer - Assigned Phs		2				6		8				
Phs Duration ($G+Y+R \mathrm{C})$, s		93.0				93.0		27.0				
Change Period ($\mathrm{Y}+\mathrm{Rc} \mathrm{c}$, s		6.0				6.0		6.0				
Max Green Setting (Gmax), s		87.0				87.0		21.0				
Max Q Clear Time (g_c+1), s		89.0				89.0		23.0				
Green Ext Time (p_c), s		0.0				0.0		0.0				
Intersection Summary												
$\begin{array}{lr}\text { HCM 6th Ctrl Delay } & 152.8 \\ \text { HCM 6th LOS } & \text { F }\end{array}$												

Notes

Unsignalized Delay for [WBR] is excluded from calculations of the approach delay and intersection delay.

Intersection													
Int Delay，s／veh	1.4												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	\％		「					个 \uparrow	F＇		个4		
Traffic Vol，veh／h	65	0	105	0	0	0	0	498	606	0	953	0	
Future Vol，veh／h	65	0	105	0	0	0	0	498	606	0	953	0	
Conflicting Peds，\＃／hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	－	－	Free	－	－	None	－	－	Free	－	－	None	
Storage Length	0	－	0	－	－	－	－	－	200	－	－	－	
Veh in Median Storage，\＃	\＃	1	－	－	0	－	－	0	－	－	0	－	
Grade，\％	－	0	－	－	0	－	－	0	－	－	0	－	
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90	
Heavy Vehicles，\％	28	0	9	0	0	0	0	4	8	0	5	5	
Mvmt Flow	72	0	117	0	0	0	0	553	673	0	1059	0	

Major/Minor	Minor1		Major1			Major2			
Conflicting Flow All	1077	-	-	-	0	-	-	-	0
Stage 1	503	-	-	-	-	-		-	-
Stage 2	574	-	-	-	-	-	-	-	-
Critical Hdwy	6.98	-	-	-	-	-	-	-	-
Critical Hdwy Stg 1	5.98	-	-	-	-	-	-	-	-
Critical Hdwy Stg 2	5.98	-	-	-	-	-	-	-	-
Follow-up Hdwy	3.59	-	-	-	-	-	-	-	-
Pot Cap-1 Maneuver	~ 203	0	0	0	-	0	0	-	0
Stage 1	~ 553	0	0	0	-	0	0	-	0
Stage 2	~ 508	0	0	0	-	0	0	-	0
Platoon blocked, \%					-			-	
Mov Cap-1 Maneuver	~ 203	0	-	-	-	-	-	-	-
Mov Cap-2 Maneuver	~ 334	0	-	-	-	-	-	-	-
Stage 1	~ 553	0	-	-	-	-	-	-	-
Stage 2	~ 508	0	-	-	-	-	-	-	-

Approach	WB	NB	SB
HCM Control Delay, s	$\$ 442.2$	0	0
HCM LOS	F		

Minor Lane/Major Mvmt	NBTWBLn1WBLn2	SBT	
Capacity (veh/h)	-	334	-

Notes

\sim : Volume exceeds capacity $\$$: Delay exceeds $300 s \quad+$: Computation Not Defined \quad : All major volume in platoon

HCM 6th Signalized Intersection Summary
204: Blythewood Rd \& I-77 SB Ramps

Notes

Unsignalized Delay for [EBR] is excluded from calculations of the approach delay and intersection delay.

HCM 6th Signalized Intersection Summary
205: I-77 NB Ramps \& Blythewood Rd

| | | | | | | | | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | :--- |

Notes

Unsignalized Delay for [WBR] is excluded from calculations of the approach delay and intersection delay.

Intersection												
Int Delay，s／veh	6.3											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$		「					中4	「		中4	
Traffic Vol，veh／h	45	0	15	0	0	0	0	301	1556	0	2070	0
Future Vol，veh／h	45	0	15	0	0	0	0	301	1556	0	2070	0
Conflicting Peds，\＃／hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	－	－	Free	－	－	None	－	－	Free	－	－	None
Storage Length	0	－	0	－	－	－	－	－	200	－	－	－
Veh in Median Storage，\＃	\＃	1	－	－	0	－	－	0	－	－	0	－
Grade，\％	－	0	－	－	0	－	－	0	－	－	0	－
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles，\％	20	0	8	0	0	0	0	8	3	0	7	12
Mvmt Flow	50	0	17	0	0	0	0	334	1729	0	2300	0

Major／Minor	Minor2	Major1						
Conflicting Flow All	2467	-	-	-	0	-	-	-

HCMLOS F

Minor Lane／Major Mvmt	NBT EBLn1 EBLn2	SBT	
Capacity（veh／h）	-43	-	-
HCM Lane V／C Ratio	-1.163	-	-
HCM Control Delay（s）	$-\$ 337.8$	0	-
HCM Lane LOS	-	F	A
HCM 95th \％tile Q（veh）	-	4.8	-

Notes

\sim ：Volume exceeds capacity $\quad \$$ ：Delay exceeds $300 \mathrm{~s} \quad+$ ：Computation Not Defined \quad ：All major volume in platoon

Approach	WB	NB	SB
HCM Control Delay, s	$\$ 1395.6$	0	0
HCM LOS	F		

Minor Lane/Major Mvmt	NBTWBLn1WBLn2	SBT	
Capacity (veh/h)	-481	-	-
HCM Lane V/C Ratio	-4.052	-	-
HCM Control Delay (s)	$\$ 1395.6$	0	-
HCM Lane LOS	-	F	A
HCM 95th \%tile Q(veh)	-187.4	-	-

Notes

\sim : Volume exceeds capacity $\$$: Delay exceeds $300 s \quad+$: Computation Not Defined \quad : All major volume in platoon

HCM 6th Signalized Intersection Summary
204: Blythewood Rd \& I-77 SB Ramps

	\rangle			\checkmark				\dagger			\dagger	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4	F	${ }^{7}$	\uparrow						\uparrow	F
Traffic Volume (veh/h)	0	1227	428	230	1251	0	0	0	0	55	0	702
Future Volume (veh/h)	0	1227	428	230	1251	0	0	0	0	55	0	702
Initial $Q(Q b)$, veh	0	0	0	0	0	0				0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00				1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00				1.00	1.00	1.00
Work Zone On Approach		No			No						No	
Adj Sat Flow, veh/h/ln	0	1841	1841	1856	1841	0				1841	1900	1544
Adj Flow Rate, veh/h	0	1363	0	256	1390	0				61	0	780
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90				0.90	0.90	0.90
Percent Heavy Veh, \%	0	4	4	3	4	0				4	0	24
Cap, veh/h	0	873		287	1200	0				458	0	331
Arrive On Green	0.00	0.47	0.00	0.13	0.65	0.00				0.25	0.00	0.25
Sat Flow, veh/h	0	1841	1560	1767	1841	0				1810	O	1309
Grp Volume(v), veh/h	0	1363	0	256	1390	0				61	0	780
Grp Sat Flow(s),veh/h/n	0	1841	1560	1767	1841	0				1810	0	1309
Q Serve(g_s), s	0.0	60.0	0.0	13.9	82.5	0.0				3.3	0.0	32.0
Cycle Q Clear(g_c), s	0.0	60.0	0.0	13.9	82.5	0.0				3.3	0.0	32.0
Prop In Lane	0.00		1.00	1.00		0.00				1.00		1.00
Lane Grp Cap(c), veh/h	0	873		287	1200	0				458	0	331
V/C Ratio(X)	0.00	1.56		0.89	1.16	0.00				0.13	0.00	2.36
Avail Cap(c_a), veh/h	0	873		476	1200	0				458	O	331
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00				1.00	1.00	1.00
Upstream Filter(I)	0.00	1.00	0.00	1.00	1.00	0.00				1.00	0.00	1.00
Uniform Delay (d), s/veh	0.0	33.2	0.0	41.6	22.0	0.0				36.5	0.0	47.2
Incr Delay (d2), s/veh	0.0	258.0	0.0	11.5	80.8	0.0				0.1	0.0	619.3
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0				0.0	0.0	0.0
\%ile BackOfQ(50%),veh/ln	0.0	88.1	0.0	8.8	58.3	0.0				1.5	0.0	67.3
Unsig. Movement Delay, s/veh												
LnGrp Delay (d),s/veh	0.0	291.3	0.0	53.1	102.8	0.0				36.6	0.0	666.6
LnGrp LOS	A	F		D	F	A				D	A	F
Approach Vol, veh/h		1363			1646						841	
Approach Delay, s/veh		291.3			95.0						620.9	
Approach LOS		F			F						F	

Timer - Assigned Phs	1	2	4	6
Phs Duration (G+Y+Rc), s	22.5	66.0	38.0	88.5
Change Period (Y+Rc), s	6.0	6.0	6.0	6.0
Max Green Setting (Gmax), s	30.0	60.0	32.0	60.0
Max Q Clear Time (g_c+11), s	15.9	62.0	34.0	84.5
Green Ext Time (p_c), s	0.6	0.0	0.0	0.0

Intersection Summary

HCM 6th Ctrl Delay	279.4
HCM 6th LOS	F

Notes

Unsignalized Delay for [EBR] is excluded from calculations of the approach delay and intersection delay.

HCM 6th Signalized Intersection Summary
205: I-77 NB Ramps \& Blythewood Rd

	4	\rightarrow					4	\uparrow	p		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	4			4	「		\uparrow	「			
Traffic Volume (veh/h)	585	697	0	0	1079	130	402	,	50	0	0	0
Future Volume (veh/h)	585	697	0	0	1079	130	402	0	50	0	0	0
Initial $Q(Q b)$, veh	0	0	0	0	0	0	0	0	0			
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00			
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
Work Zone On Approach		No			No			No				
Adj Sat Flow, veh/h/n	1678	1841	0	0	1856	1826	1796	1900	1856			
Adj Flow Rate, veh/h	650	774	0	0	1199	0	447	0	56			
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90			
Percent Heavy Veh, \%	15	4	0	0	3	5	7	0	3			
Cap, veh/h	122	904	0	0	912		553	0	480			
Arrive On Green	0.49	0.49	0.00	0.00	0.49	0.00	0.31	0.00	0.31			
Sat Flow, veh/h	419	1841	0	0	1856	1547	1810	0	1572			
Grp Volume(v), veh/h	650	774	0	0	1199	0	447	0	56			
Grp Sat Flow(s),veh/h/ln	419	1841	0	0	1856	1547	1810	0	1572			
Q Serve(g_s), s	0.0	21.8	0.0	0.0	29.0	0.0	13.5	0.0	1.5			
Cycle Q Clear(g_c), s	29.0	21.8	0.0	0.0	29.0	0.0	13.5	0.0	1.5			
Prop In Lane	1.00		0.00	0.00		1.00	1.00		1.00			
Lane Grp Cap(c), veh/h	122	904	0	0	912		553	0	480			
V/C Ratio(X)	5.33	0.86	0.00	0.00	1.32		0.81	0.00	0.12			
Avail Cap(c_a), veh/h	122	904	0	0	912		889	0	773			
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
Upstream Filter(l)	1.00	1.00	0.00	0.00	1.00	0.00	1.00	0.00	1.00			
Uniform Delay (d), s/veh	29.5	13.2	0.0	0.0	15.0	0.0	18.9	0.0	14.8			
Incr Delay (d2), s/veh	1966.1	8.1	0.0	0.0	149.7	0.0	2.9	0.0	0.1			
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
\%ile BackOfQ (50%),veh/ln	68.2	9.1	0.0	0.0	47.7	0.0	5.5	0.0	0.5			
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	1995.7	21.3	0.0	0.0	164.7	0.0	21.8	0.0	14.9			
LnGrp LOS	F	C	A	A	F		C	A	B			
Approach Vol, veh/h		1424			1199			503				
Approach Delay, s/veh		922.5			164.7			21.1				
Approach LOS		F			F			C				
Timer - Assigned Phs		2				6		8				
Phs Duration ($\mathrm{G}+\mathrm{Y}+\mathrm{Rc}$), s		35.0				35.0		24.0				
Change Period ($\mathrm{Y}+\mathrm{Rc} \mathrm{c}$, s		6.0				6.0		6.0				
Max Green Setting (Gmax), s		29.0				29.0		29.0				
Max Q Clear Time (g_c+11), s		31.0				31.0		15.5				
Green Ext Time (p_c), s		0.0				0.0		2.6				
Intersection Summary												
$\begin{array}{lr}\text { HCM 6th Ctrl Delay } & 486.8 \\ \text { HCM 6th LOS } & \mathrm{F}\end{array}$												

Notes

Unsignalized Delay for [WBR] is excluded from calculations of the approach delay and intersection delay.

Major/Minor	Minor2	Major1						
Conflicting Flow All	2483	-	-	-	0	-	-	-

HCMLOS F

Minor Lane/Major Mvmt	NBT EBLn1 EBLn2	SBT	
Capacity (veh/h)	-49	-	-
HCM Lane V/C Ratio	-1.134	-	-
HCM Control Delay (s)	$-\$ 304.5$	0	-
HCM Lane LOS	-	F	A
HCM 95th \%tile Q(veh)	-	5	-

Notes

\sim : Volume exceeds capacity $\quad \$$: Delay exceeds $300 \mathrm{~s} \quad+$: Computation Not Defined \quad : All major volume in platoon

Major/Minor	Minor1		Major1			Major2			
Conflicting Flow All	922	-	-	-	0	-	-	-	0
Stage 1	552	-	-	-	-	-	-	-	-
Stage 2	370	-	-	-	-	-	-	-	-
Critical Hdwy	6.96	-	-	-	-	-	-	-	-
Critical Hdwy Stg 1	5.96	-	-	-	-	-	-	-	-
Critical Hdwy Stg 2	5.96	-	-	-	-	-	-	-	-
Follow-up Hdwy	3.58	-	-	-	-	-	-	-	-
Pot Cap-1 Maneuver	~ 258	0	0	0	-	0	0	-	0
Stage 1	~ 524	0	0	0	-	0	0	-	0
Stage 2	~ 651	0	0	0	-	0	0	-	0
Platoon blocked, \%					-			-	
Mov Cap-1 Maneuver	~ 258	0	-	-	-	-	-	-	-
Mov Cap-2 Maneuver	~ 380	0	-	-	-	-	-	-	-
Stage 1	~ 524	0	-	-	-	-	-	-	-
Stage 2	~ 651	0	-	-	-	-	-	-	-

Approach	WB	NB	SB
HCM Control Delay, s	$\$ 1688.3$	0	0

HCM LOS F

Minor Lane/Major Mvmt	NBTWBLn1WBLn2	SBT	
Capacity (veh/h)	-380	-	-
HCM Lane V/C Ratio	-4.693	-	-
HCM Control Delay (s)	$\$ 1688.3$	0	-
HCM Lane LOS	-	F	A
HCM 95th \%tile Q(veh)	-179.2	-	-

Notes

\sim : Volume exceeds capacity $\quad \$$: Delay exceeds $300 \mathrm{~s} \quad+$: Computation Not Defined \quad : All major volume in platoon

HCM 6th Signalized Intersection Summary
204: Blythewood Rd \& I-77 SB Ramps

	4			\dagger				\dagger			\dagger	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow	F	${ }^{7}$	\uparrow						\uparrow	F
Traffic Volume (veh/h)	0	1906	570	265	1608	0	0	0	0	140	0	616
Future Volume (veh/h)	0	1906	570	265	1608	0	0	0	0	140	0	616
Initial $Q(Q b)$, veh	0	0	0	,	0	0				0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00				1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00				1.00	1.00	1.00
Work Zone On Approach		No			No						No	
Adj Sat Flow, veh/h/ln	0	1841	1856	1856	1841	0				1841	1900	1544
Adj Flow Rate, veh/h	0	2118	0	294	1787	0				156	0	684
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90				0.90	0.90	0.90
Percent Heavy Veh, \%	0		3	3	4	0				4	0	24
Cap, veh/h	0	851		324	1216	0				446	0	323
Arrive On Green	0.00	0.46	0.00	0.15	0.66	0.00				0.25	0.00	0.25
Sat Flow, veh/h	0	1841	1572	1767	1841	0				1810	0	1309
Grp Volume(v), veh/h	0	2118	0	294	1787	0				156	0	684
Grp Sat Flow(s),veh/h/n	0	1841	1572	1767	1841	0				1810	0	1309
Q Serve(g_s), s	0.0	60.0	0.0	17.1	85.7	0.0				9.2	0.0	32.0
Cycle Q Clear(g_c), s	0.0	60.0	0.0	17.1	85.7	0.0				9.2	0.0	32.0
Prop In Lane	0.00		1.00	1.00		0.00				1.00		1.00
Lane Grp Cap(c), veh/h	0	851		324	1216	0				446	0	323
V/C Ratio(X)	0.00	2.49		0.91	1.47	0.00				0.35	0.00	2.12
Avail Cap(c_a), veh/h	0	851		464	1216	0				446	0	323
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00				1.00	1.00	1.00
Upstream Filter(I)	0.00	1.00	0.00	1.00	1.00	0.00				1.00	0.00	1.00
Uniform Delay (d), s/veh	0.0	34.9	0.0	43.2	22.0	0.0				40.3	0.0	48.9
Incr Delay (d2), s/veh	0.0	672.9	0.0	16.5	215.7	0.0				0.5	0.0	513.7
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0				0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/ln	0.0	184.9	0.0	10.8	105.6	0.0				4.2	0.0	56.5
Unsig. Movement Delay, s/veh												
LnGrp Delay (d),s/veh	0.0	707.8	0.0	59.7	237.7	0.0				40.7	0.0	562.6
LnGrp LOS	A	F		E	F	A				D	A	F
Approach Vol, veh/h		2118			2081						840	
Approach Delay, s/veh		707.8			212.5						465.6	
Approach LOS		F			F						F	
Timer - Assigned Phs	1	2		4		6						
Phs Duration ($G+Y+R \mathrm{c}$), s	25.7	66.0		38.0		91.7						
Change Period ($Y+\mathrm{Rc}$), s	6.0	6.0		6.0		6.0						
Max Green Setting (Gmax), s	30.0	60.0		32.0		60.0						
Max Q Clear Time (g_c+11), s	19.1	62.0		34.0		87.7						
Green Ext Time (p_c), s	0.7	0.0		0.0		0.0						
Intersection Summary												
HCM 6th Ctrl DelayHCM 6th LOS			462.9									

Notes

Unsignalized Delay for [EBR] is excluded from calculations of the approach delay and intersection delay.

HCM 6th Signalized Intersection Summary
205: I-77 NB Ramps \& Blythewood Rd

							4	4	$>$,	\downarrow	\checkmark
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	4			\uparrow	「		\uparrow	「			
Traffic Volume (veh/h)	736	1310	0	0	1310	165	563	,	365	0	0	0
Future Volume (veh/h)	736	1310	0	0	1310	165	563	0	365	0	0	0
Initial $Q(Q b)$, veh	0	0	0	0	0	0	0	0	0			
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00			
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
Work Zone On Approach		No			No			No				
Adj Sat Flow, veh/h/n	1678	1841	0	0	1856	1826	1796	1900	1856			
Adj Flow Rate, veh/h	818	1456	0	0	1456	0	626	0	406			
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90			
Percent Heavy Veh, \%	15	4	0	0	3	5	7	0	3			
Cap, veh/h	120	982	0	0	990		483	0	419			
Arrive On Green	0.53	0.53	0.00	0.00	0.53	0.00	0.27	0.00	0.27			
Sat Flow, veh/h	327	1841	0	0	1856	1547	1810	0	1572			
Grp Volume(v), veh/h	818	1456	0	0	1456	0	626	0	406			
Grp Sat Flow(s),veh/h/ln	327	1841	0	0	1856	1547	1810	0	1572			
Q Serve(g_s), s	0.0	32.0	0.0	0.0	32.0	0.0	16.0	0.0	15.3			
Cycle Q Clear(g_c), s	32.0	32.0	0.0	0.0	32.0	0.0	16.0	0.0	15.3			
Prop In Lane	1.00		0.00	0.00		1.00	1.00		1.00			
Lane Grp Cap (c), veh/h	120	982	0	0	990		483	0	419			
V/C Ratio(X)	6.82	1.48	0.00	0.00	1.47		1.30	0.00	0.97			
Avail Cap(c_a), veh/h	120	982	0	0	990		483	0	419			
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
Upstream Filter(l)	0.09	0.09	0.00	0.00	1.00	0.00	1.00	0.00	1.00			
Uniform Delay (d), s/veh	30.0	14.0	0.0	0.0	14.0	0.0	22.0	0.0	21.7			
Incr Delay (d2), s/veh	2619.1	217.9	0.0	0.0	217.6	0.0	148.5	0.0	35.6			
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
\%ile BackOfQ(50\%),veh/ln	88.9	69.2	0.0	0.0	70.2	0.0	26.0	0.0	9.2			
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	2649.1	231.9	0.0	0.0	231.6	0.0	170.5	0.0	57.4			
LnGrp LOS	F	F	A	A	F		F	A	E			
Approach Vol, veh/h		2274			1456			1032				
Approach Delay, s/veh		1101.4			231.6			126.0				
Approach LOS		F			F			F				
Timer - Assigned Phs		2				6		8				
Phs Duration ($\mathrm{G}+\mathrm{Y}+\mathrm{Rc}$), s		38.0				38.0		22.0				
Change Period ($\mathrm{Y}+\mathrm{Rc}$), s		6.0				6.0		6.0				
Max Green Setting (Gmax), s		32.0				32.0		16.0				
Max Q Clear Time (g_c+11), s		34.0				34.0		18.0				
Green Ext Time (p_c), s		0.0				0.0		0.0				
Intersection Summary												
$\begin{array}{lr}\text { HCM 6th Ctrl Delay } & 624.1 \\ \text { HCM 6th LOS }\end{array}$												

Notes

Unsignalized Delay for [WBR] is excluded from calculations of the approach delay and intersection delay.

Intersection: 101: US 21 \& Community Rd

Movement	EB	EB	NB	NB	NB	SB	SB
Directions Served	L	TR	L	T	TR	T	TR
Maximum Queue (ft)	461	285	174	249	390	212	336
Average Queue (ft)	221	73	81	72	181	74	150
95th Queue (ft)	375	208	143	172	324	143	273
Link Distance (ft)	1238			617	617	361	361
Upstream Blk Time (\%)							0
Queuing Penalty (veh)							1
Storage Bay Dist (ft)		260	250				
Storage Blk Time (\%)	5	0		0		0	
Queuing Penalty (veh)	8	0		0		0	

Intersection: 102: US 21 \& I-77 SB Ramps

Movement	EB	NB
Directions Served	L	T
Maximum Queue (ft)	137	15
Average Queue (ft)	59	1
95th Queue (ft)	112	8
Link Distance (ft)	2245	530
Upstream Blk Time (\%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (\%)		
Queuing Penalty (veh)		

Intersection: 103: US 21 \& I-77 NB Ramps

Movement	SB	SB	SB	B49	NW	NW
Directions Served	T	T	R	T	$<$	R
Maximum Queue (ft)	8	28	12	9	2367	225
Average Queue (ft)	0	2	0	0	2133	201
95th Queue (ft)	6	24	8	5	3007	315
Link Distance (ft)	575	575		200	2304	
Upstream Blk Time (\%)					83	
Queuing Penalty (veh)					0	
Storage Bay Dist (ft)			225			200
Storage Blk Time (\%)					91	1
Queuing Penalty (ven)					456	3

Intersection: 204: Blythewood Rd \& I-77 SB Ramps

Movement	EB	EB	WB	WB	SB	SB
Directions Served	T	R	L	T	LT	R
Maximum Queue (ft)	680	696	337	576	580	298
Average Queue (ft)	616	582	183	201	200	55
95th Queue (ft)	809	907	303	400	500	242
Link Distance (ft)	610	610		840	1886	
Upstream Blk Time (\%)	64	46		0		
Queuing Penalty (veh)	464	336		0		
Storage Bay Dist (ft)			320			375
Storage Blk Time (\%)			1	0	7	0
Queuing Penalty (veh)			15	0	9	0

Intersection: 205: I-77 NB Ramps \& Blythewood Rd

Movement	EB	EB	WB	WB	NB	NB
Directions Served	L	T	T	R	LT	R
Maximum Queue (ft)	305	858	483	345	390	1640
Average Queue (ft)	205	778	377	96	314	1454
95th Queue (ft)	401	1085	621	351	541	2096
Link Distance (ft)		840	469			1586
Upstream Blk Time (\%)		24	2			80
Queuing Penalty (veh)		225	32			0
Storage Bay Dist (ft)	280			320	365	
Storage Blk Time (\%)	8	61	14	0	5	83
Queuing Penalty (veh)	69	69	25	1	15	314

Intersection: 206: Creech Rd/McNulty St \& Blythewood Rd

Movement	EB	WB	NB	NB	SB
Directions Served	LTR	LTR	L	TR	LTR
Maximum Queue (ft)	584	454	506	422	259
Average Queue (ft)	551	390	404	279	232
95th Queue (ft)	607	547	637	628	249
Link Distance (ft)	469	402	495	495	228
Upstream Blk Time (\%)	85	31	50	44	99
Queuing Penalty (veh)	982	0	0	0	0
Storage Bay Dist (ft)					

Intersection: 101: US 21 \& Community Rd

Movement	EB	EB	NB	NB	NB	SB	SB	B40
Directions Served	L	TR	L	T	TR	T	TR	T
Maximum Queue (ft)	1299	285	222	189	257	339	415	44
Average Queue (ft)	1189	234	111	63	145	158	254	2
95th Queue (ft)	1577	380	192	139	236	278	388	28
Link Distance (ft)	1238			617	617	361	361	530
Upstream Blk Time (\%)	57					0	2	
Queuing Penalty (veh)	0					1	9	
Storage Bay Dist (ft)		260	250					
Storage Blk Time (\%)	54	0	0			3		
Queuing Penalty (veh)	197	2	0			0		

Intersection: 102: US 21 \& I-77 SB Ramps

Movement	EB	NB
Directions Served	L	T
Maximum Queue (ft)	129	12
Average Queue (ft)	54	0
95th Queue (ft)	120	6
Link Distance (ft)	2245	530
Upstream Blk Time (\%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (\%)		
Queuing Penalty (veh)		

Intersection: 103: US 21 \& I-77 NB Ramps

Movement	SB	SB	SB	B49	B55	NW	NW
Directions Served	T	T	R	T	T	$<$	R
Maximum Queue (ft)	36	54	8	3	6	2362	225
Average Queue (ft)	2	3	0	0	0	2275	204
95th Queue (ft)	20	25	6	2	4	2679	312
Link Distance (ft)	575	575		200	319	2304	
Upstream Blk Time (\%)						91	
Queuing Penalty (veh)						0	
Storage Bay Dist (ft)			225			92	200
Storage Blk Time (\%)						646	6

Intersection: 204: Blythewood Rd \& I-77 SB Ramps

Movement	EB	EB	WB	WB	SB	SB
Directions Served	T	R	L	T	LT	R
Maximum Queue (ft)	678	694	344	581	678	398
Average Queue (ft)	619	556	146	246	292	112
95th Queue (ft)	797	953	307	470	617	373
Link Distance (ft)	610	610		840	1886	
Upstream Blk Time (\%)	71	48				
Queuing Penalty (veh)	432	290				
Storage Bay Dist (ft)			320			375
Storage Blk Time (\%)			0	4	14	0
Queuing Penalty (veh)			0	13	18	0

Intersection: 205: I-77 NB Ramps \& Blythewood Rd

Movement	EB	EB	WB	WB	NB	NB
Directions Served	L	T	T	R	LT	R
Maximum Queue (ft)	305	858	486	345	390	1638
Average Queue (ft)	230	787	359	137	366	1536
95th Queue (ft)	411	1044	601	415	501	1954
Link Distance (ft)		840	469			1586
Upstream Blk Time (\%)		22	2			85
Queuing Penalty (veh)		256	27			0
Storage Bay Dist (ft)	280			320	365	
Storage Blk Time (\%)	2	61	14	0	1	80
Queuing Penalty (veh)	21	99	24	1	4	446

Intersection: 206: Creech Rd/McNulty St \& Blythewood Rd

Movement	EB	WB	NB	NB	SB
Directions Served	LTR	LTR	L	TR	LTR
Maximum Queue (ft)	568	460	516	488	240
Average Queue (ft)	523	387	368	209	199
95th Queue (ft)	712	547	618	561	281
Link Distance (ft)	469	402	495	495	228
Upstream Blk Time (\%)	68	40	43	22	74
Queuing Penalty (veh)	1138	0	0	0	0
Storage Bay Dist (ft)					

Intersection: 101: US 21 \& Community Rd

Movement	EB	EB	NB	NB	NB	SB	SB	B40	B40
Directions Served	L	TR	L	T	TR	T	TR	T	T
Maximum Queue (ft)	1294	285	275	635	576	99	479	568	575
Average Queue (ft)	1268	151	274	606	69	17	442	269	442
95th Queue (ft)	1289	356	277	750	250	60	518	662	739
Link Distance (ft)	1238			617	617	361	361	530	530
Upstream Blk Time (\%)	79			55	0		62	3	26
Queuing Penalty (veh)	0			193	0		643	19	182
Storage Bay Dist (ft)		260	250						
Storage Blk Time (\%)	68	0	88	2					

Intersection: 102: US 21 \& I-77 SB Ramps

Movement	EB	SB	SB	B45	B45
Directions Served	L	T	T	T	T
Maximum Queue (ft)	102	266	305	317	332
Average Queue (ft)	35	126	173	93	133
95th Queue (ft)	83	307	386	310	369
Link Distance (ft)	2245	194	194	328	328
Upstream Blk Time (\%)		10	46	2	8
Queuing Penalty (veh)		105	481	16	87
Storage Bay Dist (ft)					
Storage Blk Time (\%)					

Intersection: 103: US 21 \& I-77 NB Ramps

Movement	NB	NB	SB	SB	SB	NW	NW
Directions Served	T	T	T	T	R	$<$	R
Maximum Queue (ft)	48	48	54	71	28	2367	225
Average Queue (ft)	3	3	9	5	1	2338	163
95th Queue (ft)	22	20	36	31	16	2362	329
Link Distance (ft)	148	148	575	575		2304	
Upstream Blk Time (\%)						98	
Queuing Penalty (veh)						0	
Storage Bay Dist (ft)					225		200
Storage Blk Time (\%)						97	0
Queuing Penalty (veh)						218	6

Intersection: 204: Blythewood Rd \& I-77 SB Ramps

Movement	EB	EB	WB	WB	SB	SB
Directions Served	T	R	L	T	LT	R
Maximum Queue (ft)	688	683	345	860	1949	400
Average Queue (ft)	605	534	279	829	1845	400
95th Queue (ft)	810	965	482	958	2281	402
Link Distance (ft)	610	610		840	1886	
Upstream Blk Time (\%)	64	51		18	85	
Queuing Penalty (veh)	535	428		260	0	
Storage Bay Dist (ft)			320			375
Storage Blk Time (\%)			0	63	10	87
Queuing Penalty (veh)			1	145	68	48

Intersection: 205: I-77 NB Ramps \& Blythewood Rd

Movement	EB	EB	WB	WB	NB	NB
Directions Served	L	T	T	R	LT	R
Maximum Queue (ft)	305	856	491	345	390	590
Average Queue (ft)	302	802	481	246	242	83
95th Queue (ft)	327	1033	503	502	420	399
Link Distance (ft)		840	469			1586
Upstream Blk Time (\%)		17	49			
Queuing Penalty (veh)		224	594			
Storage Bay Dist (ft)	280			320	365	
Storage Blk Time (\%)	79	8	80	0	10	0
Queuing Penalty (veh)	552	48	103	2	5	0

Intersection: 206: Creech Rd/McNulty St \& Blythewood Rd

Movement	EB	WB	NB	NB	SB
Directions Served	LTR	LTR	L	TR	LTR
Maximum Queue (ft)	211	460	466	313	261
Average Queue (ft)	24	410	253	62	209
95th Queue (ft)	107	525	524	295	303
Link Distance (ft)	469	402	495	495	228
Upstream Blk Time (\%)		84	10	7	82
Queuing Penalty (veh)		0	0	0	0
Storage Bay Dist (ft)					

Intersection: 101: US 21 \& Community Rd

Movement	EB	EB	NB	NB	NB	SB	SB	B40	B40	B40
Directions Served	L	TR	L	T	TR	T	TR	T	T	
Maximum Queue (ft)	1301	285	275	636	519	282	479	560	574	234
Average Queue (ft)	1267	164	274	599	106	75	438	213	384	29
95th Queue (ft)	1290	373	280	780	330	205	523	595	713	192
Link Distance (ft)	1238			617	617	361	361	530	530	530
Upstream Blk Time (\%)	79			57	0	0	57	2	15	
Queuing Penalty (veh)	0			240	0	1	581	13	100	
Storage Bay Dist (ft)		260	250							
Storage Blk Time (\%)	68	0	88	1		0				
Queuing Penalty (veh)	367	3	159	6		0				

Intersection: 102: US 21 \& I-77 SB Ramps

Movement	EB	SB	SB	B45	B45
Directions Served	L	T	T	T	T
Maximum Queue (ft)	111	240	284	204	233
Average Queue (ft)	38	61	95	33	44
95th Queue (ft)	89	224	287	181	212
Link Distance (ft)	2245	194	194	328	328
Upstream Blk Time (\%)		6	17	1	3
Queuing Penalty (veh)		61	165	5	30
Storage Bay Dist (ft)					
Storage Blk Time (\%)					

Intersection: 103: US 21 \& I-77 NB Ramps

Movement	NB	NB	SB	SB	SB	NW	NW
Directions Served	T	T	T	T	R	$<$	R
Maximum Queue (ft)	50	65	55	92	22	2365	225
Average Queue (ft)	2	7	7	5	1	2338	187
95th Queue (ft)	19	37	33	37	11	2360	326
Link Distance (ft)	148	148	575	575		2304	
Upstream Blk Time (\%)						98	
Queuing Penalty (veh)						0	
Storage Bay Dist (ft)					225		200
Storage Blk Time (\%)						95	1
Queuing Penalty (veh)							10

Intersection: 204: Blythewood Rd \& I-77 SB Ramps

Movement	EB	EB	WB	WB	SB	SB
Directions Served	T	R	L	T	LT	R
Maximum Queue (ft)	693	697	345	857	1949	400
Average Queue (ft)	655	644	238	820	1807	399
95th Queue (ft)	701	821	455	931	2395	418
Link Distance (ft)	610	610		840	1886	
Upstream Blk Time (\%)	80	67		7	80	
Queuing Penalty (veh)	956	801		127	0	
Storage Bay Dist (ft)			320			375
Storage Blk Time (\%)			0	39	6	75
Queuing Penalty (veh)			0	104	35	105

Intersection: 205: I-77 NB Ramps \& Blythewood Rd

Movement	EB	EB	WB	WB	NB	NB
Directions Served	L	T	T	R	LT	R
Maximum Queue (ft)	305	858	489	345	390	1647
Average Queue (ft)	304	816	480	271	387	1407
95th Queue (ft)	308	972	491	504	412	2104
Link Distance (ft)		840	469			1586
Upstream Blk Time (\%)		22	28			68
Queuing Penalty (veh)		449	412			0
Storage Bay Dist (ft)	280			320	365	
Storage Blk Time (\%)	82	7	66	0	71	1
Queuing Penalty (veh)	1077	52	109	4	259	7

Intersection: 206: Creech Rd/McNulty St \& Blythewood Rd

Movement	EB	WB	NB	NB	SB
Directions Served	LTR	LTR	L	TR	LTR
Maximum Queue (ft)	401	460	510	426	256
Average Queue (ft)	104	429	336	152	236
95th Queue (ft)	292	459	594	484	262
Link Distance (ft)	469	402	495	495	228
Upstream Blk Time (\%)	1	77	29	22	97
Queuing Penalty (veh)	10	0	0	0	0
Storage Bay Dist (ft)					

Exhibit B to Project Connect Revised Alternatives Analysis (Interchange Screening Memo)

Applicant:
South Carolina Department of Commerce
Richland County

I-77 at Exit 26 Interchange Concept Screening

The following document summarizes the screening process of several interchange layouts for the proposed new interchange of I-77 at Exit 26. In addition to interchange layouts, several intersection options were evaluated for the intersection of Community Road with the proposed new roadway (Connector Road) due to its proximity to the ramp terminal intersections of the new interchange.

Interchange Concept Overview

The following interchange layouts were considered for the proposed new interchange at Exit 26:

- Dogbone Interchange
- Incorporates roundabouts at the ramp terminal intersections.

- Dual Ramp Diamond
- Incorporates signalized ramp terminal intersections with a free-flow loop ramp movement for I-77 Northbound to westbound traffic. Includes a second ramp to I-77 Southbound from southbound Community Road.

- Diverging Diamond (DDI)
- Incorporates signalized ramp terminal intersections and allows left turns to flow to the I77 on-ramps without conflicting traffic.

- Single Point Urban Interchange (SPUI)
- Incorporates a single signalized ramp terminal intersection.

- Offset Interchange
- The offset interchange incorporates all ramps on the east side of I-77 except the I-77 Southbound on-ramp to improve intersection spacing with Community Road.

Interchange Concept Evaluation

These interchange layouts were evaluated based on ability to accommodate the future traffic demand, required lane calls, and resulting spacing to the adjacent intersection with Community Road.

- Dogbone
- Interchange layout cannot accommodate future traffic demand.
- Dual Ramp Diamond
- Interchange layout accommodates future traffic demand with reasonable lane calls.
- Maintains acceptable spacing with the Community Road intersection.
- DDI
- Interchange layout accommodates future traffic demand with reasonable lane calls.
- Required layout for crossover intersections creates a spacing issue with adjacent intersection at Community Road.
- SPUI
- Requires triple lefts for the northbound to westbound movement to achieve acceptable operations.
- Triple left turn configuration is not desirable per SCDOT.
- Offset Interchange
- Interchange layout accommodates future traffic demand with reasonable lane calls.
- Single ramp terminal intersection on east side of I-77 improves spacing to Community Road intersection.

Interchange Concept Screening Results

The following is a ranking of the evaluated interchange concepts with interchanges ranked from worst to best based on the screening criteria listed in the previous section:

- Dogbone - Worst
- Does not accommodate design year traffic demand.
- Eliminated from future consideration.
- SPUI - Fair
- Requires undesirable lane configuration.
- Eliminated from future consideration.
- DDI - Better
- Layout requires undesirable spacing to adjacent intersection.
- Eliminated from future consideration.
- Dual Ramp Diamond - Best
- Provides good operations and spacing to adjacent intersection.
- Reasonable build alternative.
- Offset Interchange - Best
- Provides good operations and spacing to adjacent intersection.
- Reasonable build alternative.

Intersection Concept Overview

The following intersection layouts were considered for the intersection of Community Road and Connector Road:

- Jughandle

- Realigned Signal (outside)

- Signal + Southbound Ramp

Intersection Concept Evaluation

These intersection layouts were evaluated based on ability to accommodate the future traffic demand, required lane calls, and ability to prevent queue spillback into the proposed new interchange.

- Roundabout
- Intersection concept cannot accommodate future traffic demand.
- Queues from the intersection impact interchange operations.
- Signal
- Intersection operates with high delay.
- Queues are managed through the use of dual free-flow westbound right turn lanes and donot impact interchange operations.
- Offset Signal (Inside)
- Signal is offset to the north and west of the base location which improves intersection spacing to the interchange.
- New Connector Road is the primary westbound to northbound and southbound to eastbound movements and Community Road passes under Connector Road and ties into the intersection on the east side.
- Heavy westbound right-turn and southbound left-turn movementsconverted to through movements improve operations.
- Intersection operates well and queues do not impact interchange operations.
- Realigned Signal (Outside)
- Signal is realigned to the west of the base location which improves intersection spacing tothe interchange.
- New Connector Road is the primary westbound to northbound and southbound to eastbound movements and Community Road ties into the intersection on the south side.
- Heavy westbound right-turn and southbound left-turn movementsconverted to through movements improve operations.
- Intersection operates well and queues do not impact interchange operations.
- Jughandle
- Community Road passes under the new Connector Road and all traffic moving to/from the Connector Road utilizes jughandles in northeast and southeast quadrants which operate under free-flow conditions.
- Northern jughandle intersection on Community Road cannot accommodatethe significant eastbound left-turn and northbound left-turn traffic demand.
- Intersection queues back up through the jughandle ramp and impacts interchange operations.
- Signal + Southbound Ramp
- Traditional signalized intersection.
- Incorporates a secondary ramp which allows southbound Community Road traffic to access the I-77 Southbound on-ramp while bypassing the Connector Road at Community Road intersection.
- The additional ramp significantly reduces southbound left-turn traffic demand and improves intersection operations.
- Intersection operates well and queues do not impact interchange operations.

Intersection Concept Screening Results

The following is a ranking of the four remaining intersection concepts with intersections ranked from worst to best based on operations and required lane calls:

- Roundabout - Worst
- Does not accommodate design year traffic demand.
- Eliminated from future consideration.
- Jughandle - Worst
- Does not accommodate design year traffic demand.
- Eliminated from future consideration.
- Signal - Fair
- Operates with high delay.
- Requires triple turn lanes for the southbound left-turn movement and dual free-flow right turn lanes for the westbound right-turn movement.
- Eliminated from future consideration.
- Signal + Southbound Ramp - Better
- Operates acceptably with reasonable lane calls.
- Reasonable build alternative.
- Realigned Signal (outside) - Better
- Operates acceptably with reasonable lane calls.
- Reasonable build alternative.
- Offset Signal (inside) - Better
- Operates acceptably with reasonable lane calls.
- Reasonable build alternative.

Summary of Screening Results

The screening process results in two viable interchange layouts for the proposed new interchange with I-77 and three viable intersection layouts for the intersection of Connector Road and Community Road which are summarized as follows:

- Viable Interchange Concepts:
- Offset Interchange
- Dual Ramp Diamond
- Viable Intersection Concepts:
- Offset Signal (inside)
- Realigned Signal (outside)
- Signal + Southbound Ramp

Additional Considerations

The initial screening results yielded multiple reasonable build alternatives. In order to further reduce the number of alternatives, additional considerations were evaluated. From a design and traffic operations standpoint, the introduction of an additional ramp in the Dual Ramp Diamond concept creates an undesirable traffic movement along Community Road which requires a complex signing scheme. In addition, having multiple ramps to serve the same traffic movement does not meet normal driver expectations. Therefore, the "Dual Ramp Diamond" concept and the "Signal + Southbound Ramp" intersection is not preferred.

Conclusion

Based on the above analysis and additional considerations, the Offset Interchange depicted in the figure below is the favorable interchange concept.

Exhibit C to Project Connect
 Revised Alternatives Analysis
 (Roadway Connection Avoidance and Minimization)

Applicant:
South Carolina Department of Commerce
Richland County

I-77 at Exit 26 Interchange Connector Road Impact Comparison (East of Interchange)

As presented in the interchange concept screening memo, several interchange layouts were evaluated for the proposed new interchange of I-77 at Exit 26. Based on the traffic screening evaluation and additional design and construction considerations, the Offset Interchange was selected as the favorable interchange concept. The following document describes the wetland and stream impacts associated with the Connector Road east of the new interchange of I-77 at Exit 26 for the favorable Offset Interchange concept compared to the original permit application.

Changes in Impacts

Impacts to jurisdictional wetlands and streams due to the proposed Connector Road and realignment of US 21 and Farrow Road east of the proposed new interchange with I-77 were compared to the impacts presented in the original permit application. The changes in impacts are summarized below, along with a discussion of additional measures to further avoid and minimize impacts to jurisdictional resources.

Avoidance and Minimization Measures

The Connector Road alignment from I-77 eastward toward US 21 was re-evaluated to determine if further avoidance and minimization measures could be implemented. The attached graphic shows the Limits of Disturbance (LOD) for the Connector Road alignment, US 21 alignment, and Farrow Road alignment as included in the original permit application compared to the revised LOD associated with the Offset Interchange concept.

The original alignment went through large sections of wetland 66 just east of the proposed new interchange. The Offset Interchange alignment shifts proposed Connector Road to the south by introducing a horizontal curve just east of the new interchange. This curve moves the roadway to a narrower portion of Wetland 66, south of the original alignment, which results in a decrease of impacts to Wetland 66 but introduces a new impact to Tributary 59.

Impacts to Wetland 76, Wetland 78, and Tributary 57 were also reduced with the Offset Interchange alignment due to the shift to the south but a small impact was introduced to Tributary 58. Impacts to Wetland 75 were completely avoided with the Offset Interchange alignment. Additional decreases in wetland impacts occurred at Wetland 71 and Wetland 108 with the shift in the US 21 and Farrow Road alignments. An increase in impacts to Wetland 104 is a result of the US 21 and Farrow Road alignments shifting to the north to reduce property impacts. Table 1 below summarizes the impacts to each wetland and tributary, showing avoidance and minimization and overall impact changes associated with the favorable Offset Interchange concept compared to the original submittal.

Table 1: Comparison of Impacts for Original Limits of Disturbance (LOD) to Offset Interchange LOD

	Impacts East of Proposed New Interchange					
	Original LOD:			Offset Interchange LOD:		
	Wetland (SF):	Acres:	Ptream (LF):	Wetland (SF):	Acres:	Stream (LF):
	$44,998.73$	1.03		$9,471.17$	0.22	
Wetland \#66	$46,811.06$	1.07		$8,347.04$	0.19	
Wetland \#66	$7,935.77$	0.18		$1,757.39$	0.04	
Wetland \#78	$6,497.26$	0.15		$2,585.77$	0.06	
Wetland \#78	$6,183.30$	0.14		76.26	0.00	
Wetland \#76	$2,988.85$	0.07		$2,211.92$	0.05	
Wetland \#76	$14,787.19$	0.34		792.99	0.02	
Wetland \#75	$39,671.52$	0.91		$27,580.01$	0.63	
Wetland \#71	$15,169.18$	0.35		666.36	0.02	
Wetland \#104	$3,771.20$	0.09		$41,304.13$	0.95	
Wetland \#104	$15,247.95$	0.35		$9,143.08$	0.21	
Wetland \#108	$204,061.99$	4.68		$103,936.11$	2.39	
Wetland Impact Subtotal:			249.21			
			206.55		136.42	
Trib \#57			0.00			223.61
Trib \#58			455.76			214.82
Trib \#59						574.85
Trib Impact Subtotal:						
Total of Impacts:	$204,061.99$	4.68	455.76	$103,936.11$	2.39	574.85
Total Change in Impacts as compared to the Original Alignment:						

Summary of Results

Overall, the shifted Connector Road, US 21, and Farrow Road alignments associated with the favorable Offset Interchange concept result in a decrease of wetland impacts (approximately 2.3 acres) and an increase in stream impacts (approximately 119 linear feet) as compared to the alignments in the original permit application. It should be noted that the shifted Connector Road alignment could be compatible with other interchange concepts.

Exhibit D to
 Project Connect Revised Alternatives Analysis
 (AOI - Parcels Greater than 1,000 acres)

Applicant:
South Carolina Department of Commerce
Richland County

	Owner Name	Parcel Number	Calculated Acres	County	Address	City	State	Zip Code	Zoning Code	Zoning Type	Land Use
1	TWIN CREEKS TIMBER LLC	155-00-00-005	1028.90	Abbeville	ISLAND FORD RD	CALHOUN FALLS	SC	29628			AGRICULTURAL (NEC)
2	TWIN CREEKS TIMBER LLC	106-00-00-025	1039.47	Abbeville	CYPRESS CHURCH RD	ABBEVILLE	SC	29620			AGRICULTURAL (NEC)
3	WRIGHT, JAMES W	103-00-00-022	1237.75	Abbeville	WILL C Johnson rd	CALHOUN FALLS	sc	29628			RESIDENTIAL (NEC)
4	PAN AFRICAN ORTHODOX CHRISTIAN, \& CHURCH	103-00-00-008	1050.48	Abbeville	beulah land farms dr	CALHOUN FALLS	sc	29628			agricultural (nec)
5	TWIN CREEKS TIMBER LLC	155-00-00-005	1028.90	Abbeville	ISLAND FORD RD	CALHoun falls	sc	29628			agricultural (nec)
6	PAN AFRICAN ORTHODOX CHRISTIAN, \& CHURCH	103-00-00-008	1050.48	Abbeville	beulah land farms dr	calhoun falls	SC	29628			agricultural (nec)
7	COX LIMITED PARTNERSHIP	115-00-00-001	1115.36	Abbeville	mccalla park rd	IVA	sc	29655			agricultural (nec)
8	twin Creeks timber llc	106-00-00-025	1039.47	Abbeville	CYPRESS CHURCH RD	Abbeville	sc	29620			agricultural (nec)
9	WRIGHt, JAMES W	103-00-00-022	1237.75	Abbeville	WILL C Johnson rd	CALHOUN FALLS	sc	29628			Residential (nec)
10	cox limited partnership	115-00-00-001	1115.36	Abbeville	mccalla park rd	IVA	sc	29655			agricultural (nec)
11	COWDEN FAMILY PLANTATION LLC	061-00-01-002	1191.46	Aiken		JACKSON	sc	29831			agricultural (NEC)
12	fox Nation llc	206-00-04-004	1081.79	Aiken	743 CEDAR BRANCH RD	WINDSOR	sc	29856			Storage
13	GARVIN OIL REAL ESTATE LLC	235-00-14-005	1488.79	Aiken	303 baRney W GArvin rd	WAGENER	sc	29164			mULTIPLE USES
14	DIXIE CLAY CO	037-19-01-001	1199.41	Aiken	DIXIE CLAY RD	BEECH ISLAND	SC	29842			COMMERCIAL (NEC)
15	STEWART LAND \& CATTLE LLC	018-00-02-002	1233.88	Aiken	4390/4396 STEWART FARM RD	JACKSON	sc	29831			FARMS
16	Coastal lumber co	059-00-01-007	1359.94	Aiken	LANDING RD	JACKSon	sc	29831			AGricultural (nec)
17	THURMOND, JAMES S \& THURMOND, HEATHER H	165-00-01-003	1227.38	Aiken	KEDRON CH. RD \& KEYS POND	RIDGE SPRING	sc	29129			agricultural (nec)
18	LYDIA H DANE DANE FAMILT LIMITED PARTNERSHIP, \& ROGER DANE DANE FAMILY LIMITED PARTNERSHIP	129-00-10-037	1401.29	Aiken	437 OLD FOUR NOTCH RD	RIDGE SPRING	SC	29129			AGricultural (NEC)
19	HITCHCOCK FOUNDATION	105-13-01-001	1310.71	Aiken	1770 dibble rd	AIKEN	sc	29801			TAX EXEMPT
20	NAHH LLC	022-17-01-001	1084.69	Aiken	1677 ASCAUGA LAKE RD	NORTH AUGUSTA	sc	29841			AGricultural (nec)
21	MOODY SOUTH CAROLINA LIMITED PARTNERSHIP	295-00-01-001	1131.32	Aiken	120 LAKE AMELAA RD	SALLEY	SC	29137			AGRICULTURAL (NEC)
22	COWDEN FAMILY PLANTATION LLC	079-00-01-001	4430.55	Aiken	856 BROWN RD	JACKSON	sc	29831			FARMS
23	COASTAL LUMBER COMPANY	028-00-01-001	1602.15	Aiken	GUM SWAMP ROAD	JACKSON	sc	29831			AGRICULTURAL (NEC)
24	WALTHER INVESTMENT LLC	240-00-02-003	3692.47	Aiken	1537 OAK RIDGE CLUB RD	WINDSOR	SC	29856			RES HALL/DORM
25	ATOMIC Energy Commission	315-00-01-002	72470.48	Aiken		JACKSON	sc	29831			pUblic (NEC)
26	blue maple group llc	174-00-01-001	2634.11	Aiken	515 HITCHCOCK RD	AIken	sc	29803			agricultural (nec)
27	WOODY HOLDINGS LLC	207-00-01-003	1854.32	Aiken	231 OAK RIDGE CLUB RD	WINDSOR	sc	29856			misc building
28	LAUGHLIN, MICHAEL L	186-00-01-005	1787.01	Aiken	1421 COOKS BRIDGE RD	AIkEN	sc	29805			MULTIPLE USES
29	SIMKINS, LEROY H \& SIMKINS, SARAH T	018-00-01-001	2685.36	Aiken	860 GUM SWAMP RD	JACKSON	sc	29831			FARMS
30	CITY OF AIKEN	100-00-03-001	2496.16	Aiken	MASON BRANCH RD	AIKEN	sc	29805			AGRICULTURAL (NEC)
31	national audubon society inc	058-00-01-008	2575.65	Aiken	4337 SILVER BLUFF RD	Jackson	sc	29831			TAX EXEMPT
32	WESTERVELT LAND \& TIM CO LLC, \& TAX DEPARTMENT	110-00-00-001	1071.20	Allendale		falrfax	sc	29827			FARMS
33	MILBURY PLANTATION LLC	040-00-00-001	1382.18	Allendale	5790 RIVER RD	allendale	sc	29810			FARMS
34	CREEK PLANTATION LlC	002-00-00-001	1137.40	Allendale		MARTIN	sc	29836			FARMS
35	ivanhoe, plantation	097-00-00-005	1299.91	Allendale	HWY 3	FAIRFAX	sc	29827			FARMS
36	CLARENDON FARMS inc	068-00-00-001	1086.74	Allendale	1007 MILLER CREEK RD	allendale	sc	29810			FARMS
37	WARLAND \& LURAY LP	114-00-00-001	1056.04	Allendale		FAIRFAX	sc	29827			FARMS
38	CREEK PLANTATION LlC	006-00-00-010	2539.60	Allendale	1616 MILLETT RD	MARTIN	sc	29836			FARMS
39	WESTERVELT LAND \& TIM CO LLC, \& TAX DEPARTMENT	093-00-00-005	2310.78	Allendale		Falrfax	sc	29827			FARMS
40	GRoton land co inc	080-00-00-002	12822.62	Allendale	HWY 3 \& S-3-49	allendale	sc	29810			FARMS
41	Groton land co inc	080-00-00-002	1532.45	Allendale	HWY 3 \& S-3-49	fairfax	sc	29827			FARMS
42	Groton land coinc	080-00-00-002	2479.09	Allendale	HWY 3 \& S-3-49	fairfax	sc	29827			FARMS
43	clarendon farms inc	068-00-00-001	3396.39	Allendale	1007 MILLER CREEK RD	allendale	sc	29810			FARMS
44	WESTERVELT LAND \& TIM Co Llc, \& TAX DEPARTMENT	093-00-00-005	2554.74	Allendale		fairfax	sc	29827			FARMS
45	WESTERVELT LAND \& TIM CO LLC, \& TAX DEPARTMENT	093-00-00-005	1991.90	Allendale		FAIRFAX	sc	29827			FARMS
46	MILBURY PLANTATION LLC	041-00-00-001	6171.42	Allendale	HWY 3	allendale	sc	29810			FARMS
47	BREEN, VIRGINIA L H \& HARPER, A	060-00-00-002	2212.02	Allendale		allendale	sc	29810			FARMS
48	MORRIS FAMILY LTD PARTNERSHIP	021-00-00-003	4295.59	Allendale	HWY 125	MARTIN	sc	29836			FARMS
49	MILBURY PLANTATION LLC	043-00-00-006	1524.02	Allendale		allendale	sc	29810			FARMS
		132-00-00-018; 132-00-00-002; 132-00-00-033; 132-00-00-005; 132-00-00-006; 133-00-00-046;									
50	ULMER SITE	132-00-00-034; 132-00-00-012; 132-00-00-016; 132-00-00-015; 132-00-00-015; 132-00-00-003; 131-02-07-007	1091	Allendale	POND TOWN ROAD	ULMER	sc	29849	RUD		
51	CLEMSON AGRICULTURAL COLLEGE	089-00-04-001	1237.08	Anderson		PENDLETON	SC	29670	R-A	AG	VACANT LAND (NEC)
52	Clemson agricultural college	023-00-01-002	2308.25	Anderson	817 WOODBURN RD	Pendleton	sc	29670			VACANT LAND (NEC)
	CLEMSON AGRICULTURAL COLLEGE	023-00-01-002	2048.85	Anderson	817 WOODBURN RD	ANDERSON	SC	29625	R-A	AG	VACANT LAND (NEC)
	ANDERSON LAKE	1700007005; 1950001003; 1950010009	1259	Anderson	HAMPTON ROAD	WILLIAMSTON	SC	29697			

55	SCOTT WOOdLAND LLC
56	WEYERHAEUSER CO
57	Catchmark sc timberland llc
58	CLEMSON AGRICULTURAL COLLEGE OF S C
59	pear tree llc
60	VARN, EUGENE M
61	WEYERHAEUSER COMPANY
62	barnwell land company
63	BARNWELL LAND COMPANY
64	SAVANNAH RIVER PLANT DEPARTMENT OF ENERGY
65	SC ADVANCED TECHNOLOGY PARK
66	NEMOURS PLANTATION WILDLIFE FOUNDATION
67	CLARENDON FARMS LLC
68	LAUREL SPRING LLC
69	NEMOURS PLANTATION WILDLIFE FOUNDATION
70	PALMETTO BLUFF UPLANDS \& LLC
71	ACKERMAN CHISOLM LLC
72	MORRISON, MILLS LANE \& MORRISON, M LANE
73	ACKERMAN CHISOLM LLC
74	CAMPBELL, WILLIAM ARTHUR \& CAMPBELL, WILLIAM ARTHUR
75	MORRISON, MILLS L
76	TWICKENHAM PLANTATION PROPCO LLC
77	WACHOVIA BANK NA (TE)
78	NEMOURS PLANTATION WILDLIFE FOUNDATION
79	CAMPBELL, WILLIAM ARTHUR \& CAMPBELL, WILLIAM ARTHUR
80	CLARENDON FARMS LlC
81	PALMETTO BLUFF UPLANDS \& LLC
82	NEMOURS PLANTATION WILDLIFE FOUNDATION
83	WACHOVIA BANK NA (TE)
84	TWICKENHAM PLANTATION PROPCO LLC
85	LAUREL SPRING LLC
86	US MARINE CORP
87	US MARINE CORP
88	LOOMIS VIRGINIA DAVIS LIFE-ESTATE BIRCHWOOD ACQUISITION LLC
89	SOUTH CAROLINA DEPARTMENT OF NATURAL RESOURCES REMBERT C DEN
90	CASTLE HILL PLANTATION LLC
91	US MARINE CORPS
92	PALMETTO BLUFF UPLANDS \& LLC
93	US MARINE CORPS
94	LOOMIS VIRGINIA DAVIS LIFE-ESTATE BIRCHWOOD ACQUIIITION LLC
95	BRAYS ISLAND PLANT COLONY INC
96	PALMETTO BLUFF UPLANDS \& LLC
97	SOUTH CAROLINA DEPARTMENT OF NATURAL RESOURCES REMBER CDEN
98	Clarendon farms inc
99	CASTLE HILL PLANTATION LLC
100	CLARENDON FARMS INC
101	Pb MANAGED FOREST LLC
102	WALCAM LAND GROUP LLC
103	BRAYS ISLAND PLANT COLONY INC
104	MEPKIN, ABBEY
105	TIMBERLANDS III LLC
106	NATIONAL AUDUBON SOCIETY INC
107	TIMBERLANDS III LLC
108	OAKLAND Club
109	OAKLAND CLUB GLEN CAMP A
110	TRACT 1 TIMBER LLC
111	UNITED STATES OF AMERICA
112	US GOVERNMENT
113	MEPKIN, ABBEY

114	WEYERHAEUSER NR COMPANY	100-00-00-048	1166.55	Berkeley		PINOPOLIS	Sc	29469	Flex1	AG	AGRICULTURAL (NEC)
115	TIMBERLANDS III LLC	141-00-01-005	1255.76	Berkeley	1226 COOPER STORE RD	MONCKS CORNER	SC	29461	Flex1	AG	AGRICULTURAL (NEC)
116	oakland club	015-00-01-050	1082.44	Berkeley	1184 CoLonel maham DR	PINEVILLE	SC	29468	Flex1	AG	AGricultural (Nec)
117	OAKLAND Club alabama	013-00-01-006	1029.33	Berkeley		PINEVILLE	SC	29468	Flex1	AG	agricultural (Nec)
118	Weyerhaeuser nr company	100-00-00-048	1166.55	Berkeley		PINOPOLIS	SC	29469	Flex1	AG	agricultural (nec)
119	timberlands ill llc	100-00-00-019	1268.37	Berkeley	sc		SC	29469			
120	oakland club	013-00-03-038	1319.69	Berkeley		PINEVILLE	Sc	29468	Flex1	AG	AGRICULTURAL (NEC)
121	timberlands ili lic	081-00-00-034	1409.96	Berkeley	100 HAGAN HUNT CLUB RD	PINOPOLIS	Sc	29469	Flex1	AG	SFR
122	MUDVILLE INVESTMENTS LLC	098-00-00-017	1423.76	Berkeley		cross	Sc	29436	Flex1	AG	VACANT LAND (nec)
123	national audubon society inc	115-00-00-010	1115.47	Berkeley		RIDGEVILLE	SC	29472	Flex1	AG	TAX EXEMPT
124	Salt point timber llc	163-00-01-007	1012.54	Berkeley	825 SALTPOINT RD	MONCKS CORNER	SC	29461	Flex1	AG	SFR
125	MEPKIN, ABBEY	198-00-01-001	1366.07	Berkeley	1159 SAWMILL RD	MONCKS CORNER	Sc	29461	Flex1	AG	LIBRARY/MUSEUM
126	MEAD INVESTMENTS LLC	164-00-02-104	1279.77	Berkeley		MONCKS CORNER	sc	29461	Flex1	AG	agricultural (NEC)
127	TIMberlands ili llc	081-00-00-034	1409.96	Berkeley	100 HAGAN HUNT CLUB RD	PINOPOLIS	SC	29469	Flex1	AG	SFR
128	WEYERHAEUSER NR COMPANY	100-00-00-048	1166.55	Berkeley		PINOPOLIS	sc	29469	Flex1	AG	AGricultural (nec)
129	OAKLAND CLUB ALABAMA	013-00-01-006	1029.33	Berkeley		PInEVILLE	Sc	29468	Flex1	AG	agricultural (nec)
130	us government	267-00-00-011	1163.93	Berkeley		CHARLESTON	Sc	29492	EG	Misc	TAX EXEMPT
131	MEPKIN, ABBEY	198-00-01-001	1366.07	Berkeley	1159 SAWMILL RD	MONCKS CORNER	Sc	29461	Flex1	AG	LIBRARY/museum
132	TIMBERLANDS III LLC	081-00-00-034	1409.96	Berkeley	100 hagan hunt club rd	PINOPOLIS	Sc	29469	Flex1	AG	SFR
133	KESSINGER, STACEY \& KESSINGER, MICHAEL	195-00-00-124	1227.47	Berkeley	1283 STATE RD	SUMMERVILLE	SC	29486	PD-MU	PUD	AGRICULTURAL (NEC)
134	TIMBERLANDS III LLC	100-00-00-019	1055.81	Berkeley	sc		SC	29469			
135	TIMBERLANDS III LLC	141-00-01-005	1255.76	Berkeley	1226 COOPER STORE RD	MONCKS CORNER	sc	29461	Flex1	AG	AGricultural (Nec)
136	SONOCO PRODUCTS COMPANY	009-00-00-002	1490.93	Berkeley		PINEVILLE	SC	29468	Flex1	AG	AGRICULTURAL (NEC)
137	OAKLAND Club alabama	013-00-01-006	1029.33	Berkeley		PINEVILLE	SC	29468	Flex1	AG	agricultural (NEC)
138	MEPKIN, ABBEY	198-00-01-001	1366.07	Berkeley	1159 SAWMILL RD	MONCKS CORNER	SC	29461	Flex1	AG	LIBRARY/MUSEUM
139	TIMBERLANDS III LLC	081-00-00-034	1409.96	Berkeley	100 HAGAN HUNT CLUB RD	PINOPOLIS	sc	29469	Flex1	AG	SFR
140	national audubon society inc	115-00-00-010	1115.47	Berkeley		RIDGEVILLE	Sc	29472	Flex1	AG	TAX EXEMPT
141	timberlands ili lic	141-00-01-005	1255.76	Berkeley	1226 COOPER STORE RD	MONCKS CORNER	sc	29461	Flex1	AG	AGricultural (nec)
142	WEYERHAEUSER NR COMPANY	100-00-00-048	1166.55	Berkeley		PINOPOLIS	SC	29469	Flex1	AG	agricultural (nec)
143	DUPONT SPECIALTY PRODUCTS USA LLC	212-00-01-009	1016.56	Berkeley		MONCKS CORNER	SC	29461	PD-OP/IP	PUD	AGRICULTURAL (NEC)
144	oakland club	015-00-01-050	1082.44	Berkeley	1184 Colonel maham dr	PIneVILLe	sc	29468	Flex1	AG	agricultural (nec)
145	OAKLAND CLUB BLUFORD	014-00-00-006	1099.70	Berkeley	921 OAKLAND CLUB RD	PINEVILLE	SC	29468	Flex1	AG	SFR
146	SONOCO PRODUCTS COMPANY	009-00-00-001	1379.13	Berkeley		PINEVILLE	sc	29468	Flex1	AG	AGRICULTURAL (NEC)
147	TIMBERLANDS III LLC	081-00-00-034	1409.96	Berkeley	100 HAGAN HUNT CLUB RD	PINOPOLIS	SC	29469	Flex1	AG	SFR
148	TIMBERLANDS IIILLC	081-00-00-034	1409.96	Berkeley	100 HAGAN HUNT CLUB RD	PINOPOLIS	Sc	29469	Flex1	AG	SFR
149	MEPKIN, ABBEY	198-00-01-001	1366.07	Berkeley	1159 SAWMILL RD	MONCKS CORNER	SC	29461	Flex1	AG	LIBRARY/MUSEUM
150	MEPKIN, ABBEY	198-00-01-001	1366.07	Berkeley	1159 SAWMILL RD	MONCKS CORNER	sc	29461	Flex1	AG	LIBRARY/MUSEUM
151	MEPKIN, ABBEY	198-00-01-001	1366.07	Berkeley	1159 SAWMILL RD	MONCKS CORNER	Sc	29461	Flex1	AG	LIBRARY/MUSEUM
152	MEPKIN, ABBEY	198-00-01-001	1366.07	Berkeley	1159 SAWMILL RD	MONCKS CORNER	sc	29461	Flex1	AG	LIBRARY/MUSEUM
153	timberlands ilille	081-00-00-034	1409.96	Berkeley	100 HAGAN HUNT CLUB RD	PINOPOLIS	sc	29469	Flex1	AG	SFR
154	timberlands ili llc	081-00-00-034	1409.96	Berkeley	100 hagan hunt club rd	PINOPOLIS	Sc	29469	Flex1	AG	SFR
155	timberlands ili llc	141-00-01-005	1255.76	Berkeley	1226 COOPER STORE RD	MONCKS CORNER	Sc	29461	Flex1	AG	AGRICULTURAL (NEC)
156	ALUMAX OF SC	223-00-00-021	1742.71	Berkeley	3579 HWY 52	MONCKS CORNER	Sc	29461	HI	Ind	COMMERCIAL (NEC)
157	UNITED STATES OF AMERICA	245-00-00-001	4825.94	Berkeley	100 FAIRING	GOOSE CREEK	sc	29445			TAX EXEMPT
158	SONOCO PRODUCTS COMPANY	010-00-00-001	4320.40	Berkeley	630 international rd	PINEVILLE	sc	29468	Flex1	AG	AGricultural (nec)
159	ANDREWS, TERRY H	164-00-01-061	1596.69	Berkeley	498 JELLY ROLLS RD	MONCKS CORNER	Sc	29461	Flex1	AG	AGRICULTURAL (NEC)
160	CAMP HALL INDUSTRIAL OWNER LLC	157-00-00-003	2936.38	Berkeley	464 AUTONOMOUS DR	RIDGEVILLE	SC	29472	PD-OP/IP	PUD	TAX EXEMPT
161	berkeley county	176-00-01-001	1591.33	Berkeley	1801 Volvo CAR DR	RIDGEVILLE	sc	29472	PD-OP/IP	PUD	COMMERCIAL (NEC)
162	congaree river llc	010-00-00-002	6124.21	Berkeley		SAINT STEPHEN	Sc	29479	Flex1	AG	agricultural (nec)
163	Santee timber company llc	027-00-00-067	2053.71	Berkeley		SAINT STEPHEN	Sc	29479	Flex1	AG	agricultural (nec)
164	AMOCO CORP	247-00-00-003	1577.59	Berkeley	1550 REC RD	huger	Sc	29450	HI	Ind	AGRICULTURAL (NEC)
165	SC STATE PORTS AUTHORITY	271-00-01-057	1878.94	Berkeley		Charleston	SC	29492	R-2		TAX EXEMPT
166	UNITED STATES OF AMERICA	253-00-00-001	3210.20	Berkeley	37 boone AV	goose creek	sc	29445			TAX EXEMPT
167	TIMBERLANDS III LLC	100-00-00-019	1811.30	Berkeley	SC		SC	29483			
168	MCNAIR FAMILY LIMITED P/S	090-00-00-075	1605.00	Berkeley	158 MCNAIR LN	JAMESTOWN	SC	29453	Flex1	Ag	agricultural (nec)
169	CAMP hall industrial owner llc	157-00-00-003	2936.38	Berkeley	464 AUTONOMOUS DR	RIDGEVILLE	SC	29472	PD-OP/IP	PUD	TAX EXEMPT
170	CAMP HALL INDUSTRIAL OWNER LLC	157-00-00-003	2936.38	Berkeley	464 AUTONOMOUS DR	RIDGEVILLE	Sc	29472	PD-OP/IP	PUD	TAX EXEMPT
171	UNITED STATES OF AMERICA	253-00-00-001	3210.20	Berkeley	37 BOONEAV	goose Creek	SC	29445			TAX EXEMPT
172	UNITED STATES OF AMERICA	253-00-00-001	3210.20	Berkeley	37 BOone AV	goose Creek	sc	29445			TAX EXEMPT
173	UNITED STATES OF AMERICA	245-00-00-001	4825.94	Berkeley	100 FAIRING	goose creek	sc	29445			TAX EXEMPT
174	SC DEPARTMENT OF NATURAL RESOURCES	200-00-00-011	3630.60	Berkeley	2783 HWY 402	CORDESVILLE	SC	29434	Flex1	AG	TAX EXEMPT
175	SC PUBLIC SERVICE AUTHORITY	052-00-00-039	1677.92	Berkeley		cross	SC	29436	Flex1	AG	TAX EXEMPT
176	UNITED STATES OF AMERICA	253-00-00-001	3210.20	Berkeley	37 BOONEAV	goose creek	SC	29445			TAX EXEMPT
177	MCNAIR FAMILY LIMITED P/S	090-00-00-075	1605.00	Berkeley	158 MCNAIR LN	Jamestown	sc	29453	Flex1	AG	AGRICULTURAL (NEC)

178	UNITED STATES OF AMERICA	253-00-00-001	3210.20
179	UNITED STATES OF AMERICA	253-00-00-001	3210.20
180	TRACT 7 LLC	262-00-00-009	1866.33
181	AMOCO CORP	247-00-00-003	1577.59
182	SONOCO PRODUCTS COMPANY	007-00-00-001	9211.40
183	CAMP hall industrial owner llc	157-00-00-003	2936.38
184	ALUMAX OF SC	223-00-00-021	1742.71
185	ANDREWS, TERRY H	164-00-01-061	1596.69
186	SOUTH CAROLINA DEPARTMENT OF NATURAL RES	200-00-00-008	3397.25
187	CAMP HALL INDUSTRIAL OWNER LLC	157-00-00-003	2936.3
188	CAMP HALL INDUSTRIAL OWNER LLC	157-00-00-003	2936.38
189	COASTAL FOREST RESOURCES	009087-00-00-010	1077.27
190	THE GRESSETTE CO LLC	009172-00-00-001	1221.00
191	SALLEY FAMIIY LLC	009113-00-00-001	1732.42
192	muller lake llc	009082-00-00-002	2918.75
193	SC PUBLIC SERVICE AUTHORITY	009205-00-00-001	4508.43
194	SC PUBLIC SERVICE AUTHORITY	009205-00-00-001	2214.09
195	UNITED STATES OF AMERICA	040-00-00-025	1337.19
196	EL CID BRAVO FARM LlC	175-00-00-062	1032.48
197	CHARLESTON COUNTY AIRPORT DISTRICT	319-00-00-002	1090.12
198	CHARLESTON COUNTY AIRPORT DISTRICT	400-00-00-007	1177.93
199	hanahan, roger parke	301-00-00-003	1285.80
200	OAKLAWN PLANTATION LlC	040-00-00-002	1323.57
201	WHITE OAK FORESTRY CORP	790-00-00-020	1143.95
202	MCLEOD LUMBER CO INC	040-00-00-005	1279.88
203	EDISTO CHARLESTON 1000 LLC	139-00-00-001	1011.19
204	SOUTH CAROLINA WILDLIFE \& MARINE RESOURCES COMMISSION AS	610-00-00-010	1152.70
205	baring plantation llc	040-00-00-001	1436.92
206	WESTFALL, ELLEN M	089-00-00-001	1050.36
207	LONG SAVANNAH LAND CO LlC	301-00-00-006	1219.93
208	STATE OF SOUTH CAROLINA LESSEE NATURE CONSERVANCY THE LESSOR	820-00-00-007	1161
209	millbrook llc	301-00-00-002	1484.87
210	CONGAREE CARTON LIMITED PARTNERSHIP	625-00-00-010	1243.11
211	PLANTATION HERTIMAGE LLC	040-00-00-003	1038.20
212	K \& A \& ACQUISITION GROUP LLC	450-00-00-005	2197.66
213	EDISTO CHARLESTON 1000 LLC	080-00-00-003	1755.78
214	UNITED STATES OF AMERICA	625-00-00-011	1933.83
215	State of South carolina	820-00-00-004	5841.68
216	STATE OF SOUTH CAROLINA	450-00-00-012	1756.61
217	mCLEOD LUMBER CO inc	301-00-00-015	2882.09
218	ESSEX FARMS LlC	175-00-00-018	1664.27
219	CANTUSEE timberlands llc	175-00-00-032	3175.56
220	CANTUSEE timberlands llc	113-00-00-001	1792.88
221	WILEY FORK SPRING GROVE LLC	175-00-00-054	5161.25
222	WHITFIELD CONSTRUCTION COMPANY	301-00-00-005	2214.57
223	STATE OF SOUTH CAROLINA	820-00-00-004	7878.14
224	CANTUSEE TIMBERLANDS LLC	113-00-00-001	2284.31
225	POINT FARM INVESTORS LLC	135-00-00-001	1516.58
226	UNITED STATES OF AMERICA	400-00-00-006	2903.83
227	WHITE OAK FORESTRY CORP	790-00-00-005	2395.61
228	bRADHAM, JULIA ELIZABETH	225-00-00-005	1734
229	OPEN SPACE InStitute land trust inc the nature conservanc	625-00-00-042	1546.
230	avocet timber llc	175-00-00-038	2366.29
231	STATE OF SOUTH CAROLINA	080-00-00-007	3387.16
232	UNITED STATES OF AMERICA	040-00-00-018	4397.88
233	COSTA, CYNTHIA F	080-00-00-026	1551.40
234	CHARLESTON COUNTY PARK RECREATION COMMISSION	301-00-00-007	1628.3
235	WILLTOWN LAND \& TIMBER COMPANY LLC	040-00-00-004	1961.56
236	JANUS TIMBER LLC	175-00-00-039	1686.55
237	KIAWAH RESORT ASSOCIATES	207-00-00-002	2626.9
238	CAROLINA COTTAGE HOMES LLC	212-00-00-001	1926.17

Berkeley	37 BOONEAV
Berkeley	37 BOONEAV
Berkeley	1523 CAINHOY RD
Berkeley	1550 REC RD
Berkeley	
Berkeley	464 AUTONOMOUS DR
Berkeley	3579 HWY 52
Berkeley	498 JELLY RoLlS RD
Berkeley	1482 Bonneau ferry dr
Berkeley	464 AUTONOMOUS DR
Berkeley	464 AUTONOMOUS DR
Calhoun	OfF Great circle dr
Calhoun	
Calhoun	296 HEDRICK LN \& 303
Calhoun	530 MULLER LAKE RD
Calhoun	
Calhoun	
Charleston	8675 WILLTOWN
Charleston	6500 PARKERS FERRY RD
Charleston	RIVER RD
Charleston	5400 International blvd
Charleston	HIGHWAY 61
Charleston	SAVANNAH HWY
Charleston	OLD GEORGETOWN RD
Charleston	PARKERS FERRY RD
Charleston	edisto river
Charleston	CAPERS CREEK
Charleston	9485 SAVANNAH HWY
Charleston	WHITE POINT RD
Charleston	bear Swamp rd
Charleston	DUPRE RD
Charleston	HIGHWAY 61
Charleston	5537 HALFWAY CREEK RD
Charleston	5345 PARKERS FERRY RD
Charleston	FOLLY RD
Charleston	S EDISTO RIVER
Charleston	WOODVILLE CREEK
Charleston	HIGHWAY 857
Charleston	MORRIS ISLAND
Charleston	SAVANNAH HWY
Charleston	9151 OLD JACKSONBORO RD
Charleston	PARKERS FERRY RD
Charleston	Greenwood rd
Charleston	hyde Park Rd
Charleston	ASHLEY RIVER RD
Charleston	HIGHWAY 857
Charleston	Greenwood rd
Charleston	POINT FARM RD
Charleston	6390 DORCHESTER RD
Charleston	N HIGHWAY 17
Charleston	NEW RD
Charleston	HaLFWAY CREEK RD
Charleston	hyde Park rd
Charleston	BOTANY BAY RD
Charleston	JEHOSSEE ISLAND RD
Charleston	balievs Creek
Charleston	bear swamp rd
Charleston	5000 PARKERS FERRY RD
Charleston	SPRING GROVE RD
Charleston	KIAWAH ISLAND
Charleston	2600 MULLET HALL RD

goose Creek	Sc	29445			TAX EXEMPT
GOOSE CREEK	SC	29445			TAX EXEMPT
Charleston	SC	29492	PUD	PUD	AGRICULTURAL (NEC)
huger	SC	29450	HI	Ind	AGricultural (nec)
PINEVILLE	Sc	29468	Flex1	AG	AGRICULTURAL (NEC)
RIDGEVILLE	SC	29472	PD-OP/IP	PUD	TAX EXEMPT
MONCKS CORNER	SC	29461	HI	Ind	COMMERCIAL (NEC)
MONCKS CORNER	SC	29461	Flex1	AG	agricultural (nec)
CORDESVILLE	SC	29434	Flex1	AG	SFR
RIDGEVILLE	SC	29472	PD-OP/IP	PUD	TAX EXEMPT
RIDGEVILLE	SC	29472	PD-OP/IP	PUD	TAX EXEMPT
SAINT MATTHEWS	SC	29135			AGRICULTURAL (NEC)
SAINT MATTHEWS	SC	29135			AGRICULTURAL (NEC)
SAINT MATTHEWS	SC	29135			miscellaneous
swansea	SC	29160			AGricultural (nec)
elloree	SC	29047			TAX EXEMPT
CAMERON	SC	29030			TAX EXEMPT
hollywood	SC	29449	RM	Res	SFR
adams run	SC	29426	RM	Res	AGRICULTURAL (NEC)
JOHNS ISLAND	SC	29455	L	Ind	WAREHOUSE
NORTH CHARLESTO	SC	29418	M-1	Ind	WASTE LAND
JOHNS ISLAND	SC	29455			RESIDENTIAL (NEC)
ADAMS RUN	SC	29426	AG-10	AG	SFR
MC CLELLANVILLE	SC	29458	AG-10	AG	AGRICULTURAL (NEC)
HOLLYWOOD	SC	29449	RM	Res	SFR
WADMALAW ISLANI	SC	29487	AG-15	AG	VACANT LAND (NEC)
awendaw	SC	29429	NRM	Misc	VACANT LAND (NEC)
ADAMS RUN	SC	29426	RM	Res	Residential (nec)
hollywood	SC	29449	AG-10	AG	RESIDENTIAL (NEC)
CHARLESTON	SC	29414	PUD	PUD	RES ACREAGE
MC Clellanvilie	SC	29458	RM	Res	agricultural (nec)
charleston	Sc	29414	AG-8	AG	agricultural (nec)
awendaw	SC	29429	RM	Res	AGRICULTURAL (NEC)
ADAMS RUN	SC	29426	RM	Res	agricultural (NEC)
folly beach	SC	29439	MUNI	Misc	RES ACREAGE
Edisto istand	Sc	29438	RM	Res	res Acreage
awendaw	SC	29429	RM	Res	agricultural (nec)
MC CLELLANVILLE	SC	29458	RM	Res	RECREATIONAL (NEC)
folly beach	SC	29439	c	Conserv	VACANT LAND (NEC)
ravenel	SC	29470	RM	Res	AGRICULTURAL (NEC)
ADAMS RUN	SC	29426	RM	Res	RESIDENTIAL (NEC)
ADAMS RUN	SC	29426	RM	Res	RESIDENTIAL (NEC)
ADAMS RUN	SC	29426	RM	Res	AGRICULTURAL (NEC)
RAVENEL	SC	29470	RM	AG	AGRICULTURAL (NEC)
CHARLESton	SC	29414	AG-8	AG	agricultural (Nec)
MC Clellanville	SC	29458	RM	Res	recreational (nec)
adams run	SC	29426	RM	Res	AGRICULTURAL (NEC)
WADMALAW ISLANI	SC	29487	AG-15	AG	agricultural (NEC)
NORTH CHARLESTOP	SC	29418	M-1	Ind	WASTE LAND
MC CLELLANVILLE	SC	29458	RM	Res	agricultural (nec)
hollywood	SC	29449	muni	Misc	agricultural (nec)
huger	SC	29450	RM	Res	res acreage
ravenel	Sc	29470	RM	Res	AGricultural (nec)
EDISTO ISLAND	SC	29438	AG-10	AG	SFR
Edisto istand	SC	29438	RM	Res	AGRICULTURAL (NEC)
Edisto istand	SC	29438	RM	Res	VACANT LAND (NEC)
Charleston	SC	29414	AG-8	AG	recreational (nec)
HOLLYwOOD	SC	29449	RM	Res	SFR
ADAMS RUN	SC	29426	RM	AG	AGRICULTURAL (NEC)
Johns IsLand	SC	29455	MUNI	Misc	VACANT LAND (NEC)
JOHNS ISLAND	SC	29455	PD	PUD	RESIDENTIAL (NEC)

239	WILEY FORK SPRING GROVE LLC
240	WILEY Fork spring grove llc
241	TIAA TIMBERLAND II LLC
242	DUKE ENERGY CAROLINAS LLC
243	SANDY RIVER TIMBER LLC
244	Johnson hunter llc
245	WHitley, William S
246	SANDY RIVER LlC
247	BOULWARE, DONALD \& BOULWARE, REUBEN M
248	TIAA TIMBERLAND II LLC
249	OLD PINES llc
250	UNITED STATES FOREST SERV
251	POULOS, GUS S \& POULOS, PETE S
252	WEYERHAEUSER COMPANY
253	UNITED STATES FOREST SERV
254	WEST 77 LLC
255	TBP PROPERTIES LLC
256	St michaels llc
257	SCP CATAWBA LLC
258	JAB I-77 SITE WEST
259	DUKE ENERGY PROGRESS INC
260	DUKE ENERGY PROGRESS INC
261	CHARLES INGRAM LUMBER CO INC
262	
	TOURISM
263	SOUTH CAROLINA COMMISSION OF FORESTRY
264	Wateree holdings llc
265	SANDHILLS STATE FOREST
266	SOUTH CAROLINA COMMISSION OF FORESTRY
267	SOUTH CAROLINA COMMISSION OF FORESTRY
268	CAROLINA SANDHILLS NATIONAL WILDLIFE REFUGE
269	CAROLINA SANDHILLS NATIONAL WILDLIFE REFUGE
270	SOUTH CAROLINA COMMISSION OF FORESTRY
71	
	TOURISM
272	SOUTH CAROLINA COMMISSION OF FORESTRY
273	CAROLINA SANDHILLS NATIONAL WILDLIFE REFUGE
274	SOUTH CAROLINA COMMISSION OF FORESTRY
275	SOUTH CAROLINA COMMISSION OF FORESTRY
276	Jlanderson co
277	SOUTH CAROLINA COMMISSION OF FORESTRY
278	SOUTH CAROLINA COMMISSION OF FORESTRY
279	SANDHILLS STATE FOREST
280	CARolina sandhill national wildife refuge
281	SANDHILLS STATE FOREST
282	CAROLINA SANDHILLS NATIONAL WILDLIFE REFUGE
283	SOUTH CAROLINA COMMISSION OF FORESTRY
284	SANDHILLS STATE FOREST
285	JLANDERSONCO
286	CAROLINA SANDHILL NATIONAL WILDLIFE REFUGE
287	JUSTICE, JAMES C
288	DOCHAS LAND \& TIMBER LLC
289	KARIS LLC
290	KIRK ROY SHERRY PROPERTIES LLC
291	pineland farm llc
292	PANOLA ENTERPRISES
293	DEER \& DUCK LLC
294	OAK MOUNTAIN TIMBERCO SC LLC
295	tamarack timberco sc llc
296	evergreen timberco sc llc
297	USA FISH \& WILDLIFE SER, \& DIV OF REALTY
298	WEYERHAEUSER COMPANY
299	MARHAYGUE LLC

175-00-00-053	3932.37	Charleston	NEW RD
175-00-00-055	1969.25	Charleston	HYDE PARK RD
165-00-00-001.000	1339.64	Cherokee	CORINTH RD
179-00-00-001.000	1908.44	Cherokee	MCKOWNS MOUNTAIN RD
158-00-00-005.000	1798.14	Cherokee	RoLling MILL RD
187-00-00-001.000	2732.65	Cherokee	673 WALKER FARM RD
163-00-00-008.000	1573.58	Cherokee	200 ASHLEY LN
023-00-00-034-000	1340.64	Chester	3484 Leeds Road
107-00-00-003-000	1280.09	Chester	
054-00-00-007-000	1091.88	Chester	
138-00-00-001-000	1007.61	Chester	
011-00-00-001-000	1482.03	Chester	
008-00-00-012-000	1092.32	Chester	
109-00-00-025-000	1849.48	Chester	
011-00-00-001-000	8837.55	Chester	
118-00-00-045-000	2133.05	Chester	
042-00-00-001-000	1914.84	Chester	
127-00-00-108-000	1730.51	Chester	
117-00-00-006-000	1900.85	Chester	
$113-00-00-017-000 ; 113-00-00-$ $044-000$	1023.00	Chester	DULAP RODDEY ROAD
165-000-000-001	1417.44	Chesterfield	
165-000-000-001	1227.35	Chesterfield	
287-000-000-002	1084.56	Chesterfield	
246-000-000-062	1456.00	Chesterfield	
214-000-000-003	1067.55	Chesterfield	1861 PATRICK SOCIETY HL
274-000-000-054	1436.19	Chesterfield	
075-000-000-017	1465.88	Chesterfield	
214-000-000-003	1303.35	Chesterfield	1861 PATRICK SOCIETY HL
214-000-000-003	1302.94	Chesterfield	1861 PATRICK SOCIETY HL
111-000-000-009	1769.03	Chesterfield	
111-000-000-009	4186.77	Chesterfield	
214-000-000-003	1846.34	Chesterfield	1861 PATRICK SOCIETY HL
246-000-000-062	4168.81	Chesterfield	
214-000-000-003	3082.27	Chesterfield	1861 PATRICK SOCIETY HL
111-000-000-009	2422.77	Chesterfield	
214-000-000-003	1750.46	Chesterfield	1861 PATRICK SOCIETY HL
214-000-000-003	2676.96	Chesterfield	1861 PATRICK SOCIETY HL
288-000-000-001	1513.53	Chesterfield	
214-000-000-003	2154.29	Chesterfield	1861 PATRICK SOCIETY HL
214-000-000-003	1672.51	Chesterfield	1861 PATRICK SOCIETY HL
141-000-000-004	2340.06	Chesterfield	
111-000-000-009	17577.72	Chesterfield	
141-000-000-004	1857.10	Chesterfield	
111-000-000-009	15426.28	Chesterfield	
214-000-000-003	7253.29	Chesterfield	1861 PATRICK SOCIETY HL
075-000-000-017	1756.68	Chesterfield	
274-000-000-062	6715.83	Chesterfield	
111-000-000-009	2002.94	Chesterfield	
230-00-01-001-00	1496.24	Clarendon	10988 HWY 301
305-00-00-001-00	1153.79	Clarendon	3953 CORNER RD
310-00-00-006-00	1008.11	Clarendon	
133-00-01-014-00	1186.79	Clarendon	20 DISTRICT
042-00-00-001-00	1268.77	Clarendon	2377 GAYMONRD
081-00-01-014-00	1001.16	Clarendon	5206 FURSE RD
061-00-00-001-00	1022.69	Clarendon	3467 OAKS RD
296-00-00-001-00	1198.57	Clarendon	8975 S BREWINGTON RD
235-00-02-007-00	1099.94	Clarendon	20 DISTRICT
311-00-00-003-00	1494.75	Clarendon	
071-00-00-002-00	1029.65	Clarendon	
263-00-02-016-00	1149.65	Clarendon	20 DISTRICT
063-00-00-097-00	1788.32	Clarendon	

HOLLYwOOD	sc	29449
Ravenel	sc	29470
GAFFNEY	SC	29340
CARLISLE	SC	29031
CHESTER	SC	29706
CHESTER	SC	29706
RICHBURG	SC	29729
CARLISLE	Sc	29031
CHESTER	SC	29706
CHESTER	SC	29706
CHESTER	SC	29706
RICHBURG	SC	29729
CARLISLE	SC	29031
RICHBURG	SC	29729
RICHBURG	SC	29729
EDGEMOORE	SC	29712
mC bee	SC	29101
mC bee	SC	29101
CHERAW	SC	29520
MC BEE	SC	29101
CHERAW	SC	29520
PATRICK	SC	29584
MC bee	SC	29101
JEFFERSON	SC	29718
PATRICK	SC	29584
CHERAW	sc	29520
PATRICK	SC	29584
JEFFERSON	SC	29718
PATRICK	SC	29584
PATRICK	SC	29584
CHERAW	SC	29520
PATRICK	SC	29584
PATRICK	SC	29584
MC bee	SC	29101
JEFFERSON	SC	29718
MC BEE	SC	29101
MC BEE	SC	29101
CHERAW	SC	29520
MC BEE	SC	29101
CHERAW	SC	29520
MC BEE	SC	29101
ALCOLU	SC	29001
NEW ZION	SC	29111
NEW ZION	SC	29111
MANNING	SC	29102
PINEWOOD	SC	29125
SUMMERTON	SC	29148
SUMMERTON	SC	29148
MANNING	SC	29102
ALCOLU	SC	29001
NEW ZION	SC	29111
SUMMERTON	SC	29148
MANNING	SC	29102
SUMMERTON	SC	29148

RESIDENTIAL (NEC) agricultural (NEC) FARMS COMMERCIAL (NEC) SFR

SFR
Arms
AGRICULTURAL (NEC)
AGRICULTURAL (NEC)
AGRICULTURAL (NEC)
AGRICULTURAL (NE
AX EXEMPT
AGRICULTURAL LAND

TAXICULTURAL (NEMPT

TAX EXEMPT
AGRICULTURAL (NEC)
AGRICULTURAL (NEC) RESIDENTIAL (NEC)

AGRICULTURAL (NEC)
RESIDENTIAL (NEC)
agricultural (nec)
agricultural (Nec)
RESIDENTIAL (NEC)
agricultural (NEC)
AGRICULTURAL (NEC) AGRICULTURAL (NEC) AGRICULTURAL (NEC) AGRICULTURAL (NEC) Federal property AGRICULTURAL (NEC) agricultural (NEC)

300	JUSTICE, JAMES C
301	WEYERHAEUSER COMPANY
202	FBSC LLC
303	SC DEPT TRANSPORTATION
304	US FISH \& WILDLIFE, \& DIV OF REALTY
305	FOREST CIRCLE CAPITAL LLC
306	SOUTH CAROLINA WILDLIFE \& MARINE RESO
307	CHEROKEE PLANTATION OWNERS LLC
308	LAVINGTON ASSOCIATES LLP
309	WEYERHAEUSER COMPANY
310	WEYERHAEUSER COMPANY
1	WARE, CLAUDIA L
312	HOOD BLUFF FARM LLCA SC LIMITED LIAB
313	WNL PROPERTIES LLC
314	LRT II LLC A DELAWARE LIMITED LIABIL
315	WEYERHAEUSER COMPANY
316	SOUTH CAROLINA WILDLIFE \& MARINE RESO
317	FEATHERBED ASSOCIATES LLC
8	WEYERHAEUSER COMPANY
319	South Carolina department of natural
320	SCOTT WOODLANDS LLC
321	WARE, CLAUDIA L \& OSWALD, LIGHTSEY E
322	WEYERHAEUSER NR COMPANY
323	PAUL \& DALTON LLC, \& WILD ROSE FARMS INC
324	EDISTO RIVER ENVIRONMENTAL RESOURCES
325	COLLUMS TIMBER INVESTMENTS LLC A SOU
	ARLEE LLC A SOUTH CAROLINA LIMITED L, \& RHODES CO LLC A
326	SOUTH CAROLINA LIMIT
327	Walterboro colleton countyairport co
328	G D VARN \& SONS LLC
329	WEYERHAEUSER COMPANY
330	WNL PROPERTIES llC
331	WARE, CLAUDIA L
332	LAUREL SPRING LLC A SOUTH CAROLINA L
333	ASHEPOO LLC
334	LRT II LLC A DELAWARE LIMITED LIABIL
335	SOUTH CAROLINA DEPARTMENTOF NATURAL
336	WEYERHAEUSER COMPANY A WASHINGTON CO
337	WEYERHAEUSER COMPANY
338	OSWALD LIGHT
339	CHEROKEE PLANTATION OWNERS LLC
340	WILEY FORK HOPE LLC A SOUTH CAROLINA
341	SC WILDLIFE RESOURCES DEPTGAME DIVI
342	PON PON PLANTATION LLC A SOUTHCAROLI
343	OSWALD LIGHT
344	SOUTH CAROLINA WILDLIFE \& MARINE RESO
345	LIGHTSEY, E OSWALD LILLIAN L
346	NICODEMUS LLC A SOUTH CAROLINA LIMIT
347	WEYERHAEUSER COMPANY A WASHINGTON CO
348	elgerbar corp
349	OSWALD LIGHT
350	SC WILDLIFE RESOURCES DEPTGAME DIVI
351	SC, WILDLIFE MARINE RESOURCES DEP
352	CHEROKEE PLANTATION OWNERS LLC
353	CHEEHA COMBAHEE PLANTATION INC
354	WILEY FORK HOPE LLC A SOUTH CAROLINA
355	UNITED STATES OF AMERICAU S FISH \& W
356	RUTH B CUMMINGS CHILDREN
357	BOWLES ISLAND LLC A SOUTH CAROLINA L
358	SOUTH CAROLINA WILDLIFE \& MARINE RESO
359	ESSEX FARMS LlC A SOUth CAROLINA LIM
360	SC WILDLIFE RESOURCES DEPTGAME DIVI
361	WEYERHAEUSER COMPANY
362	ASHEPOO LLC

230-00-01-001-00	2438.38	Clarendon	10988 HWY 301
309-00-03-004-00	1939.12	Clarendon	
249-00-00-001-00	7784.81	Clarendon	4672 KENWOOD RD
229-00-01-001-00	1642.62	Clarendon	
115-00-00-006-00	3586.26	Clarendon	
293-00-03-030-00	1689.20	Clarendon	10969 GREELEYVILLE HWY
328-00-00-001	1108.39	Colleton	
268-00-00-001	1331.13	Colleton	
284-00-00-020	1409.93	Colleton	
206-00-00-010	1151.11	Colleton	katie bridge dr
209-00-00-001	1148.99	Colleton	COOKS HILL RD
300-00-00-058	1066.12	Colleton	ACE BASIN PARKWAY
279-00-00-001	1001.84	Colleton	
166-00-00-002	1229.21	Colleton	FEATHERBED RD
183-00-00-014	1388.77	Colleton	9836 CHARLESTON HWY
008-00-00-012	1360.88	Colleton	\#\#67,250,724
313-00-00-006	1017.68	Colleton	
181-00-00-061	1499.38	Colleton	FEATHERBED RD
059-00-00-005	1225.17	Colleton	506524 LIGHTSEY WAY
349-00-00-001	1123.95	Colleton	
083-00-00-006	1118.79	Colleton	HUGHES DR
308-00-00-001	1458.97	Colleton	4632 PERRY CT
149-00-00-026	1048.38	Colleton	
316-00-00-008	1061.27	Colleton	3220 WIGGINS RD
048-00-00-006	1048.81	Colleton	1277 DEE DEE RD \#7
266-00-00-002	1135.90	Colleton	
111-00-00-018	1040.41	Colleton	
132-00-00-028	1038.69	Colleton	566 AVIATION WAY
069-00-00-011	1455.61	Colleton	BROXTON BRIDGE HWY
059-00-00-005	1196.23	Colleton	506524 LIGHTSEY WAY
262-00-00-011	1146.94	Colleton	12473 ACE BASIN PKY
300-00-00-055	2477.76	Colleton	STOCKS CREEK RD
308-00-00-004	2878.77	Colleton	ACE BASIN PKY
319-00-00-001	4865.92	Colleton	9314 BENNETTS POINT RD
183-00-00-014	8588.26	Colleton	9836 CHARLESTON HWY
283-00-00-025	3305.16	Colleton	
214-00-00-001	2794.95	Colleton	
022-00-00-045	1714.78	Colleton	
285-00-00-004	2931.03	Colleton	
268-00-00-001	2032.07	Colleton	
287-00-00-001	2113.70	Colleton	hope plantation rd
327-00-00-001	1689.40	Colleton	TITIRD
305-00-00-001	3284.75	Colleton	7122 TI TI RD
156-00-00-021	3320.22	Colleton	15641 SNIDERS HWY
347-00-00-001	1862.54	Colleton	
262-00-00-001	1906.58	Colleton	WEISS LN
224-00-00-059	1874.75	Colleton	
214-00-00-001	4058.30	Colleton	
231-00-00-010	4172.50	Colleton	4043 BLACK CREEK ROAD
263-00-00-001	1604.90	Colleton	
327-00-00-001	2435.71	Colleton	TITIRD
353-00-00-001	2041.73	Colleton	
289-00-00-001	2957.46	Colleton	
325-00-00-001	8936.92	Colleton	
287-00-00-001	2937.38	Colleton	HOPE PLANTATION RD
280-00-00-008	1831.68	Colleton	COMBAHEE FIELD TER
313-00-00-008	1735.15	Colleton	
333-00-00-001	1889.03	Colleton	
328-00-00-001	1536.92	Colleton	
095-00-00-008	2007.67	Colleton	LOGAN FARM RD \#2
327-00-00-001	3395.96	Colleton	TITI RD
228-00-00-001	1948.92	Colleton	
340-00-00-001	4011.69	Colleton	

ALCOLU	SC	29001			AGRICULTURAL (NEC)
NEW ZION	SC	29111			AGRICULTURAL (NEC)
MANNING	SC	29102			Residential (nec)
gable	SC	29051			STATE PROPERTY
SUMMERTON	SC	29148			federal property
MANNING	SC	29102			AGRICULTURAL (NEC)
GREEN POND	SC	29446	RC	Misc	WILDLIFE REFUGE
Yemassee	SC	29945	RD	Mixed	AGRICULTURAL LAND
GREEN POND	Sc	29446	RC	Misc	Residential (nec)
walterboro	SC	29488	RD	Mixed	AGRICULTURAL LAND
Walterboro	SC	29488	RD	Mixed	AGRICULTURAL LAND
GREEN POND	SC	29446	RC	Misc	AGricultural land
YEMASSEE	SC	29945	RC	Misc	RESIDENTIAL (NEC)
ROUND O	SC	29474	UD	Mixed	AGRICULTURAL LAND
Round o	SC	29474	RD	Mixed	Residential (nec)
SMOAKS	SC	29481	RD	Mixed	AGRICULTURAL LAND
GREEN POND	SC	29446	RC	Misc	WILDLIFE REFUGE
ROUND O	SC	29474			AGRICULTURAL LAND
Walterboro	SC	29488	RD	Mixed	Residential (nec)
GREEN POND	SC	29446	RC	Misc	AGricultural land
cottageville	Sc	29435	RD	Mixed	Agricultural (nec)
GREEN POND	SC	29446	RC	Misc	RESIDENTIAL (NEC)
WALTERBORO	SC	29488	UD	Mixed	AGRICULTURAL LAND
GREEN POND	SC	29446	RC	Misc	RESIDENTIAL (NEC)
COTTAGEVILLE	SC	29435	RD	Mixed	AGRICULTURAL (NEC)
YEMASSEE	SC	29945	RD	Mixed	RESIDENTIAL (NEC)
RUFFIN	Sc	29475	RD	Mixed	agricultural land
WALterboro	SC	29488	ID	Ind	FEDERAL PROPERTY
EHRHARDT	SC	29081	RD	Mixed	AGRICULTURAL (NEC)
Walterboro	SC	29488	RD	Mixed	Residential (nec)
jacksonboro	SC	29452	RD	Mixed	AGricultural (nec)
Green Pond	SC	29446	RC	Misc	AGRICULTURAL LAND
Green pond	SC	29446			AGRICULTURAL (NEC)
Green pond	SC	29446	RC	Misc	Residential (nec)
ROUND O	SC	29474	RD	Mixed	RESIDENTIAL (NEC)
Green pond	SC	29446	RC	Misc	WILDLIFE Refuge
ROUND O	SC	29474	RD	Mixed	AGRICULTURAL (NEC)
SMOAKS	SC	29481	RD	Mixed	AGRICULTURAL LAND
GREEN POND	SC	29446	RC	Misc	AGricultural land
YEMASSEE	SC	29945	RD	Mixed	AGRICULTURAL LAND
GREEN POND	SC	29446	RC	Misc	EASEMENT
GREEN POND	SC	29446	RC	Misc	WILDLIFE REFUGE
Green Pond	SC	29446	RC	Misc	EASEMENT
Islandton	SC	29929	RD	Mixed	RESIDENTIAL (nec)
GREEN POND	SC	29446	RC	Misc	WILDLIFE REFUGE
GREEN POND	SC	29446	RC	Misc	RESIDENTIAL (NEC)
Walterboro	SC	29488			AGRICULTURAL LAND
Roundo	SC	29474	RD	Mixed	AGRICULTURAL (NEC)
RUFFIN	SC	29475	RD	Mixed	Residential (nec)
GREEN POND	SC	29446	RC	Misc	RESIDENTIAL (NEC)
Green pond	SC	29446	RC	Misc	WILDLIFE Refuge
Green Pond	SC	29446	RC	Misc	WILDLIFE REFUGE
YEMASSEE	SC	29945	RC	Misc	RESIDENTIAL (NEC)
GREEN POND	SC	29446	RC	Misc	RESIDENTIAL (NEC)
Green Pond	SC	29446	RC	Misc	EASEMENT
YEMASSEE	SC	29945	RC	Misc	WILDLIFE REFUGE
GREEN POND	SC	29446	RC	Misc	RESIDENTIAL (NEC)
Green pond	SC	29446	RC	Misc	WILDLIFe Refuge
Green pond	SC	29446	RC	Misc	WILDLIFE REFUGE
walterboro	Sc	29488	RD	Mixed	AGRICULTURAL LAND
GREEN POND	SC	29446	RC	Misc	WILDLIFE REFUGE
ROUND O	SC	29474	RD	Mixed	RESIDENTIAL (NEC)
Green pond	SC	29446	RC	Misc	Residential (nec)

363	elgerbar corp
364	SOUTH CAROLINA DEPARTMENT OFNATURAL
365	WEYERHAEUSER COMPANY
366	CUMMINGS, C T \& CUMMINGS, TIMOTHY C
367	SOUTH CAROLINA WILDLIFE \& MARINE RESO
368	SALTKETCHER WOODLANDS LLC A SOUTH CA
369	ESSEX FARMS LlC A South carolina lim
370	WEYERHAEUSER COMPANY
371	WNL PROPERTIES LLC
372	BIRCHWOOD LAND COMPANY LIMITED LLC
373	Catchmark hbu llc a delaware limited
374	Lightsey, e oswald wachovia
375	RIVER bend llc
376	WEYERHAEUSER COMPANY A WASHINGTON CO
377	new lavington llc
378	NICODEMUS LlC A SOUTH CAROLINA LIMIT
379	hUTCHINSON ISLAND ASSOCIATES
380	CHEEHA COMBAHEE PLANTATION INC
381	WEYERHAEUSER COMPANY A WASHINGTON CO
382	WEYERHAEUSER COMPANY
383	AIRY HALL PROPERTIES LLC A SOUTH CAR
384	WEYERHAEUSER COMPANY A WASHINGTON CO
385	WEYERHAEUSER COMPANY
386	elgerbar corp
387	SC WILDLIFE \& MARINE RESOURCES
388	THE SLIVKA FAMILY CHILDRENS D
389	WEYERHAEUSER COMPANY
390	CLEMSON UNIVERSITY
391	murray tract llc
392	SONOCO PRODUCTS COMPANY
393	murray tract llc
394	COXE LAND \& TIMBER LLC
395	SONOCO PRODUCTS COMPANY
396	COXE LAND \& TIMBER LLC
397	SC WILDLIFE \& MARINE RESOURCES
398	east oaklyn llc
399	COXE LAND \& TIMBER LLC
400	dunlap forestry llc
401	SCHOOLFIELD MANAGEMENT COMP
402	evergreen timberco sc llc
403	FPI PROPERTIES LLC
404	IVY LODGE TIMBER LLC
405	EVERGREEN TIMBERCO SC LLC
406	CAROLINAS I-95 SUPER PARK
407	RHodes Cone llc
408	CKM GRant llc
409	CANTUSEE TIMBERLANDS LLC
410	rock six timberlands llc
411	RHODES, W MCLEOD
412	SASSAFRAS TIMBER LLC
413	DAVIS LAND \& TIMBER, \& EDEN HALL MANAGEMENT LLC
414	GOLDING-GIVHANS
415	dV timber lic
	CANTUSEE TIMBERLANDS LLC

231-00-00-010	2273.59	Colleton	4043 BLACK CREEK ROAD	YEMASSEE
301-00-00-001	3539.20	Colleton	STOCKS CREEK RD	GREEN POND
222-00-00-003	2389.63	Colleton	HENDERSONVILLE HWY	walterboro
304-00-00-002	1854.03	Colleton		GREEN POND
342-00-00-002	1830.80	Colleton		Green pond
202-00-00-001	1728.82	Colleton	SHILOH LOOP	ISLANDTON
095-00-00-009	1681.87	Colleton	BIG HILL RD	walterboro
170-00-00-005	2411.39	Colleton	PARKERS FERRY RD	ROUND O
262-00-00-011	3151.67	Colleton	12473 ACE BASIN PKY	Walterboro
258-00-00-026	4312.50	Colleton	7964 COMBAHEE RD	YEMASSEE
030-00-00-014	4440.07	Colleton		Walterboro
275-00-00-013	2982.77	Colleton		Green pond
312-00-00-001	1638.19	Colleton	8961 BENNETTTS POINT RD	GREEN POND
214-00-00-001	3215.26	Colleton		ROUND O
295-00-00-002	2805.84	Colleton	961 LAVINGTON EAST LN	GREEN POND
249-00-00-006	2224.65	Colleton	6798 RITTER RD	walterboro
339-00-00-004	2450.16	Colleton		GREEN POND
325-00-00-001	1982.07	Colleton		GREEN POND
067-00-00-001	2857.36	Colleton	AUGUSTA HWY	COTTAGEVILLE
209-00-00-001	1522.68	Colleton	COOKS HILL RD	Walterboro
311-00-00-001	4692.72	Colleton	8756 BENNETTS POINT RD	GREEN POND
214-00-00-001	2165.10	Colleton		ROUND O
170-00-00-005	1532.15	Colleton	PARKERS FERRY RD	RIDGEVILLE
231-00-00-010	2327.69	Colleton	4043 BLACK CREEK ROAD	Yemassee
326-00-00-001	2278.87	Colleton		GREEN POND
291-00-00-001	1585.38	Colleton	6938 WHITE HALL ROAD	YEMASSEE
170-00-00-005	4704.58	Colleton	PARKERS FERRY RD	COTTAGEVILLE
216-00-01-004	1016.95	Darlington	2200 W POCKET RD	darlington
226-00-01-004	1017.26	Darlington	CASHUA FERRY ROAD NEAR RIV	darlington
206-00-01-002	1209.40	Darlington	SOCIETY HL	SOCIETY HILL
225-00-01-001	1452.01	Darlington	MECHANICSVILLE	DARLINGTON
174-00-01-013	1056.35	Darlington	SOCIETY HL	SOCIETY HILL
228-00-01-002	3279.80	Darlington	MECHANICSVILLE	darlington
191-00-01-003	4270.82	Darlington	1801 ROBLYNS NECK RD	SOCIETY HILL
224-00-01-001	2818.53	Darlington	MONT CLARE	DARLINGTON
201-00-01-005	1605.09	Darlington	PALMETTO	DARLINGTON
210-00-01-001	9020.98	Darlington	MONT CLARE	DARLINGTON
174-00-01-020	2218.92	Darlington	SOCIETY HL	SOCIETY HILL
126-00-00-050	1003.51	Dillon		NICHOLS
130-00-00-002	1621.01	Dillon		LATTA
064-00-00-007	2802.60	Dillon		LATTA
141-00-00-001	5315.52	Dillon		NICHOLS
143-00-00-003	2005.19	Dillon		LATTA

88-00-00-092; 068-00-00-042 058-00-00-024; 058-00-00-021; 068-00-00-030; 058-00-00-019, 058-00-00-018; 068-00-00-015 058-00-00-006; 058-00-00-004 067-00-00-012; 058-00-00-001 067-00-00-009; 068-00-00-007 068-00-00-006; 080-00-00-017 080-00-00-016; 068-00-00-002 068-00-00-001
$165-00-00-008.000$
$201-00-00-001.000$
$173-00-00-001.000$
$149-00-00-041.000$
$196-00-000001.000$
$195-00-00-017.000$
$140-00-00-038.000$
$169-00-00-002.000$
$127-00-00-074.000$
$183-00-00-104.000$

1065.78	Dorchester	HIGHWAY 17A S	RIDGEVILLE	SC	29472
1135.34	Dorchester	4942 COUNTY LINE RD	RAVENEL	SC	29470
1040.85	Dorchester	GEDDISVILLE RD	RIDGEVILLE	SC	29472
1079.91	Dorchester	OLD BEECH HILL RD	RIDGEVILLE	SC	29472
1198.49	Dorchester	RIFLE RD	RAVENEL	SC	29470
1123.85	Dorchester	DELEMAR HWY	RAVENEL	SC	29470
1241.59	Dorchester	ODD BEECH HILL RD	RIDGEVILE	SC	29472
1407.65	Dorchester	DELEMAR HWY	SUMMERVILLE	SC	29485
1376.98	Dorchester	ORANGEBURG RD	SUMMERVILLE	SC	29483
1152.82	Dorchester	GEDDISVILLE RD	ADAMS RUN	SC	29426

PD	PUD	VACANT LAND (NEC) COMMERCIAL BUILDING
		VACANT LAND (NEC) VACANT LAND (NEC)
ARHD	Misc	VACAN TAND (EEC) VACANT LAND (NEC)
MUC	Mixed	VACANT LAND (NEC) VACANT LAND (NEC) MUC
	Mixed	VACANT LAND (NEC)
		VACANT LAND (NEC)

417	COUNTY LINE INVESTORS LLC
418	MIDDLETON PLACE LLC \& HOUSE
419	Cantusee timberlands llc
420	NATIONAL AUDUBON SOCIETY INC
421	rock six timberlands llc
422	SHERIDAN LAND CO OF SUMMERVILLE LLC
423	LENNAR CAROLINAS LLC
424	WILEY FORK WATSON HILL LLC
425	CANTUSEE TIMBERLANDS LLC
426	SASSAFRAS TIMBER LLC
427	SOUTHERN RAILWAY CO
428	ROCK SIX TIMBERLANDS LLC
429	lennar carolinas llc
430	ROCK SIX TIMBERLANDS LLC
431	AMH DEV LLC
432	NATIONAL AUDUBON SOCIETY INC
433	Janus timber lic
434	WINDING WOODS COMMERCE PARK
435	u f Forest ser
436	WFC timber llc
437	U S FOREST SERVICE
438	U S FOREST SER
439	Slade timber co llc
440	u forest ser
441	u f forest ser
442	WILKIE DEV LLC
443	U S FOREST SER
444	U S FOREST SER
445	SLADE, ARLYN M \& PAREDES, VIVIANA Y
446	U F Forest ser
447	u forest ser
448	U S Forest Ser
449	A \& D LAND HOLDINGS LLC
450	SLADE, ARLYN M \& PAREDES, VIVIANA Y
451	U F Forest Ser
452	U S Forrest service
453	little river farm llc
454	CATCHMARK SOUTH CAROLINA TIMBERLANDS LLC
455	WEYERHAEUSER COMPANY
456	UNITED STATES FOREST SERV
457	Wateree holdings llc
458	FHP LLC
459	SAMSON WOODS LLC \& \& MCMASTER FAMILY PARTNERSHIP
460	SWEET PROSPECT PLANTATION LLC
461	AL VIRGINIA LEE LLC
462	KENNECOTT RIDGEWAY MINING
463	WEYERHAEUSER COMPANY
464	MARIWILL TIMBER PLANTATION LLC
465	CATCHMARK SOUTH CAROLINA TIMBERLANDS LLC
466	CATCHMARK SOUTH CAROLINA TIMBERLANDS LLC
467	1515 ARROWHEAD TIMBER HLDGS LL
468	FAIR LSG LLC
469	MULLIS, J w
470	UNITED STATES FOREST SER
471	BROAD RIVER PARTNERS LLC
472	WEYERHAEUSER COMPANY
473	I-77 International megasite
474	StONE CONTAINER CORP
475	PEE DEE REGIONAL AIRPORT DISTRICT
476	ALDERMAN-SHAW CO LLC
	PEE DEE GUN CLUB LLC

200-00-00-038.000	2121.85
180-00-00-019.000	5497.80
193-00-00-001.000	4441.07
009-00-00-008.000	1540.70
176-00-00-001.000	4204.22
167-00-00-001.000	2834.03
158-00-00-014.000	11.53
179-00-00-002.000	3503.44
193-00-00-003.000	2478.59
195-00-00-001.000	2272.53
074-00-00-001.000	14411.56
148-00-00-006.000	3451.81
168-00-00-008.000	2900.55
166-00-00-006.000	2238.61
178-00-00-001.000	2660.52
018-00-00-003.000	2974.39
148-00-00-014.000	2348.03
059-00-00-006; 059-00-00-029;	
046-00-00-023; 046-00-00-022;	1092.92
046-00-00-128; 059-00-00-101;	
059-00-00-106	
042-00-00-004-000	1270.73
046-00-00-001-000	1221.85
037-00-00-001-000	1345.98
025-00-00-004-000	1273.61
141-00-00-008-000	1395.09
014-00-00-001-000	1104.08
050-00-00-008-000	1552.93
058-00-00-039-000	1712.50
077-00-00-001-000	1576.89
002-00-00-001-000	1609.61
133-00-00-004-000	2670.13
077-00-00-001-000	3972.70
039-00-00-001-000	2340.87
077-00-00-001-000	1647.93
069-00-00-008-000	3412.74
133-00-00-004-000	2062.37
025-00-00-004-000	2399.69
028-00-00-013-000	1867.31
068-00-00-001-000	1073.93
074-00-00-017-000	1360.60
121-00-00-003-000	1203.57
082-00-00-002-000	1284.21
042-00-00-032-000	1000.03
039-00-00-002-000	1021.29
041-00-00-032-000	1145.35
051-00-00-001-000	1157.70
040-00-00-002-000	1210.69
205-00-00-082-000	1074.20
110-00-00-004-000	1425.42
101-00-00-015-000	1157.39
054-00-00-001-000	1223.15
053-00-00-008-000	1465.48
076-00-00-001-000	2156.98
100-00-00-053-000	1569.71
075-00-00-005-000	1632.26
001-00-00-003-000	1957.28
210-00-01-034-000	1535.00
110-00-00-004-000	2164.07
148-00-00-013-000	1544.00
00367-01-001	1429.35
00177-01-001	1102.97
00421-05-003	1163.67
00290-02-007	1499.55

Dorchester	COUNTY LINE RD	ravenel
Dorchester	4297 ASHLEY RIVER RD	CHARLESTON
Dorchester	county line rd	adams run
Dorchester	interstate 26 W	Holly hill
Dorchester	delemar hwy	ravenel
Dorchester	435 CLUBHOUSE RD	RIDGEVILLE
Dorchester	SUMMERS DR	RIDGEVILLE
Dorchester	4527 ASHLEY RIVER RD	SUMMERVILLE
Dorchester	COUNTY LINE RD	Ravenel
Dorchester	delemar hwy	ravenel
Dorchester	brosnan forest rd	DORCHESTER
Dorchester	4060 HIGHWAY 17A S	RIDGEVILLE
Dorchester	SUMMERS DR	SUMMERVILLE
Dorchester	435 CLUBHOUSE RD	RIDGEVILLE
Dorchester	delemar hwy	SUMMERVILLE
Dorchester	FIRST BEND RD	harleyville
Dorchester	OLD BEECH HILL RD	RIDGEVILLE
Dorchester	US HIGHWAY 78	ST. GEORGE
Edgefield		EDGEFIELD
Edgefield		EDGEFIELD
Edgefield		CLARKS HILL
Edgefield		MC CORMICK
Edgefield	151 TWEETIE	trenton
Edgefield		EDGEFIELD
Edgefield		EDGEFIELD
Edgefield		CLARKS HILL
Edgefield	256 LICK FORK	EDGEFIELD
Edgefield		MODOC
Edgefield		Johnston
Edgefield	256 LICK FORK	EDGEFIELD
Edgefield		CLARKS HILL
Edgefield	256 LICK FORK	EDGEFIELD
Edgefield		EDGEFIELD
Edgefield		EDGEFIELD
Edgefield		PLUM BRANCH
Edgefield	1013 PLUM BRANCH	EDGEFIELD
Fairfield	SWEET PROSPECT ROAD	BLACKSTOCK
Fairfield	HWY 200 AT BEAVER DAM FORK BR	WINNSBORO
Fairfield	M 356 CRUMPTON HARDEN	BLAIR
Fairfield	8600FT W INT SC215 \& S-20-31 S	BLAIR
Fairfield	MITFORD ASSN NO X91-77-049	Winnsboro
Fairfield	1957 \& 1959 FAIRFIELD HILL ROAD	winnsboro
Fairfield	HOGFORK TRACT	Winnsboro
Fairfield	SWEET PROSPECT RD RD	BLACKSTOCK
Fairfield	BETWEEN I-77 \& HWY 901	BLACKSTOCK
Fairfield	SC HWY 34 GOLD MINE	BLYTHEWOOD
Fairfield	14 TRACTS	Winnsboro
Fairfield	WESTERN SIDE OF LICK BRANCH--FI	blair
Fairfield	4400FT NE INT S-20-26 \& HWY 321	Winnsboro
Fairfield	W US 321 N	WINNSBORO
Fairfield	1515,1518,1526,1565,1749,1750 Af	WInnsboro
Fairfield	W OF INT SC 34 \& SC 215	BLAIR
Fairfield	frazier-barber pittman gladde	Winnsboro
Fairfield	ALONG BROAD RIVER S CHEST TER	BLAIR
Fairfield	1769 WALLACEVILLE ROAD	Winnsboro
Fairfield	14 TRACTS	WINNSBORO
Fairfield	VALENCIA ROAD	RIDGEWAY
Florence		florence
Florence	1917 CAP RD	FLORENCE
Florence	ST HWY 341	JOHNSONVILLE
Florence	1006 S FRIENDFIELD RD	SCRANTON

SC	29470	PD	PUD
SC	29414	MUC	Mixed
SC	29426		
SC	29059		
SC	29470	MUC	Mixed
SC	29472		
SC	29472		
SC	29485	B-2	Bus/Comm
SC	29470		
SC	29470		
SC	29437		
SC	29472		
SC	29485	MUC	Mixed
SC	29472		R-2
SC	29485	Res	
SC	29448		
SC	29472		
SC	29477	ID	Ind

VACANT LAND (NEC) VACANT LAND (NEC VACANT LAND (NEC) VACANT LAND (NEC) VACANT LAND (NEC)
VACANT LAND (NEC) VACANT LAND (NEC)
VACANT LAND (NEC) VACANT LAND (NEC)
SFR VACANT LAND (NEC)
VACANT LAND (NEC)
vacant land (Nec) vacant land (nec

VACANT LAND (NEC) AGRICULTURAL (NEC)
federal property
GRICULTURAL (NEC)
EDERAL PROPERTY
agricultural (Nec)
EEDERAL PROPERTY
EDERAL PROPERTY
AGRICULTURAL (NEC)
FEDERAL PROPERTY
agricultural (NEC)
Federal property
AGRICULTURAL (NEC)
AGRICULTURAL (NEC)
FEDERAL PROPERTY
EDERAL PROPERTY
AGRICULTURAL (NEC)
AGRICULTURAL (NEC)
AgRE
agricultural (NeC)
FORES
FOREST
orest
LIGHT INDUSTRIAL
AGRICULTURAL (NEC)
FOREST
agricultural (nec)
agricultural (NEC)
miscellaneous
AGRICULTURAL (NEC)
agricultural (nec)
FEDERAL PROPERTY
FOREST
agricultural (NEC)
FARMS
COMMERCIAL BUILDING
FARMS

478	Charles ingram lumber co inc
479	EYG PROPERTIES LLC
480	SC PUBLIC SERVICE AUTHORITY 223 N LIVE OAK DR
481	MOORE, BEADY FRANCES C \& NABERS, EVELYN C
482	CONGAREE-CARTON LTD PTSHP C/O AFM LOC
483	STONE CONTAINER CORP
484	INGRAM CHARLES LUMBER CO INC
485	SONOCO PRODUCTS CO
486	Ingram Charles lumber co inc
487	SONOCO PROCUCTS CO
488	SOUTHERN DIVERSIFIED LLC
489	WEYERHAEUSER COMPANY
490	INGRAM CHARLES LUMBER CO INC
491	WHITE OAK FORESTRY CORP
492	Jamestown timber 1
493	EVERGREEN TIMBERCO SC LLC
494	NEW GROWTH LLC
495	tamarack timberco sc llc
496	NEW GROWTH LLC
497	evergreen timberco sc llc
498	nature conservancy the
499	SC WILDLIFE RESOURCES DEPT OF GAME
500	vWDA-USA TIMBER LLC
501	FIA TIMBER PARTNERS II
502	tamarack timberco sc llc
503	PG PRESERVATION LLC
504	UNCLE MONTYS LLC
505	EVERGREEN TIMBERCO SC LLC
506	SAWYER, PHILIP M \& SAWYER, EMILY R
507	POST FOOT PROPERTIES LLC
508	WEDGE LLC The
509	vWda-usa timber llc
510	OAK MOUNTAIN TIMBERCO SC LlC
511	RICHARD, SILAS \& RICHARD, RENEE
512	BLACK RIVER CYPRESS PRESERVE LLC
513	RICHARD, SILAS \& RICHARD, RENEE
514	MOUNT PLEASANT PLANTATION LLC
515	STATE/ S CA/ \& T THE DEPT OF ADM, \& SOUTH CA DEPT OF PKS
516	KEYSTONE FOREST INVESTMENTS LLC
517	HOMESEEKERS LTD PRTNR
518	KINLOCH PLANTATION LLC
519	UNITED STATES OF AMERICA
520	RICHARD, SILAS \& RICHARD, RENEE
521	WHITE OAK FORESTRY CORP
522	MAM FOREST LLC
523	TAMARACK TIMBERCO SC LLC
524	WHITE OAK FORESTRY CORP
525	SANTEE TIMBERLANDS
526	CHARLES Ingram lumber coinc
527	evergreen timberco sc llc
528	BELLE W BARUCH FOUNDATION
529	millbrook plantation llc
530	VIIING ASSOCIATES LLC
531	WEYERHAEUSER NR COMPANY
532	nature Conservancy
533	SAWYER, PHILIP M \& SAWYER, EMILY R
534	STATE OF SOUTH CAROLINA
535	JAMESTOWN TIMBER 1
536	brookgreen gardens society
537	KEYSTONE FOREST INVESTMENTS LLC
538	ingram Charles lumber co
539	EVERGREEN TIMBERCO SC LLC
540	MOUNT PLEASANT PLANTATION LLC
541	evergreen timberco sc lic

00403-02-001	1033.74	Florence	OFF ST HWY 66
00421-05-004	1108.60	Florence	OFF ST HWY 41
00415-02-004	1075.36	Florence	2651 S OLD RIVER RD
00437-05-002	1181.15	Florence	430 E TRINITY RD
00273-01-003	1390.93	Florence	OFF ST HWY 24
00367-01-013	1437.33	Florence	
00162-03-007	1317.31	Florence	OFF ST HWY 541
00451-05-002	2255.27	Florence	ST HWY 121
00287-02-002	1596.17	Florence	HWY 1007
00301-01-001	6654.98	Florence	OFF ST HWY 24
00303-01-001	3922.31	Florence	ST HWY 24
00447-05-001	2274.23	Florence	OFF ST HWY 99
00270-01-001	1658.79	Florence	3000 RESTVIEW RD
01-1010-013-02-00	1158.64	Georgetown	ESTHERVILLE DR
01-0442-026-11-00	1331.58	Georgetown	
01-1001-004-00-00	1080.50	Georgetown	SAINTS DELIGHT RD
01-0442-026-13-00	1323.98	Georgetown	
02-1006-001-00-00	1066.68	Georgetown	BROWNS FERRY RD
01-0442-026-13-00	1274.28	Georgetown	
03-0477-001-00-00	1275.11	Georgetown	EXODUS DR
02-1004-001-01-00	1311.91	Georgetown	PUNCHEON CREEK DR
01-1011-009-00-00	1013.24	Georgetown	SOUTH FRASER ST
02-1009-004-00-00	1052.38	Georgetown	BROWNS FERRY RD
03-1004-024-00-00	1184.84	Georgetown	1530 EADDY RD
01-0412-001-00-00	1494.41	Georgetown	COUNTY LINE RD
04-1001-001-02-04	1036.91	Georgetown	VANDERBILT BLVD
02-1003-005-00-00	1182.59	Georgetown	10117 BROWNS FERRY RD
01-0414-004-00-00	1052.53	Georgetown	BIGELOW DR
02-1005-002-00-00	1135.16	Georgetown	GAPWAY RD
03-0444-001-00-00	1290.31	Georgetown	5119 CHOPPEE RD
01-1012-002-00-00	1285.70	Georgetown	SANTEE DELTA RIV
02-1009-004-16-00	1311.64	Georgetown	BROWNS FERRY RD
03-1006-001-00-00	1249.55	Georgetown	CHOPPEE RD
02-1001-002-00-00	1204.96	Georgetown	COUNTYLINE RD
02-0409-021-00-00	1012.94	Georgetown	16368 COUNTY LINE RD
02-1001-002-00-00	1187.73	Georgetown	COUNTYLINE RD
02-1001-002-09-00	1111.40	Georgetown	HESTERVILLE RD
02-1006-012-00-00	1047.99	Georgetown	1012 RAMSEY GROVE RD
03-0429-004-03-00	1322.14	Georgetown	ROSE HILL RD
02-1006-007-00-00	1032.95	Georgetown	3124 BROWNS FERRY RD
01-1011-006-00-00	1017.21	Georgetown	3135 NORTH SANTEE RIVER RD
03-1001-014-03-00	1192.29	Georgetown	OLD PEE RD
02-1001-002-00-00	2752.46	Georgetown	COUNTYLINE RD
01-1010-005-00-00	7832.26	Georgetown	SOUTH FRASER ST
01-1006-002-01-00	3646.07	Georgetown	BLUFF RD
01-0412-001-00-00	3980.59	Georgetown	COUNTY LINE RD
01-1010-001-00-00	1544.30	Georgetown	8722 SOUTH FRASER ST
01-0442-026-07-00	1916.93	Georgetown	ST DELIGHT RD
03-1005-007-00-00	2097.86	Georgetown	NORTH FRASER ST
01-1003-008-00-00	1713.50	Georgetown	BLUFF RD
04-1004-001-00-00	12181.55	Georgetown	HWY 17
01-1011-008-00-00	2654.29	Georgetown	NORTH SANTEE RIVER RD
04-1001-001-05-00	2161.54	Georgetown	HWY 17
01-1006-002-03-00	2087.75	Georgetown	POWELL RD
01-1007-003-00-00	1963.50	Georgetown	1 COMMANDERS ISLAND RD
02-1005-002-00-00	9383.79	Georgetown	GAPWAY RD
01-1015-002-00-00	3636.97	Georgetown	
01-0442-026-11-00	2022.67	Georgetown	
04-0406-001-00-00	4316.55	Georgetown	16147 OCEAN HWY
03-0429-004-03-00	2861.00	Georgetown	ROSE HILL RD
03-1002-004-02-00	2918.66	Georgetown	PLEASANT HILL DR
01-1006-006-00-00	15164.93	Georgetown	
02-1002-002-00-00	3589.13	Georgetown	COUNTY LINE RD
01-1001-003-00-00	2607.24	Georgetown	SAINTS DELIGHT RD

PAMPLICO	SC	29583			FARMS
JOHNSONVILLE	SC	29555			FARMS
JOHNSONVILLE	SC	29555			TAX EXEMPT
JOHNSONVILLE	SC	29555			FARMS
florence	Sc	29506			FARMS
FLORENCE	SC	29506			FARMS
COWARD	SC	29530			FARMS
JOHNSONVILLE	SC	29555			FARMS
EfFINGHAM	SC	29541			FARMS
FLorence	SC	29506			FARMS
florence	SC	29506			AGricultural (NEC)
JOHNSONVILLE	SC	29555			FARMS
FLORENCE	SC	29506			FARMS
GEORGETOWN	SC	29440	FA	AG	FARMS
ANDREWS	SC	29510	FA	AG	FARMS
ANDREWS	Sc	29510	FA	AG	FARMS
ANDREWS	SC	29510	FA	AG	FARMS
GEORGETOWN	SC	29440	FA	AG	FARMS
ANDREWS	SC	29510	FA	AG	FARMS
GEORGETOWN	SC	29440	VR10	Res	FARMS
ANDREWS	SC	29510	CP	Conserv	MISC BUILDING
georgetown	SC	29440	CP	Conserv	State property
georgetown	Sc	29440	PD	PUD	FARMS
GEORGETOWN	SC	29440	FA	AG	FARMS
ANDREWS	SC	29510	FA	AG	FARMS
PAWLEYS ISLAND	SC	29585	PD	PUD	FARMS
GEORGETOWN	SC	29440	FA	AG	SFR
ANDREWS	Sc	29510	FA	AG	FARMS
GEORGETOWN	SC	29440	FA	AG	FARMS
GEORGETOWN	SC	29440	FA	AG	FARMS
georgetown	SC	29440	CP	Conserv	WILDLIFE REFUGE
GEorgetown	SC	29440	FA	AG	FARMS
georgetown	SC	29440	FA	AG	FARMS
ANDREWS	Sc	29510	FA	AG	FARMS
ANDREWS	SC	29510	FA	AG	MISC BUILDING
GEORGETOWN	SC	29440	FA	AG	FARMS
ANDREWS	SC	29510	FA	AG	FARMS
georgetown	SC	29440	FA	AG	FARMS
hemingway	SC	29554	FA	AG	FARMS
georgetown	SC	29440	FA	AG	FARMS
GEORGETOWN	SC	29440	CP	Conserv	RESIDENTIAL (NEC)
GEORGETOWN	SC	29440	CP	Conserv	Federal building
georgetown	SC	29440	FA	AG	FARMS
georgetown	SC	29440	FA	AG	FARMS
georgetown	Sc	29440	FA	AG	FARMS
ANDREWS	Sc	29510	FA	AG	FARMS
georgetown	SC	29440	FA	AG	FARMS
GEORGETOWN	SC	29440	FA	AG	FARMS
GEORGETOWN	SC	29440	FA	AG	FARMS
georgetown	SC	29440	CP	Conserv	FARMS
georgetown	SC	29440	FA	AG	STATE PROPERTY
GEORGETOWN	SC	29440	CP	Conserv	RESIDENTIAL (NEC)
PAWLEYS ISLAND	SC	29585	PD	PUD	FARMS
GEORGETOWN	SC	29440	FA	AG	FARMS
georgetown	SC	29440	CP	Conserv	FARMS
georgetown	Sc	29440	FA	AG	FARMS
georgetown	Sc	29440	CP	Conserv	State property
ANDREWS	Sc	29510	FA	AG	FARMS
MURRELLS INLET	SC	29576	PD	PUD	STATE PROPERTY
georgetown	SC	29440	FA	AG	FARMS
hemingway	SC	29554	FA	AG	FARMS
georgetown	SC	29440	FA	AG	FARMS
ANDREWS	Sc	29510	FA	AG	FARMS
ANDREWS	Sc	29510	FA	AG	FARMS

542	SAWYER, PHILIP M \& SAWYER, EMILY R
543	SANTEE TIMBERLANDS
544	the nature conservancy
545	NEW GROWTH LLC
546	evergreen timberco sc llc
547	Santee timberlands
548	KINLOCH PLANTATION LLC
549	the nature conservancy
550	belle w baruch foundation
551	SC WILDLIFE MARINE RESOURCES
552	FIA TIMBER PARTNERS II
553	IRI FOREST INVESTMENTS LLC
554	Ingram Charles lumber co
555	Sonne, SARA b
556	FIA TIMBER PARTNERS II
557	SC PUBLIC SERVICE AUTHORITY
558	SC, WILDLIFE MARINE RESOURSES
559	NEW GROWTH LLC
560	WEYERHAEUSER COMPANY
561	Brookgreen gardens society
562	SAWYER, PHILIP M \& SAWYER, EMILY R
563	DMR TIMBERLANDS LLC, \& HMB INVESTMENT PROPERTIES LLC
564	SILVER HILL ACQUISITION LLC
565	SANTEE TIMBERLANDS
566	UNITED STATES OF AMERICA
567	DAWSON, JOHN BAKER \& DAWSON, RAMSAY FERRIS
568	Charles ingram lumber co inc
569	Sonne, SARA b
570	SAWYER, PHILIP M \& SAWYER, EMILY R
571	the nature conservancy
572	MANIGAULT, PIERRE \& ANDERSON, IVAN V
573	SONNE, SARA B
574	SC DEPT OF PARKS REC \& TOURISM
575	SC UNITED METHODIST CAMP \& R
576	CITY Of GREENVILLE
577	SC WILDLIFE \& MARINE RES DEPT
578	CITY OF GREENVILLE
579	SC dept of natural resources
580	TWIN CREEKS TIMBER LLC
581	UNITED STATES OF AMERICA
582	TWIN CREEKS TIMBER LLC
583	TWIN CREEKS TIMBER LLC
584	UNITED STATES OF AMERICA
585	GREENWOOD COUNTY LAKE GREENWOOD
586	FLOWING WELL LLC
587	LAURA LIVINGSTONS WOODLAND LLC
588	HARPER FAMILY PROPERTIES LLC
589	old pines llc
590	ARCTIC SOUTHERN FARMS LLC
591	PAULINE PLACE LLC
592	WEYERHAEUSER COMPANY
593	bLUE MAPLE GROUP LLC
594	SaLKEHATCHIE WOODS LLC
595	WEYERHAEUSER COMPANY
596	CUSABO PRESERVE LLC
597	SCOTIA FARMS
598	COLLUMS TIMBER INVESTMENT LLC
599	OAK GROVE PLANTATION LLC
600	maner, clawton
601	ZF US TIMBER PROPERTIES LLC
602	RAYONIER FOREST RESOURCES
603	SC DEPT OF NATURAL RESOURCES, \& WEBB WILDLIFE CENTER
604	TROIS BOIS LTD
605	ANGEL TRACT LLC

02-1005-002-00-00	3128.68	Georgetown	GAPWAY RD	GEORGETOWN	SC	29440
01-0442-026-07-00	2200.07	Georgetown	St delight rd	GEORGETOWN	SC	29440
03-1002-004-01-01	2071.48	Georgetown	PLEASANT HILL DR	hemingway	Sc	29554
01-0405-004-00-00	2553.49	Georgetown	GEORGETOWN HWY	ANDREWS	SC	29510
03-1006-016-00-00	2031.37	Georgetown	NORTH FRASER ST	GEORGETOWN	SC	29440
01-0442-026-07-00	2039.84	Georgetown	St delight rd	GEORGETOWN	SC	29440
01-1011-006-00-00	2962.32	Georgetown	3135 NORTH SANTEE RIVER RD	GEORGETOWN	SC	29440
03-0470-001-00-00	8330.14	Georgetown		murrells inlet	Sc	29576
04-1004-001-00-00	1701.30	Georgetown	HWY 17	georgetown	SC	29440
01-1014-002-00-00	13820.46	Georgetown		GEORGETOWN	SC	29440
03-1004-024-00-00	3151.83	Georgetown	1530 EADDY RD	georgetown	SC	29440
03-0429-004-04-00	3101.75	Georgetown	Choppee rd	GEORGETOWN	SC	29440
03-1002-004-00-00	2593.54	Georgetown		hemingway	SC	29554
03-1003-012-00-00	2175.63	Georgetown	1432 BATES HILL RD	GEORGETOWN	SC	29440
03-1004-024-00-00	2039.76	Georgetown	1530 EADDY RD	GEORGETOWN	SC	29440
01-1009-004-00-00	2183.67	Georgetown	661 STEAM PLANT DR	GEORGETOWN	SC	29440
04-1005-001-00-00	3679.32	Georgetown		GEORGETOWN	SC	29440
01-0442-026-13-00	2607.61	Georgetown		GEORGETOWN	SC	29440
02-1004-001-00-00	1799.01	Georgetown	GAPWAY RD	ANDREWS	Sc	29510
04-0406-001-00-00	1625.95	Georgetown	16147 OCEAN HWY	MURRELLS INLET	SC	29576
02-1005-002-00-00	2563.45	Georgetown	GAPWAY RD	GEORGETOWN	SC	29440
01-1004-003-00-00	4126.96	Georgetown	BLUFF RD	GEORGETOWN	SC	29440
01-0418-006-00-00	2575.35	Georgetown	highmarket St	GEORGETOWN	SC	29440
01-0442-026-07-00	3565.13	Georgetown	St delight rd	GEORGETOWN	SC	29440
03-0451-001-00-00	4500.32	Georgetown		GEORGETOWN	SC	29440
01-1014-004-00-00	1529.53	Georgetown		GEORGETOWN	SC	29440
03-0419-003-00-00	2551.44	Georgetown	FRANK CRIBB RD	HEMINGWAY	SC	29554
03-1003-012-00-00	2005.85	Georgetown	1432 BATES HILL RD	hemingway	SC	29554
02-1005-002-00-00	3589.09	Georgetown	GAPWAY RD	GEORGETOWN	SC	29440
01-1002-001-00-00	4310.89	Georgetown	COUNTY LINE RD	ANDREWS	SC	29510
01-1011-001-00-00	1603.98	Georgetown	NORTH SANTEE RIVER RD	GEORGETOWN	SC	29440
03-1003-012-00-00	3121.71	Georgetown	1432 BATES HILL RD	HEMINGWAY	SC	29554
0680.04-01-001.00	1158.07	Greenville	PERSIMMON RIDGE RD	CLEVELAND	SC	29635
0688.02-01-001.00	1644.18	Greenville	391 HAGOOD LN	Cleveland	SC	29635
0658.02-01-001.00	18636.58	Greenville	109A Callahan mountain rd	Landrum	SC	29356
0689.00-01-005.02	1647.35	Greenville	near ceasars head ln	CLEVELAND	SC	29635
0689.01-01-001.00	6962.52	Greenville	1020 TABLE ROCK LN	CLEVELAND	SC	29635
0637.01-01-001.01	1896.75	Greenville	OAK GROVE	LANDRUM	SC	29356
6870-374-235-000	1244.62	Greenwood	CALLISON RD	NINETY SIX	SC	29666
6810-776-845-000	1318.82	Greenwood	120 bradley St	BRADLEY	SC	29819
6820-473-250-000	1055.16	Greenwood	MILLWAY RD	BRADLEY	SC	29819
6950-399-408-000	1179.12	Greenwood	NEW ZION RD	HODGES	SC	29653
6812-513-176-000	1350.98	Greenwood	MCCORMICK HWY	BRADLEY	SC	29819
7816-097-624-000	2475.63	Greenwood	FERC P1267 LAKE BED	NINETY SIX	SC	29666
114-00-00-044	1420.65	Hampton	24361 OLD SALKEHATCHE	BRUNSON	SC	29911
082-00-00-010	1028.51	Hampton		BRUNSON	SC	29911
019-00-00-008	1116.68	Hampton		ESTILL	SC	29918
055-00-00-008	1040.13	Hampton		GARNETT	SC	29922
132-00-00-001	1367.86	Hampton	330 CORBIN	BRUNSON	SC	29911
018-00-00-014	1024.36	Hampton	2740 BRANCH	ESTILL	SC	29918
185-00-00-001	1008.87	Hampton		VARNVILLE	SC	29944
182-00-00-003	1122.67	Hampton		VARNVILLE	SC	29944
196-00-00-019	1073.84	Hampton		EARLY BRANCH	SC	29916
122-00-00-003	1386.47	Hampton		VARNVILLE	SC	29944
186-00-00-056	1301.84	Hampton	5286 OLD SALKEHATCHIE RD	EARLY BRANCH	SC	29916
053-00-00-002	1035.99	Hampton	old orangeburg	GARNETT	SC	29922
185-00-00-010	1219.07	Hampton	YEMASSEE	EARLY BRANCH	SC	29916
043-00-00-005	1195.90	Hampton		BRUNSON	SC	29911
037-00-00-013	1015.66	Hampton		GARNETT	SC	29922
160-00-00-002	4565.56	Hampton		VARNVILLE	SC	29944
124-00-00-015	1809.07	Hampton		VARNVILLE	SC	29944
039-00-00-003	4433.97	Hampton		GARNETT	SC	29922
073-00-00-013	2335.91	Hampton		GARNETT	SC	29922
188-00-00-030	1571.48	Hampton	YEMASSEE	YEMASSEE	SC	29945

6	GRoton Land company inc
607	SC DEPT OF NATURAL RESOURCES
8	RAYONIER FOREST RESOURCES
609	Yemassee timber llc
610	SCOTT woodlands llc
611	ELLIOTT PROPERTIES HOLDINGS LL
612	BOSTICK, J A
613	GRAVEL HILL FARMS LLC
614	CHILTON TIMBER \& LAND CO LLC
615	SC DEPT OF NATURAL RESOURCES
616	rayonier forest resources
617	WEYERHAEUSER COMPANY
618	SC dept of natural resources
619	RIVERSTONE PROPERTIES LLC
620	RED MOUNTAIN TIMBER CO III LLC
621	SC DEPT NATURAL RESOURCES
622	HORRY COUNTY
623	BASS WACCAMAW RIVER RANCH LLC
624	WAKE STONE CORP
625	HOLLIDAY, JUDSON J
626	GRAND STRAND WATER \& SEWER AUTH
627	HORRY COUNTY SOLID WASTE AUTH INC
628	THE MAY COMPANY
629	SC DEPT OF NATURAL RESOURCES
630	MINCEY, KENNETH H
631	RIVERSTONE PROPERTIES LLC
632	SPRINGWOOD TIMBERLANDS LLC
633	SOUTH CAROLINA WILDLIFE \& MARINE
634	COWPENS LAND \& TIMBER LLC
635	
636	TIMBERVEST PARTNERS III SC LLC
637	LANDBANK FUND XIV LLC
638	SOUTH CAROLINA WILDLIFE \& MARINE
639	GRAND STRAND WATER \& SEWER AUTH
640	
641	fd timber llc
642	HORRY COUNTY
643	MAIB CONWAY LUMBER PROPERTY LLC
644	SC DEPT NATURAL RESOURCES
645	SC DEPT NATURAL RESOURCES
646	GRAND STRAND WATER \& SEWER AUTH
647	SC WILDLIFE \& MARINE RESOUCES DEPT
648	fd timber llc
649	fd timber llc
650	SC department of natural resources
651	CITY Of HARDEEVILLE
652	BLACK SWAMP PROPERTIES LLC
653	okeetee club
654	BLACK, MARTHA C
655	EXLEY, thomas L
656	KEELING LAND \& CATTLE-COMM LLC
657	GLOVER REAL ESTATE LLC
658	CHELSEA PLANTATION LLC 720 W BUSINESS HWY 60
659	PINELAND INVESTMENTS ILLC
660	CRIMson independence llc
661	SLF III HARDEEVILLE LLC \& SLF III SC EAST ARGENT LLC
662	CHILTON TIMBER \& LAND CO LLC
663	GA DEPT-TRANSPORTATION
664	LAWTON, WINSTON A \& LAWTON, ANNE M
665	C \& S NATIONAL BANK
666	CDEF Parcels lic
667	minto latitude hh llc
668	CAY, John E John E CAY RE III

009-00-00-001	3800.47	Hampton	AUGUSTA STAGECOACH
056-00-00-028	1595.92	Hampton	
124-00-00-015	1921.88	Hampton	
191-00-00-002	1971.23	Hampton	POCOTALIGO
012-00-00-001	2103.73	Hampton	CRAB ORCHARD
011-00-00-001	1531.67	Hampton	1444 CRAB ORCHARD
009-00-00-002	1972.26	Hampton	AUGUSTA STAGECOACH
037-00-00-014	2021.12	Hampton	AUGUSTA STAGECOACH
191-00-00-001	7551.84	Hampton	
024-00-00-005	13029.36	Hampton	HAMILTON RIDGE
138-00-00-004	3267.67	Hampton	
185-00-00-001	3559.24	Hampton	
056-00-00-028	2019.39	Hampton	
35900000001	1200.50	Horry	
23800000001	1444.02	Horry	
43800000001	1313.51	Horry	
44200000013	1017.13	Horry	3300 PHILLIS BLVD
32000000008	1293.96	Horry	5800 OLD REAVES FERRY RD
21500000036	1136.98	Horry	
16600000001	1160.85	Horry	1065 JUDSON LN
43600000025	1393.58	Horry	SC 24
38500000006	1128.14	Horry	511 THREE R DR
46400000001	1309.91	Horry	
30200000019	1300.02	Horry	
14000000007	1017.83	Horry	
41600000258	1492.91	Horry	
23700000005	1334.61	Horry	
38700000001	1092.89	Horry	2575 INTERNATIONAL DR
30100000001	1281.98	Horry	
28700000001	3938.56	Horry	3647 GUNTERS ISLAND RD
22300000005	1925.78	Horry	
40300000002	1637.59	Horry	4030 S HWY 701
13700000001	2432.95	Horry	10662 HWY 917
43500000001	1749.74	Horry	SC 24
28700000001	2151.29	Horry	3647 GUNTERS ISLAND RD
34100000005	2287.12	Horry	
38600000001	3696.97	Horry	INTERNATIONAL DR
37600000008	5645.33	Horry	
43800000001	4032.16	Horry	
23900000001	2016.07	Horry	
45500000001	3234.76	Horry	355 BUCKSPORT RD
38800000001	6499.17	Horry	
26500000001	2810.87	Horry	
31800000001	1661.02	Horry	
41500000001	2231.36	Horry	
066-00-00-005	1334.24	Jasper	
014-00-01-084	1048.08	Jasper	
023-00-02-020; 027-00-02-034; 045-00-01-035	39059.00	Jasper	
088-00-01-001	1417.69	Jasper	
027-00-01-029	1157.69	Jasper	
082-00-01-001	1392.29	Jasper	GLover rd
059-00-04-002	1247.12	Jasper	GRAYS HWY
081-00-02-001	1005.06	Jasper	1000 CHELSEA PLANTATION DR
016-00-06-001	1032.51	Jasper	736 STAFFORD RD
066-00-00-004	1495.69	Jasper	
029-00-03-003; 029-00-03-004	1584.97	Jasper	
057-00-07-014	1450.90	Jasper	
076-00-00-001	1267.46	Jasper	332 SPEEDWAY BLVD
002-00-02-004	1091.16	Jasper	1480 ROBERTVILLE DR
087-00-03-002	1092.04	Jasper	
061-00-01-005	1001.39	Jasper	2201 LOG HALL RD
041-21-00-885	1156.66	Jasper	2074 ST SOMEWHERE DR
037-00-02-012	1486.92	Jasper	

ESTILL	SC	29918			AGricultural (nec)
GARNETT	Sc	29922			State property
VARNVILLE	SC	29944			AGRICULTURAL (NEC)
YEMASSEE	SC	29945			AGRICULTURAL (NEC)
ESTILL	Sc	29918			agricultural (NEC)
ESTILL	Sc	29918			AGRICULTURAL (NEC)
ESTILL	sc	29918			AGRICULTURAL (NEC)
GARNETT	Sc	29922			AGRICULTURAL (NEC)
YEMASSEE	SC	29945			AGRICULTURAL (NEC)
GARNETT	SC	29922			STATE PROPERTY
VARNVILLE	SC	29944			AGRICULTURAL (NEC)
VARNVILLE	Sc	29944			AGRICULTURAL (NEC)
GARNETT	Sc	29922			State property
LONGS	Sc	29568	CFA	Bus/Comm	FARMS
GALIVANTS FERRY	SC	29544	FA	AG	FARMS
MYRTLE BEACH	SC	29588	CFA	Bus/Comm	FARMS
MYRTLE BEACH	Sc	29577	LI	Ind	TAX EXEMPT
CONWAY	Sc	29526	FA	AG	FARMS
LORIS	SC	29569	CFA	Bus/Comm	FARMS
GALIVANTS FERRY	SC	29544	FA	AG	FARMS
CONWAY	SC	29527	FA	AG	FARMS
MYRTLE BEACH	Sc	29579	CFA	Bus/Comm	TAX EXEMPT
MYRTLE BEACH	Sc	29588	CFA	Bus/Comm	FARMS
LONGS	Sc	29568	FA	AG	FARMS
NICHOLS	Sc	29581	FA	AG	mobile home lot
MYRTLE BEACH	SC	29588	CFA	Bus/Comm	FARMS
GALIVANTS FERRY	SC	29544	FA	AG	FARMS
MYRTLE BEACH	Sc	29579	CP	Conserv	FARMS
LONGS	Sc	29568	FA	AG	FARMS
GALIVANTS FERRY	Sc	29544	FA	AG	VACANT LAND (NEC)
LORIS	Sc	29569	AG2	AG	FARMS
CONWAY	SC	29527	CFA	Bus/Comm	FARMS
NICHOLS	Sc	29581	CP	Conserv	FARMS
CONWAY	Sc	29527	FA	AG	FARMS
CONWAY	Sc	29527	FA	AG	VACANT LAND (NEC)
CONWAY	Sc	29526	FA	AG	FARMS
MYRTLE BEACH	SC	29579	CFA	Bus/Comm	FARMS
CONWAY	SC	29527	FA	AG	FARMS
CONWAY	SC	29527	CP	Conserv	FARMS
GALIVANTS FERRY	Sc	29544	CP	Conserv	FARMS
CONWAY	Sc	29527	FA	AG	VACANT LAND (NEC)
MYRTLE BEACH	SC	29579	CP	Conserv	VACANT LAND (NEC)
LONGS	SC	29568	FA	AG	FARMS
CONWAY	SC	29526	CFA	Bus/Comm	FARMS
CONWAY	Sc	29526	CFA	Bus/Comm	FARMS
hardeeville	Sc	29927	PDD	PUD	PUBLIC (NEC)
TILLMAN	SC	29943			AGRICULTURAL (NEC)
hardeeville	Sc	29927	RA	Res	agricultural (NEC)
YEMASSEE	SC	29945	RA	Res	AGricultural (NEC)
HARDEEVILLE	Sc	29927	RA	Res	AGRICULTURAL (NEC)
RIDGELAND	Sc	29936	RA	Res	AGRICULTURAL (NEC)
RIDGELAND	SC	29936	RA	Res	AGRICULTURAL (NEC)
RIDGELAND	SC	29936	RA	Res	AGRICULTURAL (NEC)
PINELAND	SC	29934	RA	Res	SFR
hardeeville	Sc	29927	PDD	PUD	AGRICULTURAL (NEC)
hardeevile	Sc	29927	PDD	PUD	AGricultural (nec)
EARLY BRANCH	Sc	29916	RA	Res	AGRICULTURAL (NEC)
hardeeville	sc	29927	LI	Ind	AGRICULTURAL (NEC)
GARNETT	SC	29922	RA	Res	AGRICULTURAL (NEC)
RIDGELAND	SC	29936	RA	Res	AGricultural (NEC)
RIDGELAND	SC	29936	RA	Res	AGRICULTURAL (NEC)
hardeeville	Sc	29927	PDD	PUD	VACANT LAND (NEC)
HARDEEVILLE	SC	29927	RA	Res	AGRICULTURAL (NEC)

669	KARRH LAND \& TIMBER LLC
670	TROIS BOIS LTD
671	bailey mill llc
672	MFM RESIDENTIAL PROPERTIES LLC
673	PINELAND 440 LLC
674	CLARK, Jocelyn \& CLARK, Andrea w trust
675	GOOD HOPE CORP
676	HUGUENIN FAMILY PROPERTIES LLC
677	JEPSON, ROBERT S \& JEPSON, ALICE A
678	CYPRESS WOODS CORP
679	GOOD HOPE CORP
680	UNITED STATES OF AMERICA
681	CHELSEA PLANTATION LLC 720 W BUSINESS HWY 60
682	GOOD HOPE CORP
683	GREEN SWAMP CLUB INC
684	OPEN SPACE INSTITUTE LAND TRUST INC
685	GOOD HOPE CORP
686	SOUTH CAROLINA FORESTRY COMMISSION
687	EXLEY, BEBEH
688	WELLS, TED D \& WELLS, PAMELA K
689	STATE OF S C WILDLIFE \& MARINE RESOURCES DEPT
90	TULIFINNY PLANTATION LLC
91	BOLAN HALL LLC
692	mill Creek hunting preserve in
693	UNITED STATES OF AMERICA
694	EXLEY, THOMASL
695	PITTMAN, HAROLD S \& HELEN, DILLS-PITTMAN
696	CYPRESS WOODS CORP
697	GOOD HOPE CORP
698	DERRY LAND CO LLC
99	PINELAND HOLDING
700	CYPRESS CREEKILLC
701	derry land collc
702	collums sawmill llc, \& Green swamp club inc
703	ALMOST HEAVEN PLANTATION LLC
704	PELICAN CAPITAL LLC
705	CYPRESS WOODS CORP
706	MAURENE PLANTATION LLC
707	SCOTT WOOdLANDS LLC
708	Glover real estate llc
709	bailey mill llc
710	MACKAY POINT ASSOCIATES
711	WA Holdings south, LLC
712	CYPRESS WOODS CORP
713	derry land co llc
714	GA DEPT-TRANSPORTATION
715	SHERWOOD TRACT
716	LIBERTY HILL LAND \& TIMBER LLC
717	Catchmark sc timberlands llc
718	GUY, JAMES LINDSAY
719	KHP LAND COMPANY LLC
720	JRAW LLC
721	WATEREE Holdings llc
722	MBR CORP INC
723	TUTTLE, LEONE
724	LANHAM, JAMES C
725	UPPER ENGLISH SWAMP INC
726	ROBINSON, CHARLES A
727	MULBERRY PLANTATION INC
728	LLOYD, RICHARD W RESIDUARY
729	DUKE POWER CO, \& SSD-N, MCGUIRE

040-00-04-006	1300.49
050-00-03-028	1057.47
048-00-01-044	1093.14
041-00-04-060	1333.87
024-00-01-012	1086.56
086-00-01-002	1226.35
084-00-01-001	1259.88
086-00-04-010	1364.29
087-00-09-022	2200.49
048-00-01-001; 048-00-03-019	2193.38
084-00-01-001	1744.13
033-00-00-001	4531.92
081-00-02-001	1700.88
084-00-01-001	3727.63
011-00-00-002	1733.53
059-00-04-017	3446.33
084-00-01-049	2026.54
023-00-01-006	1577.65
025-00-01-002	2312.55
023-00-02-023	2313.10
076-00-00-002	1625.42
088-00-01-002	2140.56
097-00-00-001	3199.81
010-00-00-001	5270.20
033-00-00-001	5369.71
026-00-01-029	1553.70
063-00-07-005	2595.87
048-00-01-001	2702.07
084-00-01-001	2662.93
019-00-03-005	3002.70
015-00-04-038	1674.38
014-00-01-001	2010.84
019-00-03-005	4746.86
012-00-00-001	6673.10
048-00-01-041	1540.45
072-00-02-051	3968.73
048-00-01-001	4630.51
040-00-02-050	2668.57
013-00-02-004	2743.43
064-00-09-014	2023.16
048-00-01-025	1594.86
092-00-00-001	6357.01
042-00-06-045	2629.85
049-00-03-019	3475.97
019-00-03-005	1753.56
076-00-00-001	5529.82
030-00-01-007; 031-00-00-017;	
030-00-01-019; 030-00-01-020; 030-00-01-021; 030-00-01-022	1437.00
076-00-00-001	1094.76
166-00-00-016	1170.16
373-00-00-001	1356.19
240-00-00-015	1462.34
128-00-00-006	1252.69
095-00-00-001	1248.22
341-00-00-001	1497.14
208-00-00-001	1210.95
381-00-00-002	1371.82
388-00-00-003	1457.61
058-00-00-001	1010.23
327-00-00-001	1036.67
256-00-00-062	1464.91
161-00-00-001	1419.76

Jasper	COLEMAN LOOP	hardeeville
Jasper		Pineland
Jasper	CALF Pen bay rd	RIDGELAND
Jasper		HARDEEVILLE
Jasper	SAND HILLS RD	tillman
Jasper	506 SPRING HILL RD	RIDGELAND
Jasper	315 GOOD HOPE PLANTATION RD	RIDGELAND
Jasper	860 ROSELAND LN	RIDGELAND
Jasper	1415 GREGORIE NECK RD	YEMASSEE
Jasper	4190 LOG HAUL RD	PINELAND
Jasper	315 GOOD HOPE PLANTATION RD	RIDGELAND
Jasper	765 ALLIGATOR ALLEY	hardeeville
Jasper	1000 CHELSEA PLANTATION DR	RIDGELAND
Jasper	315 GOOD HOPE PLANTATION RD	RIDGELAND
Jasper	3525 MEADWESTVACO RD	TILLMAN
Jasper		RIDGELAND
Jasper		RIDGELAND
Jasper	1191 COTTON HILL RD	tillman
Jasper	ExLEY PLANTATION RD	tillman
Jasper	857 HOOVER PLANTATION DR	TILLMAN
Jasper		HARDEEVILLE
Jasper		yemassee
Jasper	2632 BoLAN HALL RD	RIDGELAND
Jasper	5867 EXLEY PLANTATION RD	tillman
Jasper	765 ALLIGATOR ALLEY	hardeeville
Jasper	EXLEY PLANTATION RD	TILLMAN
Jasper	67 LIVE OAK FARM RD	RIDGELAND
Jasper	4190 LOG HAUL RD	RIDGELAND
Jasper	315 GOOD HOPE PLANTATION RD	RIDGELAND
Jasper	GILLISON BRANCH RD	PIneland
Jasper		PINELAND
Jasper		GARNETT
Jasper	GILLISON BRANCH RD	Pineland
Jasper	7262 SAND HILLS RD	tillman
Jasper	1981 BAILEY MILL RD	PInELAND
Jasper	545 GLASGOW LANDING RD	hardeeville
Jasper	4190 LOG HAUL RD	RIDGELAND
Jasper	2258 PLANTATION DR	hardeeville
Jasper		tillman
Jasper	glover road	RIDGELAND
Jasper	BAILEY MILL RD	PIneland
Jasper	1818 MACKEY POINT RD	yemassee
Jasper		HARDEEVILLE
Jasper	TRAILS END	PINELAND
Jasper	GILLISON BRANCH RD	RIDGELAND
Jasper	332 SPEEDWAY BLVD	hardeeville
Jasper	US HIGHWAY 17	hardeevilue
Kershaw	1824 HILTON RD	HEATH SPRINGS
Kershaw	235 TRUESDALE RD	Camden
Kershaw	338A RED BANK RD	Rembert
Kershaw	682 KNIGHTS HILL RD	CAmDen
Kershaw	2348 HARBOR VIEW RD	CAMDEN
Kershaw	2842 RIVER RD	CAmDen
Kershaw	1081 BOYKIN RD	Rembert
Kershaw	1792B LONGTOWN RD	RIDGEWAY
Kershaw	925 ANCRUM FERRY RD	LUGOFF
Kershaw	1153A OLD ENGLISH RD	LUGOFF
Kershaw	3665 BEAVER CREEK CEMETARY RD	HEATH SPRINGS
Kershaw	559 SUMTER HIGH WAY	CAmDen
Kershaw	420 FAIRVIEW PLANTATION RD	camden
Kershaw	2640 LAKE RD	RIDGEWAY

SC	29927	RA	Res	AGRICULTURAL (NEC)
SC	29934	RA	Res	agricultural (NEC)
Sc	29936	RA	Res	AGRICULTURAL (NEC)
Sc	29927	PDD	PUD	AGRICULTURAL (NEC)
sc	29943	RA	Res	agricultural (nec)
Sc	29936	RA	Res	AGRICULTURAL (NEC)
SC	29936	RA		SfR
Sc	29936	RA	Res	SFR
SC	29945	RA	Res	SFR
SC	29934	RA	Res	SFR
SC	29936	RA		SFR
Sc	29927	RA	Res	PUBLIC (NEC)
Sc	29936	RA	Res	agricultural (nec)
Sc	29936	RA		SFR
SC	29943	RA	Res	AGricultural (NEC)
sc	29936	RA	Res	AGricultural (nec)
SC	29936	RA	Res	AGRICULTURAL (NEC)
Sc	29943	RA	Res	PUBLIC (NEC)
Sc	29943	RA	Res	AGRICULTURAL (NEC)
SC	29943	RA	Res	AGRICULTURAL (NEC)
SC	29927	RA	Res	PUBLIC (NEC)
Sc	29945	RA		AGRICULTURAL (NEC)
SC	29936	RA	Res	SFR
SC	29943	RA	Res	AGRICULTURAL (NEC)
Sc	29927	RA	Res	PUBLIC (NEC)
SC	29943	RA	Res	AGRICULTURAL (NEC)
SC	29936	RA		SFR
SC	29936	RA	Res	SFR
SC	29936	RA		SFR
Sc	29934	RA	Res	AGRICULTURAL (NEC)
SC	29934	RA	Res	AGricultural (NEC)
SC	29922	RA	Res	AGRICULTURAL (NEC)
SC	29934	RA	Res	AGRICULTURAL (NEC)
SC	29943	RA		AGricultural (NEC)
SC	29934			AGRICULTURAL (NEC)
SC	29927	RA		MULTIPLE USES
Sc	29936	RA	Res	SFR
Sc	29927	RA	Res	SFR
Sc	29943	RA	Res	agricultural (NEC)
Sc	29936			agricultural (Nec)
Sc	29934	RA	Res	agricultural (Nec)
SC	29945	RA	Res	SFR
SC	29927	PDD	PUD	AGRICULTURAL (NEC)
SC	29934	RA	Res	AGRICULTURAL (NEC)
SC	29936	RA	Res	AGRICULTURAL (NEC)
SC	29927	LI	Ind	AGRICULTURAL (NEC)
SC	29927	PDD	Ind	AGRICULTURAL (NEC)
Sc	29058	RD-2	Misc	FARMS
SC	29020	RD-2	Misc	AGricultural (nec)
Sc	29128	RD-1	Misc	FARMS
SC	29020	RD-2	Misc	FARMS
SC	29020	RD-2	Misc	FARMS
SC	29020	RD-2	Misc	AGRICULTURAL (NEC)
SC	29128	RD-1	Misc	FARMS
SC	29130	RD-2	Misc	FARMS
Sc	29078	RD-2	Misc	FARMS
SC	29078	RD-2	Misc	FARMS
SC	29058	RD-2	Misc	FARMS
SC	29020	RD-1	Misc	AGRICULTURAL (NEC)
SC	29020	RD-2	Misc	FARMS
Sc	29130	novalue	Not Zoned	PUBLIC (NEC)

730	KERSHAW COUNTY PARK
731	duke Power co
732	PHILLIPS, MARJORIE KAY PRICE
733	MCLEOD FAMILY THE LMT PART
734	hrm lloyd beachwood llc
735	CONGAREE RIVER LLC
736	
737	BTG PACTUAL OEF PROPERTY 2
738	duke power co
739	KLHT LLC
740	SC DEPT OF Natural resources
741	bLUE HERON TIMBER LLC
742	MULBERRY PLANTATION INC
743	RAGLINS CREEK FARMS LLC
744	WIZZYS TREE \& WILDLIFE FARM
745	acoetes llc
746	LANDSFORD RIVER PARK LLC
747	HAILE GOLD MINE INC
748	SPRINGLANDINC
749	HAILE GOLD MINE INC
750	CATCHMARK SOUTH CAROLINA TIMBERLANDS LLC
751	HALL JOHNSTON LLC
752	SOUTH CAROLINA DEPT OF NATURAL RESOURCES
753	SOUTH CAROLINA DEPARTMENT OF NATURAL RESOURCES
754	HAILE GOLD MINE INC
755	Wateree holdings llc
756	FOSTERS CROSSROADS Industrial site
757	SOUTH CAROLINA DEPT OF NATURAL RS
758	WILEY FORK-LAURENS LLC
759	DAVIDSON, JAMES B \& DAVIDSON, DONNA
760	BAILEY, EMILY F \& SWITZER, JAMES L
761	COPELAND, CARROLL DUCKETT
762	MICHELIN AMERICAS RESEARCH, \& \& dEV CORP
763	TYGER OAK INC
764	PALERMO TIMBER LLC
765	WATEREE HOLDINGS LLC
766	ROGERS, RANDOLPH G
767	lee state park
768	RICHLAND-LEXINGTON AIRPORT DIS
769	CREEK RANCH HOLDINGS LLC
770	SCOTT WOODLANDS LLC
771	SC DEPT OF NATURAL RESOURCES
772	bethea, Charlie
773	RED MOUNTAIN TIMBERCO III LLC
774	SGZRAQLLC
775	RED MOUNTAIN TIMBERCO III LLC
776	SC DEPT OF NATURAL RESOURCES
777	RED MOUNTAIN TIMBERCO III LLC
778	SC dept of natural resources
779	RED MOUNTAIN TIMBERCO III LLC
780	SC DEPT OF NATURAL RESOURCES
781	RED MOUNTAIN TIMBERCO III LLC
782	WHITEHORSE PLANTATION LLC
783	SC DEPT OF NATURAL RESOURCES
784	JAKES HILL TIMBER CO
785	RED MOUNTAIN TIMBERCO III LLC
786	JAMES WASH
787	Red mountain timberco ili llc
788	RED MOUNTAIN TIMBER CO III LLC
789	SOUTHBOUND TIMBERLANDS LLC
790	TIMBERVEST PARTNERS III SC LLC
791	HANSON AGGREGATES BECKER INC
792	KLECKLEY, FRANCES W
	CHARLES INGRAM LUMBER CO INC

245-00-00-001	1001.70
127-00-00-001	1363.80
121-00-00-005	1172.35
182-00-00-005	1314.01
243-00-00-016	1893.32
352-00-00-001-802	2842.41
073-00-00-001	1669.80
078-00-00-001	1809.04
128-00-00-001	2745.23
110-00-00-001	1928.63
073-00-00-002	1517.37
180-00-00-001	2751.55
327-00-00-001	2828.25
387-00-00-020	1512.36
0063-00-020.01	1138.74
0153-00-005.01	1029.10
0045-00-001.00	1030.4
0092-00-031.00	1055.11
0165-00-001.00	1450.96
0136-00-036.00	1215.13
0150-00-003.00	1253.16
0163-00-060.00	1354.91
0165-00-008.00	1939.52
0183-00-001.00	1577.97
0136-00-036.00	2252.55
0164-00-001.00	2955.95
0045-00-001	1395.00
575-00-00-019	1181.28
578-00-00-002	1257.78
512-00-00-001	1095.87
672-00-00-001	1299.05
680-00-00-001	1037.64
362-00-00-001	1103.52
745-00-00-009	1907.53
021-00-00-030-000	1461.27
047-00-00-043-000	1218.80
044-00-00-024-000	1290.44
038-00-00-011-000	2360.17
006797-01-006	1042.47
012600-01-005	1302.47
012400-01-005	1515.66
172-00-00-005-000	1269.06
017-00-00-001-000	1181.63
109-00-00-005-000	1058.40
133-00-00-002-000	1291.75
072-00-00-001-000	1276.66
144-00-00-002-000	4869.55
102-00-00-038-000	2746.70
178-00-00-003-000	19499.4
072-00-00-001-000	3743.43
173-00-00-008-000	2885.87
041-00-00-001-000	2591.97
117-00-00-005-000	2081.35
132-00-00-017-000	1880.44
050-00-00-023-000	3200.33
165-00-00-022-000	2106.61
039-00-00-061-000	1526.91
099-00-00-007-000	11265.23
028-00-00-001-000	2389.46
070-01-01-046	1040.42
007-01-02-001	1479.19
025-01-01-001	1316.35
051-01-01-001	1395.75
072-01-01-043	1084.10

Kershaw	860 PARK RD
Kershaw	2710 SINGLETON CREEK RD
Kershaw	3112 PROVIDENCE RD
Kershaw	26 MCLEOD RD
Kershaw	100 FIREBREAK RD
Kershaw	1084 HIGHWAY 601 SOUTH
Kershaw	2626 WILDLIFE RD
Kershaw	3441 RIVER RD
Kershaw	2236 SAILING CLUB LN
Kershaw	3101 SINGLETON CREEK RD
Kershaw	2794 WILDLIFE RD
Kershaw	1496 SUNNY HILL RD
Kershaw	559 SUMTER HIGH WAY
Kershaw	2136 HIGHWAY 601 SOUTH
Lancaster	1576 WIzzY RD
Lancaster	5845 heatherstone rd
Lancaster	INDUSTRIAL PARK RD
Lancaster	2205 Rainbow Ranch rd
Lancaster	EMBER LN
Lancaster	4380 ERNEST SCOTT RD
Lancaster	MOUNT CARMEL RD
Lancaster	4189 Stoneboro Rd
Lancaster	ember ln
Lancaster	EMBER LN
Lancaster	4380 ERNEST SCOTT RD
Lancaster	cedar creek rd
Lancaster	
Laurens	2070 WHITE PLAINS ROAD
Laurens	
Lee	
Lee	
Lee	1860 MANVILLE-WISACKY RD
Lee	
Lexington	AVIATION WAY
Lexington	1318 CHARLES TOWN RD
Lexington	SUGAR BOTTOM RD
Marion	
Marion	1000 SELLERS RD W
Marion	
Marion	76 HWY
Marion	
Marion	
Marlboro	
Marlboro	HATCHER HILL ROAD
Marlboro	OLD RIVER RD
Marlboro	
Marlboro	HWY 34 W

CASSATT
CAMDEN
CASSATT
CAMDEN
CAMDEN
LUGOFF
HEATH SPRINGS
HEATH SPRINGS
CAMDEN
CAMDEN
CAMDEN
CAMDEN
REMBERT
LUGOFF
LANCASTER
HEATH SPRINGS
LANCASTER
KERSHAW
HEATH SPRINGS
KERSHAW
HEATH SPRINGS
HEATH SPRINGS
HEATH SPRINGS
HEATH SPRINGS
KERSHAW
HEATH SPRINGS
LANCASTER
MOUNTVILE
CROSS HILL
MOUNTVILLE
CLINTON
CLINTON
MOUNTVILLE
KINARDS
BISHOPVILLE
DALZELL
BISHOPILLE
BISHOVVILE
WEST COLUMBIA
LEESVILLE
LEESVILLE
GRESHAM
MARION
GREEHAM
GRESHAM
MARION
GRESHAM
MARION
GRESHAM
MARIIN
GRESHAM
MARION
GRESHAM
GRESHAM
MARION
GRESHAM
MARION
CENTENARY
MARION
BLENHEIM
WALLACE
WALACE
BENNETTSVILLE
LATTA

794	HANSON AGGREGATES BECKER InC
795	SONOCO PRODUCTS CO
796	Wateree holding llc
797	TC \& Itimber co llc
798	Wateree holdings llc
799	SONOCO PRODUCTS CO
800	SFT FORESTLAND LLC
801	Wateree holdings llc
802	SONOCO PRODUCTS CO
803	twain timber llc
804	CORPS OF ENGINEERS
805	SC DEPT OF WILDLIFE \& MARINE RESOURCES
806	DAVIS LAND \& TIMBER LTD PARTNE
807	holmes, hS
808	TWIN CREEKS TIMBER LLC
809	CORPS OF ENGINEERS
810	DAVIS LAND \& TIMBER LTD PARTNE
811	SOUTH CAROLINA DEPARTMENT OF TRANSPORTION
812	WILEY FORK-LAURENS LLC
813	SC DEPT OF NATURAL RESOURCES
814	Phtimber lic
815	P H timber lic
816	Ph timber lic
817	S C DEPT OF NATURAL RESOURCES
818	USA
819	USA
820	neville bros
821	USA
822	DUKE POWER CO
823	USA
824	USA
825	duke ventures real estate llc
826	SC dept of natural resources
827	USA
828	USA
829	USA FOREST SERVICE
830	USA
831	USA
832	USA
833	USA
834	DUKE VENTURES REAL ESTATE LLC
835	USA
836	holcim us inc
837	DOMINION ENERGY SOUTH CAROLINA INC
838	TIMBERLANDS III LLC
839	NATIONAL AUDUBON SOCIETY
840	NATIONAL AUDUBON SOCIETY INC
841	GUTHRIE JAMES M III \& SUPERIOR HOLDI
842	CONNOR STATION LLC
843	WILLCREEK LLC
844	SHULER, HE
845	TROIS BOIS LTD
846	BUCKRIDGE PLANTATION LLC
847	ENVIRONMENTAL BANC \& EXCHANGE LLC
848	SC DEPARTMENT OF PARKS /RECREATION/T
849	NORTH AIR FORCE AUX FIELD
850	CPSA
851	MARTIN MARIETTA MATERIAL REAL ESTATE
852	WILL-GYn FARM LLC
853	timberlands III LLC
854	CLEMSON UNIVERSITY
855	SC DEPT OF NATURAL RESOURCES
856	SOUTH CAROLINA FORESTRY COMMISS
857	Greenville City of

$027-00-00-008$ 027-00-00-008
$239-00-00-002$ $239-00-00-002$
$150-00-00-012$ $150-00-00-012$ 169-00-00-00-000 036-00-00-029 $036-00-00-029$
$150-00-00-012$ $150-00$
$70-2$
$17-1$
$70-2$
$17-1$
$17-1$
$40-5$
$30-5$
$38-3-1$
$38-3-1$
$38-3-1$
$38-3-1$
$38-3-1$
$38-3-1$
$14-3$
343-00-01-002
343-00-01-002
118-00-01-003
343-00-01-002
016-00-01-001
343-00-01-002
343-00-01-002
016-00-01-013
011-00-01-001
343-00-01-002
$343-00-01-002$
$029-00-01-001$
$343-00-01-002$
343-00-01-002
$343-00-01-002$
$343-00-01-002$
$343-00-01-002$
$343-00-01-002$
343-00-01-002
343-00-01-002
0334-00-03-002.000
0077-00-00-0003.000
0187-00-01-002.000 0316-00-00-005.000 0337-00-00-008.000 0159-00-01-001.000 0345-00-01-02-0053.000 0205-00-02-001.000 0297-000-03-008.000 0297-00-03-0008.0000 0085-00-03-001.000 0364-00-01-003.000
0306-00-01-001.000
0067-00-02-009.000
0373-00-00-003.000
0370-00-00-001.000
0078-00-06-005.000
0369-00-03-014.000
R0009126
R0064422
R0010979
R0055068

1478.73	Marlboro	Boan RD	wallace
1552.01	Marlboro	HWY 15-401 W	bennettsville
1605.27	Marlboro	ROGERS LAKE LN	blenheim
1576.94	Marlboro	fox haven ln	blenheim
7575.60	Marlboro	RIVER RD	blenheim
2206.50	Marlboro		bennettsville
3706.39	Marlboro	FIRETOWER RD	CLIO
5393.44	Marlboro	rogers lake ln	bLenheim
3845.65	Marlboro	SOUTHARD LN	BENNETTSVILLE
1027.86	McCormick	HWY 10 SOUTH OF TRL	MC CORMICK
1095.42	McCormick	HWY 167	mount Carmel
1286.35	McCormick	14776 SC HIGHWAY 28	CLARKS HILL
2267.52	McCormick	E OF US HWY 221 \&	MC CORMICK
1629.96	McCormick	758 SERPENTINE DR	PLUM BRANCH
1634.59	McCormick	S OF HWY 46 G5	MOUNT CARMEL
3197.56	McCormick	W OF HWY 135	MC CORMICK
1786.28	McCormick	EOF US HWY 221 \&	Troy
1031.43	Newberry	BREHMER RD	KINARDS
1261.10	Newberry	HWY 347	CHAPPELLS
1283.73	Newberry	ON HWY 77	CHAPPELLS
2260.01	Newberry	SC 56	CHAPPELLS
2979.79	Newberry	SC 56	KINARDS
2141.58	Newberry	SC 56	SILVERSTREET
2392.86	Newberry	ON HWY 77	CHAPPELLS
1085.73	Oconee	112 ANDREW PICKENS CIR	MOUNTAIN REST
1160.30	Oconee	112 ANDREW PICKENS CIR	WESTMINSTER
1133.66	Oconee	PLAYGROUND RD	WALHALLA
9014.26	Oconee	112 ANDREW PICKENS CIR	mountain rest
1817.14	Oconee	100 BAD CREEK RD	SALEM
7812.84	Oconee	112 ANDREW PICKENS CIR	MOUNTAIN REST
4955.07	Oconee	112 ANDREW PICKENS CIR	MOUNTAIN REST
2708.40	Oconee		SALEM
2643.44	Oconee		SALEM
8155.16	Oconee	112 ANDREW PICKENS CIR	MOUNTAIN REST
5542.78	Oconee	112 ANDREW PICKENS CIR	WESTMINSTER
1846.67	Oconee		SALEM
4605.51	Oconee	112 ANDREW PICKENS CIR	MOUNTAIN REST
5784.54	Oconee	112 ANDREW PICKENS CIR	WESTMINSTER
14749.66	Oconee	112 ANDREW PICKENS CIR	MOUNTAIN REST
4079.42	Oconee	112 ANDREW PICKENS CIR	LONG CREEK
4050.12	Oconee		SALEM
6830.45	Oconee	112 ANDREW PICKENS CIR	MOUNTAIN REST
1330.06	Orangeburg	FOUR HOLE SWAMP	HOLLY HILL
1259.59	Orangeburg	S EDISTO RIVER	COPE
1167.51	Orangeburg	bay Rd	ROWESVILLE
1292.33	Orangeburg	NEAR DORCHESTER CNTY LINE	HOLLY HILL
1127.22	Orangeburg	FOUR HOLES SWAMP	HOLLY HILL
1006.55	Orangeburg	OFF HUDSON RD	COPE
1110.90	Orangeburg	HWY 453	HOLLY HILL
1122.85	Orangeburg	123 CANAAN RD	ORANGEBURG
1290.24	Orangeburg		HOLLY HILL
1297.24	Orangeburg	BETHEL FOREST RD	ROWESVILLE
1205.41	Orangeburg	DRAGSTRIP RD	NORTH
1452.53	Orangeburg	TONEY BAY ROAD	HOLLY HILL
2640.36	Orangeburg	OFF HWY 6/S-38-105	SANTEE
2249.30	Orangeburg	HWY 178	NORTH
1583.11	Orangeburg	324 IRICK ST	EUTAWVILLE
2233.37	Orangeburg	273 GARDENSGATE RD	EUTAWVILLE
1755.10	Orangeburg	3023 BINNICKER BRDG RD	COPE
1520.14	Orangeburg	COUNTY LINE ROAD	EUTAWVILLE
1359.61	Pickens		CENTRAL
2306.90	Pickens		SUNSET
1777.29	Pickens	8087 HIGHWAY 11	SUNSET
2869.88	Pickens		PICKENS

AGRICULTURAL (NEC) COMMERCIAL (NEC) COMMERCIAL (NEC)
COMMERCIAL (NEC) COMMERCIAL (NEC commercial COMMERCIAL (NEC)
COMMERCIAL (NEC) commercial (NEC) TAX EXEMPT AGRICULTURAL
AGRICULTURAL LAND
TAX EXEMPT
GAX EXEMPT
AGRICULTURAL LAND
AGRICULTURAL LAND
TAX EXEMPT
TAX EXEMPT
TAX EXEMPT
TAX EXEMPT
farms
TAX EXEMPT
Electrical facility
TAX EXEMPT
TAX EXEMPT
COMMERCIAL ACREAGE
TAX EXEMPT
COMMERCIAL ACREAGE

TAX EXEMPT

AGRICULTURAL LAN
COUNTY PROPERTY
FOREST
COUNTY PROPERTY
FARMS
AGRICULTURAL (NEC)
FOREST
OREST
FARMS
COUNTY PROPERTY
COUNTY PROPERTY
COUNTY PROPERTY
FARMS
FOREST
FOREST
TAX EXEMPT
TAX EXEMPT
TAX EXEMPT
tax Exempt

858	dept of parks recreation tourism sc	R0003715	2293.72	Pickens	27 TR CAMPGROUND RD	PICKENS	SC	29671			TAX EXEMPT
859	SC DEPT OF NATURAL RESOURCES	R0018157	4170.49	Pickens		SUNSET	SC	29685			TAX EXEMPT
860	SC dept of natural resources	R0029746	4290.45	Pickens	254 CLEO CHAPMAN HWY	SUNSET	SC	29685			TAX EXEMPT
861	SC DEPT OF NATURAL RESOURCES	R0029746	1732.01	Pickens	254 CLEO CHAPMAN HWY	SUNSET	SC	29685			TAX EXEMPT
862	CLEMSON UNIVERSITY	R0044029	1866.27	Pickens		CENTRAL	SC	29630			TAX EXEMPT
863	SC DEPT OF NATURAL RESOURCES	R0029746	1903.02	Pickens	254 CLEO CHAPMAN HWY	SUNSET	SC	29685			TAX EXEMPT
864	SC DEPT OF NATURAL RESOURCES	R0087415	9125.80	Pickens		SUNSET	SC	29685			TAX EXEMPT
865	SOUTH CAROLINA DEPARTMENT OF, \& NATURAL RESOURCES	39700-01-01	1028.43	Richland	WATEREE RIVER	EASTOVER	SC	29044	RU	AG	SFR
866	GRIFFIN, JACQUELINE A	40800-01-11	1191.46	Richland	285 CALDWELL JAMES RD	EAStover	SC	29044	RU	AG	SFR
867	SC STATE COMM OF FORESTRY	05000-02-15	1230.20	Richland	broad river rd	columbia	SC	29212	C-1	Bus/Comm	COMmercial acreage
868	INDIGO ASSOCIATES, \& LIMITED PARTNERSHIP	06500-01-04-A	1272.91	Richland	300 MONTICELLO TRL	columbia	SC	29203	HI	Ind	OfFICE BUILDING
869	SC DEPT OF PARKS RECREATION \& TOURISM	19900-01-03	1390.90	Richland	800 POLO RD	COLUMBIA	SC	29223	GC	Bus/Comm	COMMERCIAL (NEC)
870	WEYERHAEUSER, COMAPNY	36300-01-02	1168.06	Richland	GRIFFINS CREEK RD	GADSDEN	Sc	29052	RU	AG	SFR
871	SC ELECTRIC \& GAS CO	40900-01-01	1047.25	Richland	142 Wateree station	eastover	Sc	29044	HI	Ind	COMMERCIAL ACREAGE
872	SOUTHERN OAKS LAND \& WATER LLC	13200-01-01	1203.13	Richland	beckam SWAMP RD	COLUMBIA	SC	29209	RU	AG	AGRICULTURAL LAND
873	BECKHAM SWAMP LLC	10700-01-01	1252.26	Richland	BLUFF RD	columbia	SC	29209	RU	AG	SFR
874	STATE OF SOUTH CAROLINA, \& GENERAL SERVICES 300 GERVAIS	06200-03-02	1152.06	Richland	4430 BROAD RIVER RD	COLUMBIA	SC	29210	C-1	Bus/Comm	OFFICE BUILDING
875	CATCHMARK SOUTH CAROLINA TIMBERLANDS LLC	37600-01-08	1226.22	Richland	MCCORDS FERRY RD	EASTOVER	SC	29044	RU	AG	AGRICULTURAL LAND
876	CONGAREE RIVER LLC	40100-01-01	1184.32	Richland	WATEREE RIVER	EAStover	SC	29044	RU	AG	FOREST
877	PLUNKETT HILL LLC	39800-01-01	1127.01	Richland	MCCORDS FERRY RD	EASTOVER	SC	29044	RU	AG	AGRICULTURAL LAND
878	murray tract llc	37500-01-02	1423.84	Richland	MCCORDS FERRY RD	Eastover	SC	29044	RU	AG	AGricultural land
879	CATCHMARK SOUTH CAROLINA TIMBERLANDS LLC	34800-01-05	1052.22	Richland	1028 POULTRY LN	Eastover	SC	29044	RU	AG	AGricultural land
880	preserve on the wateree riv ll	32900-01-02	1042.50	Richland	1510 Lorenzo davis rd	eastover	SC	29044	RU	AG	SFR
881	congaree carton ltd ptnrshp	40000-01-01	2025.78	Richland	SCREAMING EAGLE	eastover	SC	29044	RU	AG	AGRICULTURAL LAND
882	SOUTH CAROLINA DEPARTMENT OF, \& NATURAL RESOURCES	39500-01-32	2546.26	Richland	2118 BASIN LANDING RD	eastover	sc	29044	RU	AG	Residential acreage
883	UNITED STATES OF AMERICA	36200-01-01	1648.60	Richland	W HWY 601	gadsden	Sc	29052	RU	AG	Vacant land (nec)
884	UNITED STATES OF AMERICA	29700-01-01	11657.47	Richland	CONGAREE RIVER	HOPKINS	SC	29061	RU	AG	RESIDENTIAL ACREAGE
885	SCREAMING EAGLE PARTNERSHIP \& \& CLEVELAND SWAMP TIMBER CO INC	40200-01-01	2548.15	Richland	WATEREE RIVER	EASTOVER	SC	29044	RU	AG	SFR
886	FBSC LLC	13000-01-01	1904.95	Richland	BLUFF RD	COLUMBIA	SC	29209	RU	AG	AGricultural land
887	CONGAREE RIVER LLC	15700-01-01	3515.21	Richland	CONGAREE RIVER	COLUMBIA	SC	29209	RU	AG	SFR
888	FORT, JACKSON \& MILITARY RESERVATION	28400-01-01	51975.27	Richland	FORT JACKSON BLVD	HOPKINS	SC	29061	RU	AG	COMmercial acreage
889	JAMES, LINDSAY GUY \& JAMES, TRUST	40300-01-01	2342.89	Richland	MCCORDS FERRY RD	eastover	SC	29044	RU	AG	AGricultural land
890	RICHLAND COUNTY	21100-01-01	2401.19	Richland	CONGAREE RIVER	HOPKINS	SC	29061	RU	AG	SFR
891	MCENTIRE AIR, \& NATIONAL GUARD bASE	30500-01-01	2336.05	Richland	890 South Carolina rd	eastover	Sc	29044	HI	Ind	COMMERCIAL ACREAGE
892	Patterson, eleanor \& david, paul	11297-01-01	2729.75	Richland	1051 KEY RD \#1	GADSDEN	Sc	29052	GC	Bus/Comm	CONDOMINIUM
893	Catchmark south carolina timberlands llc	37600-01-08	1919.47	Richland	MCCORDS FERRY RD	eastover	SC	29044	RU	AG	agricultural land
894	UNITED STATES OF AMERICA, \& LAND RESOURCES DIVIIION	40500-01-01	2190.61	Richland	TWO RIVERS RD	EAStover	SC	29044	RU	AG	AGRICULTURAL LAND
895	WEYERHAEUSER, COMAPNY	36300-01-02	2747.81	Richland	GRIFFINS CREEK RD	EAStover	SC	29044	RU	AG	SFR
		R12500-02-06; R12500-03-01;									
		R12600-03-20; R12600-03-23;									
		R15000-01-01; R15000-02-27;									
		R15004-01-01; R15004-01-02;									
		R15005-01-01; R15006-01-01;									
		R15007-01-01; R15008-01-01;									
896	BLYTHEWOOD Industrial park	R15100-01-04; R15100-01-06;	2097.06	Richland		RICHLAND	SC	29016	ID	Ind	
	blythewood industrial park	R15100-01-07; R15100-02-01;	2097.06	Richland		RICHLAND	Sc	29016	ID	Ind	
		R15100-03-01; R15100-03-02;									
		R15100-03-03; R15100-03-04;									
		R15100-03-05; R15100-03-06;									
		R15100-03-07; R15100-03-08;									
		R15101-01-01; R15101-01-02;									
		R15106-01-01.									
897	Holmes land company inc	130-00-00-001	1372.72	Saluda		SALUDA	SC	29138			AGRICULTURAL (NEC)
898	breeden, dan \& Wiley fork legacy llc	4-45-00-001.00	1445.55	Spartanburg	GRACE CHAPEL RD	enoree	SC	29335			Vacant land (NEC)
899	CROFT STATE PARK, \& GAINES, PHIL	7-24-00-069.00	1162.00	Spartanburg	501 GIBSON RD	SPARTANBurg	SC	29302			pUblic (NEC)
900	GREENVILLE-SPARTANBURG AIRPORT DISTRICT	5-23-00-008.00	1081.80	Spartanburg	1850 GSP DR	Greer	SC	29651			PUBLIC (NEC)
901	CAMP CROFT StATE PARK, \& BROWn bldg state park	3-31-00-001.00	2688.94	Spartanburg	1630 WHITESTONE RD	SPARTANBURG	Sc	29302			PUBLIC (NEC)
902	CATCHMARK SC TIMBERLANDS LLC	036-90-01-003	1420.02	Sumter	HWY 378	REMBERT	SC	29128			FOREST
903	congaree carton limited part	041-90-01-001	1154.34	Sumter	WATEREE SWAMP	WEDGEFIELD	SC	29168			FOREST
904	SC FORESTRY COMMISSION	106-90-02-001	1042.96	Sumter	7995 MILFORD PLANTATION RD(79	WEDGEFIELD	SC	29168			FOREST
905	CAROLINA WEDGEWOOD LLC	098-90-01-005	1187.12	Sumter	1900 HWY 261 SOUTH	WEDGEFIELD	SC	29168			RESIDENTIAL (NEC)
906	GARNAY INC	200-00-02-002	1360.60	Sumter	3205 EBENEZER RD	SUMTER	SC	29153			AGRICULTURAL (NEC)
907	SC FORESTRY COMMISSION	103-90-01-001	1010.91	Sumter	POINSETT STATE PARK	PINEWOOD	SC	29125			COMMERCIAL (NEC)

908	CONGAREE CARTON
909	UNITED STATES OF AMERICA THE
910	harvin family limited partners
911	BLACK RIVER C-T FARMS A LIMITE PARTNERSHIP
912	SC FORESTRY COMMISSION
913	SC DEPT OF PARKS RECREATION
914	STREET ENTERPRISES LLC
915	beech creek timber company llc
916	UNITED STATES OF AMERICA THE
917	SOUTH CAROLINA FORESTRY COMM
918	SC FORESTRY COMMISSION
919	UNITED STATES OF AMERICA THE
920	FBSC LLC
921	SC PUBLIC SERVICE AUTHORITY
922	sumter wateree club inc
923	MILFORD LLC
924	SANTEE RIVER LLC
925	STATE OF SOUTH CAROLINA THE, \& WATEREE CORRECETION
926	SOUTH CAROLINA STATE COMM OF F
927	FORT FORESTRY LLC
928	CONGAREE CARTON LTD
929	ANDERSON FAMILY LIMITED PARTNE
930	SOUTH CAROLINA FORESTRY COMM ISSION
931	WEYERHAEUSER COMPANY
932	ARROWHEAD FARMS LLC
933	US FOREST SERVICE
934	WILEY FORK LEGACY LLC
935	US FOREST SERVICE
936	FAIRFOREST TIMBER LLC
937	US FOREST SERVICE
938	US FOREST SERVICE
939	US FOREST SERVICE
940	US FOREST SERVICE
941	US FOREST SERVICE
942	WILEY FORK LEGACY LLC
943	US FOREST SERVICE
944	US FOREST SERVICE
945	US FOREST SERVICE
946	US FOREST SERVICE
947	US FOREST SERVICE
948	US FOREST SERVICE
949	US FOREST SERVICE
950	EVERGREEN TIMBERCO SC LLC
951	KEYSTONE FOREST INVESTMENT LLC
952	KNOLLWOOD INC
953	tamarack timberco sc llc
954	IRI FOREST INVESTMENTS LLC
955	KNOLLWOOD INC
956	tamarack timberco sc llc
957	STATE OF SC
958	SPP HobCaw llc
959	GOURDIN, W B
960	ESSEX FARMS LLC
961	CREECH FAMILY LTD PTNRSHP
962	CINAB INC
963	TAMARACK TIMBERCO SC LLC
964	SANTEE RIVER LLC
965	SOUTH CAROLINA, \& STATE COMMISSION OF FORESTERY
966	TAMARACK TIMBERCO SC LLC
967	MCLEOD LUMBER CO INC
968	kNOLLWOOD INC
969	SANTEE RIVER LLC
970	JAMESTOWN TIMBER 1

$164-00-01-038$ 179-00-01-002 340-00-01-001 106-90-02-001 370-00-01-005 $370-00-01-005$
$031-90-01-001$ 038-90-01-001 102-00-03-014 $098-90-02-002$
$106-90-02-001$
$106-90-02-001$
$132-00-03-009$ $132-00-03-009$
$043-90-01-003$ 043-90-01-003
$048-90-01-001$ 046-90-01-001 106-90-01-003 041-90-01-002

043-90-01-002 033-90-01-003 $038-90-01-005$
$096-90-01-003$ 160-00-01-001
$062-00-00-001-000$
$133-00-00-001-000$
163-00-00-001-000
079-00-00-001-000
126-00-00-001-000 025-00-00-001-000 162-00-00-001-000 151-00-00-016-000 145-00-00-003-000 126-00-00-001-000 $108-00-00-007-000$ 079-00-00-002-000 163-00-00-001-000 $123-00-00-001-000$ 108-00-00-007-000 $126-00-00-001-000$
$163-00-00-001-000$

126-00-00-001-000

26-00-00-001-000
45-313-001
45-163-001
45-396-001
45-396-000
45-036-0001
45-039-001
$45-396-001$
45-206-001
45-204-001
45-348-002
45-019-007
45-287-001
45-305-019
45-130-027
45-396-001
45-006-001
45-213-001
45-058-001
45-115-002
45-039-001
45-007-014
45-329-001

1382.06	Sumter	Wateree swamp	PINEWOOD
1399.97	Sumter	MANCHESTER STATE FOREST	SUMTER
1013.30	Sumter	PINEWOOD RD	SUMTER
1265.70	Sumter	4620 MT SINAI CHURCH RD-770 TR	Ilynchburg
1374.73	Sumter	7995 MILFORD PLANTATION RD(79	PINEWOOD
1049.08	Sumter	WOODS MILL BAY	lynchburg
1081.93	Sumter	Stateburg twns	Rembert
3343.84	Sumter	WATEREE RIVER	WEDGEFIELD
10265.17	Sumter	HWY 261 S \& BELLES MILL CIR	SUMTER
2060.51	Sumter	HWY 261	WEDGEFIELD
1796.15	Sumter	7995 MILFORD PLANTATION RD(79	PINEWOOD
1604.79	Sumter	SHAW AFB	SHAW AFB
3295.13	Sumter	MANCHESTER TWNS	PINEWOOD
16790.05	Sumter	MANCHESTER TWNS	PINEWOOD
3934.34	Sumter	8050 BIGLAKE LANDING	PINEWOOD
3351.38	Sumter	MILFORD PLANTATION RD	PINEWOOD
3304.91	Sumter	MANCHESTER TWNS	PINEWOOD
5643.35	Sumter	8200 STATE FARM ROAD	REMBERT
3663.87	Sumter	manchester twns	PINEWOOD
2724.37	Sumter	WATEREE RD	Rembert
2680.98	Sumter	MANCHESTER TWNS	WEDGEFIELD
2688.27	Sumter	745 DIMU LN	WEDGEFIELD
1530.56	Sumter	1705 S ST PAULS CHURCH RD	SUMTER
1460.81	Union		BUFFALO
1095.80	Union		UNION
1001.78	Union		CARLISLE
1251.22	Union		buffalo
1005.35	Union		UNION
1655.90	Union		JONESVILLE
2248.25	Union		WHitmire
1680.61	Union	860 Herbert road	CARLISLE
5099.65	Union		UNION
6076.18	Union		UNION
1513.54	Union		UNION
2338.45	Union	368 TYGER RANCH ROAD	BUFFALO
2829.29	Union		WHITMIRE
2971.59	Union		UNION
1782.95	Union		UNION
1699.45	Union		UNION
3241.19	Union		CARLISLE
5816.32	Union		UNION
3127.79	Union		UNION
1309.31	Williamsburg		ANDREWS
1330.60	Williamsburg		ANDREWS
1206.17	Williamsburg		LANE
1337.51	Williamsburg		NESMITH
1189.79	Williamsburg	COMPANY RD	Greeleyville
1339.63	Williamsburg		GREELEYVILLE
1487.52	Williamsburg		NESMITH
1245.95	Williamsburg		SALTERS
1061.64	Williamsburg		NESMITH
1363.71	Williamsburg	US HWY 521	GREELEYVILLE
1118.30	Williamsburg		ANDREWS
1128.64	Williamsburg	380 RANSOM RD	KINGSTREE
1195.85	Williamsburg	6286 S WILLIAMSBURG COUNTY H	kingstree
1080.59	Williamsburg		ANDREWS
1710.86	Williamsburg	TABLESPOON LN	GREELEYVILLE
11481.97	Williamsburg		ANDREWS
1612.45	Williamsburg	CADE RD	NEW ZION
7534.55	Williamsburg	SPEARMAN RD	LANE
1586.37	Williamsburg		LANE
5244.00	Williamsburg	S WILLIAMSBURG COUNTY HWY	Greeleyvile
8784.86	Williamsburg		NESMITH

971	IRI FOREST INVESTMENTS LLC
972	venture plantation llc
973	kNOLLWOOD INC
974	kNOLLWOOD InC
975	tamarack timberco sc llc
976	red mountain timber co ili llc
977	SHADES MOUNTAIN TIMBERCO SC
978	tamarack timberco sc llc
979	KEYSTONE FOREST INVESTMENT LLC
980	SCOTSWOOD LLC
981	brown, herbert M
982	FBSC LLC
983	TAMARACK TIMBERCO SC LLC
984	tamarack timberco sc llc
985	IRI FOREST INVESTMENTS LLC
986	tamarack timberco sc llc
987	oak mountain timberco sc llc
988	PATRIOTS PLANTATION II LLC
989	FLYING KING RANCH LLC
990	YORK COUNTY
991	FLYING KING RANCH LLC
992	SC DEPT OF PARKS RECREATION \& TOURSIM
993	BINGHAM PROPERITES LLC
	TRES

45-446-003	3536.69	Williamsburg	
45-185-001	2245.55	Williamsburg	
45-023-001	2418.40	Williamsburg	MACKEY RD
45-072-001	1624.04	Williamsburg	1408 GOURDIN RD
45-481-002	3532.97	Williamsburg	
45-113-001	2333.64	Williamsburg	SEABOARD RD
45-339-001	3230.79	Williamsburg	
45-397-001	1991.48	Williamsburg	
45-196-001	1709.15	Williamsburg	
45-209-001	2667.31	Williamsburg	309 SCOTTSWOOD RD
45-324-002	1838.38	Williamsburg	
45-210-002	1582.90	Williamsburg	
45-396-001	2411.97	Williamsburg	
45-260-001	1669.05	Williamsburg	
45-046-003	2108.65	Williamsburg	COMPANY RD
45-396-001	5522.72	Williamsburg	
45-312-003	2023.74	Williamsburg	
45-503-001	1523.95	Williamsburg	700 MUDDY CREEK RD
208-00-00-001	1191.26	York	2233 OLD PINCKNEY RD
016-00-00-001	1335.62	York	2165 DALTONS LANDING RD
298-00-00-001	1333.91	York	1546 CHESTER HWY
782-00-00-110	8456.33	York	2240 CAMP YORK
026-00-00-001	1761.20	York	
127-00-00-003	2103.61	York	

ANDREWS	SC	29510		
LANE	SC	29564		
GREELEYVILLE	SC	29056		
LANE	SC	29564		
HEMINGWAY	SC	29554		
LANE	SC	29564		
ANDREWS	SC	29510		
NESMITH	SC	29580		
LAKE CITY	SC	29560		
SALTERS	SC	29590		
NESMITH	SC	29580		
SALTERS	SC	29590		
ANDREWS	SC	29510		
SALTERS	SC	29590		
GREELEYVILLE	SC	29056		
NESMITH	SC	29580		
ANDREWS	SC	29510		
JOHNSONVILLE	SC	29555		
YORK	SC	29745	RUD	PUD
HICKORY GROVE	SC	29717	AGC	AG
YORK	SC	29775	AGC	AG
CLOVER	SC	29710	AGC	AG
SHARON	SC	29742	AGC	AG
SHARON	SC	29742	AGC	AG

AGRICULTURAL (NEC) AGRICULTURAL (NEC RESIDENTIAL (NEC) RESDENTAL (NEC)
AGRICULTURAL (NEC)
agricultural (NeC)
AGRICUITURAL (NEC)
agricuitural (NEC)
AGRICUITURAL (NEC)
AGRICULTURAL (NEC)
agricultural (nec)
farms
vacant land (nec)
SFR
TAX EXEMPT
FARMS
FARMS

Exhibit E to Project Connect Revised Alternatives Analysis
 (AOI Properties; 1,000 acres; w/in 1 Mile of Interstate)

Applicant:
South Carolina Department of Commerce
Richland County

	Owner Name	Parcel Number	Calculated Acres	County	Address	City	State	Zip Code	Zoning Code	Zoning Type	Land Use
1	THURMOND, JAMES S \& THURMOND, HEATHER H	165-00-01-003	1227.38	Aiken	KEDRON CH. RD \& KEYS POND	RIDGE SPRING	SC	29129			AGRICULTURAL (NEC)
2	CITY OF AIKEN	100-00-03-001	2496.16	Aiken	MASON BRANCH RD	AIKEN	Sc	29805			AGRICULTURAL (NEC)
3	NAHH LLC	022-17-01-001	1084.69	Aiken	1677 ASCAUGA LAKE RD	NORTH AUGUSTA	SC	29841			AGRICULTURAL (NEC)
4	ANDERSON LAKE	$\begin{aligned} & \text { 1700007005; 1950001003; } \\ & 1950010009 \end{aligned}$	1259.00	Anderson	HAMPTON ROAD	WILLIAMSTON	SC	29697			
5	BERKELEY COUNTY	176-00-01-001	1591.33	Berkeley	1801 VOLVO CAR DR	RIDGEVILLE	SC	29472	PD-OP/IP	PUD	COMMERCIAL (NEC)
6	SC STATE PORTS AUTHORITY	271-00-01-057	1878.94	Berkeley		CHARLESTON	SC	29492	R-2		TAX EXEMPT
7	CAMP HALL INDUSTRIAL OWNER LLC	157-00-00-003	2936.38	Berkeley	464 AUTONOMOUS DR	RIDGEVILLE	SC	29472	PD-OP/IP	PUD	TAX EXEMPT
8	CHARLESTON COUNTY AIRPORT DISTRICT	400-00-00-007	1177.93	Charleston	5400 International blvd	NORTH CHARLESTON	SC	29418	M-1	Ind	WASTE LAND
9	UNITED STATES OF AMERICA	400-00-00-006	2903.83	Charleston	6390 DORCHESTER RD	NORTH CHARLESTON	SC	29418	M-1	Ind	WASTE LAND
10	WEST 77 LLC	118-00-00-045-000	2133.05	Chester		RICHBURG	SC	29729	EDD	Misc	AGRICULTURAL (NEC)
11	St michaels llc	127-00-00-108-000	1730.51	Chester		RICHBURG	SC	29729	EDD	Misc	AGRICULTURAL (NEC)
12	OLD PINES LLC	138-00-00-001-000	1007.61	Chester		RICHBURG	SC	29729	EDD	Res	AGRICULTURAL (NEC)
13	SCP CATAWBA LLC	117-00-00-006-000	1900.85	Chester		RICHBURG	SC	29729	EDD	Misc	RESIDENTIAL (NEC)
14	JAB I-77 SITE WEST	$\begin{aligned} & 113-00-00-017-000 ; 113-00-00- \\ & 044-000 \end{aligned}$	1023.00	Chester	DULAP RODDEY ROAD	EDGEMOORE	SC	29712	ID-1	Ind	
15	JUSTICE, JAMES C	230-00-01-001-00	1496.24	Clarendon	10988 HWY 301	ALCOLU	SC	29001			AGRICULTURAL (NEC)
16	DEER \& DUCK LLC	061-00-00-001-00	1022.69	Clarendon	3467 OAKS RD	SUMMERTON	SC	29148			AGRICULTURAL (NEC)
17	SCDEPT TRANSPORTATION	229-00-01-001-00	1642.62	Clarendon		GABLE	SC	29051			STATE PROPERTY
18	WEYERHAEUSER COMPANY	206-00-00-010	1151.11	Colleton	KATIE BRIDGE DR	Walterboro	SC	29488	RD	Mixed	AGRICULTURAL LAND
19	ELGERBAR CORP	231-00-00-010	2273.59	Colleton	4043 BLACK CREEK ROAD	YEMASSEE	SC	29945	RD	Mixed	RESIDENTIAL (NEC)
20	COLLUMS TIMBER INVESTMENTS LLC A SOU	266-00-00-002	1135.90	Colleton		YEMASSEE	SC	29945	RD	Mixed	RESIDENTIAL (NEC)
21	ELGERBAR CORP	231-00-00-010	2327.69	Colleton	4043 BLACK CREEK ROAD	yemassee	SC	29945	RD	Mixed	RESIDENTIAL (NEC)
22	FPI PROPERTIES LLC	064-00-00-007	2802.60	Dillon		LATTA	SC	29565			AGRICULTURAL (NEC)
		080-00-00-092; 068-00-00-042; 058-00-00-024; 058-00-00-021; 068-00-00-030; 058-00-00-019; 058-00-00-018; 068-00-00-015;									
23	CAROLINAS I-95 SUPER PARK	058-00-00-006; 058-00-00-004; 067-00-00-012; 058-00-00-001; 067-00-00-009; 068-00-00-007; 068-00-00-006; 080-00-00-017; 080-00-00-016; 068-00-00-002; 068-00-00-001	1130.00	Dillon		DILLON	SC	29536	RURAL		
24	NATIONAL AUDUBON SOCIETY INC	009-00-00-008.000	1540.70	Dorchester	INTERSTATE 26 W	HOLLY HILL	SC	29059			VACANT LAND (NEC)
25	CATCHMARK SOUTH CAROLINA TIMBERLANDS LLC	074-00-00-017-000	1360.60	Fairfield	HWY 200 AT BEAVER DAM FORK BRIDGE	WINNSBORO	SC	29180	RD	Misc	AGRICULTURAL (NEC)
26	MULLIS, J W	075-00-00-005-000	1632.26	Fairfield	FRAZIER-BARBER PITTMAN GLADDEN TRAC	WINNSBORO	SC	29180	I-1	Ind	AGRICULTURAL (NEC)
27	SAMSON WOODS LLC \& \& MCMASTER FAMILY PARTNERSHIP	041-00-00-032-000	1145.35	Fairfield	HOGFORK TRACT	WINNSBORO	SC	29180	I-1	Ind	FOREST
28	AL VIRGINIA LEe llc	040-00-00-002-000	1210.69	Fairfield	BETWEEN I-77 \& HWY 901	BLACKSTOCK	SC	29014	RD	Misc	FOREST
29	WEYERHAEUSER COMPANY	110-00-00-004-000	1425.42	Fairfield	14 TRACTS	WINNSBORO	SC	29180	11	Ind	AGRICULTURAL (NEC)
30	WEYERHAEUSER COMPANY	110-00-00-004-000	2164.07	Fairfield	14 TRACTS	WINNSBORO	SC	29180	11	Ind	AGRICULTURAL (NEC)
31	I-77 International megasite	148-00-00-013-000	1544.00	Fairfield	Valencia road	RIDGEWAY	SC	29130	ID	Ind	
32	SONOCO PROCUCTS CO	00301-01-001	6654.98	Florence	OFF ST HWY 24	FLORENCE	SC	29506			FARMS
33	SOUTHERN DIVERSIFIED LLC	00303-01-001	3922.31	Florence	ST HWY 24	FLORENCE	SC	29506			AGRICULTURAL (NEC)
34	Ingram Charles lumber co inc	00270-01-001	1658.79	Florence	3000 RESTVIEW RD	FLORENCE	SC	29506			FARMS
35	ANGEL TRACT LLC	188-00-00-030	1571.48	Hampton	Yemassee	YEMASSEE	SC	29945			AGRICULTURAL (NEC)
36	YEMASSEE TIMBER LLC	191-00-00-002	1971.23	Hampton	POCOTALIGO	YEMASSEE	SC	29945			AGRICULTURAL (NEC)
37	CHILTON TIMBER \& LAND CO LLC	191-00-00-001	7551.84	Hampton		YEMASSEE	SC	29945			AGRICULTURAL (NEC)
38	JEPSON, ROBERT S \& JEPSON, ALICE A	087-00-09-022	2200.49	Jasper	1415 GREGORIE NECK RD	Yemassee	SC	29945	RA	Res	SFR
39	OKEETEE CLUB	$\begin{aligned} & 023-00-02-020 ; 027-00-02-034 ; \\ & 045-00-01-035 \end{aligned}$	39059.00	Jasper	BJWSA PLAT 26/249 159835 OUT	HARDEEVILLE	SC	29927	RA	Res	AGRICULTURAL (NEC)

40	BLACK, MARTHA C	088-00-01-001	1417.69	Jasper		Yemassee	SC	29945	RA	Res	AGRICULTURAL (NEC)
41	CRIMSON INDEPENDENCE LLC	066-00-00-004	1495.69	Jasper		HARDEEVILLE	SC	29927	PDD	PUD	AGRICULTURAL (NEC)
42	UNITED STATES OF AMERICA	033-00-00-001	5369.71	Jasper	765 ALLIGATOR ALLEY	hardeeville	SC	29927	RA	Res	PUBLIC (NEC)
43	C \& S NATIONAL BANK	087-00-03-002	1092.04	Jasper		RIDGELAND	SC	29936	RA	Res	AGRICULTURAL (NEC)
44	CYPRESS WOODS CORP	048-00-01-001; 048-00-03-019	4630.51	Jasper	4190 LOG HAUL RD	RIDGELAND	SC	29936	RA	Res	SFR
45	MAURENE PLANTATION LLC	040-00-02-050	2668.57	Jasper	2258 PLANTATION DR	HARDEEVILLE	SC	29927	RA	Res	SFR
46	MFM RESIDENTIAL PROPERTIES LLC	041-00-04-060	1333.87	Jasper		HARDEEVILLE	SC	29927	PDD	PUD	AGRICULTURAL (NEC)
47	CLARK, JOCELYN \& CLARK, ANDREA W TRUST	086-00-01-002	1226.35	Jasper	506 SPRING HILL RD	RIDGELAND	SC	29936	RA	Res	AGRICULTURAL (NEC)
48	WA HOLDINGS SOUTH, LLC	042-00-06-045	2629.85	Jasper		Hardeeville	SC	29927	PDD	PUD	AGRICULTURAL (NEC)
49	SHERWOOD TRACT	030-00-01-007; 031-00-00-017; 030-00-01-019; 030-00-01-020; 030-00-01-021; 030-00-01-022	1437.00	Jasper	US HIGHWAY 17	HARDEEVILLE	SC	29927	PDD	Ind	AGRICULTURAL (NEC)
50	MULBERRY PLANTATION INC	327-00-00-001	1036.67	Kershaw	559 SUMTER HIGH WAY	Camden	SC	29020	RD-1	Misc	AGRICULTURAL (NEC)
51	MULBERRY PLANTATION INC	327-00-00-001	2828.25	Kershaw	559 SUMTER HIGH WAY	REMBERT	SC	29128	RD-1	Misc	AGRICULTURAL (NEC)
52	TYGER OAK INC	745-00-00-009	1907.53	Laurens		KINARDS	SC	29355			AGRICULTURAL PLANT
53	Lee state park	038-00-00-011-000	2360.17	Lee		BISHOPVILLE	SC	29010			TAX EXEMPT
54	RICHLAND-LEXINGTON AIRPORT DIS	006797-01-006	1042.47	Lexington	AVIATION WAY	WEST COLUMBIA	SC	29170	ID	Mixed	AIRPORT
55	WATEREE Holdings llc	075-01-01-002	5393.44	Marlboro	ROGERS LAKE LN	blenheim	SC	29516			AGRICULTURAL (NEC)
56	SC DEPARTMENT OF PARKS /RECREATION/T	0306-00-01-001.000	2640.36	Orangeburg	OFF HWY 6/s-38-105	SANTEE	SC	29142			COUNTY PROPERTY
57	NATIONAL AUDUBON SOCIETY	0316-00-00-005.000	1292.33	Orangeburg	NEAR DORCHESTER CNTY LINE	Holly hill	SC	29059			COUNTY PROPERTY
58	ShULER, HE	0297-00-03-008.000	1290.24	Orangeburg		HOLLY HILL	SC	29059			FOREST
59	S C STATE COMM OF FORESTRY	05000-02-15	1230.20	Richland	BROAD RIVER RD	COLUMBIA	SC	29212	C-1	Bus/Comm	COMMERCIAL ACREAGE
60	SC DEPT OF PARKS RECREATION \& TOURISM	19900-01-03	1390.90	Richland	800 POLO RD	COLUMBIA	SC	29223	GC	Bus/Comm	COMMERCIAL (NEC)
61	FORT, JACKSON \& MILITARY RESERVATION	28400-01-01	51975.27	Richland	FORT JACKSON BLVD	HOPKINS	SC	29061	RU	AG	COMMERCIAL ACREAGE
62	BECKHAM SWAMP LLC	10700-01-01	1252.26	Richland	BLUFF RD	COLUMBIA	SC	29209	RU	AG	SFR
		R12500-02-06; R12500-03-01; R12600-03-20; R12600-03-23; R15000-01-01; R15000-02-27; R15004-01-01; R15004-01-02; R15005-01-01; R15006-01-01; R15007-01-01; R15008-01-01;									
63	BLYTHEWOOD INDUSTRIAL PARK	R15100-01-04; R15100-01-06; R15100-01-07; R15100-02-01; R15100-03-01; R15100-03-02; R15100-03-03; R15100-03-04; R15100-03-05; R15100-03-06; R15100-03-07; R15100-03-08; R15101-01-01; R15101-01-02; R15106-01-01.	2097.06	Richland		RICHLAND	SC	29016	ID	Ind	
64	GREENVILLE-SPARTANBURG AIRPORT DISTRICT	5-23-00-008.00	1081.80	Spartanburg	1850 GSP DR	GREER	SC	29651			PUBLIC (NEC)

Exhibit F to
 Project Connect

Revised Alternatives Analysis

(AOI Properties; 1,000 acres; w/in 1 Mile of Interstate; Onsite or Adjacent Rail)

Applicant:
South Carolina Department of Commerce
Richland County

	Owner Name	Parcel Number	Calculated Acres	County	Address	City	State	Zip Code	Zoning Code	Zoning Type	Land Use
1	CHARLESTON COUNTY AIRPORT DISTRICT	400-00-00-007	1177.93	Charleston	5400 INTERNATIONAL BLVD	NORTH CHARLESTON	SC	29418	M-1	Ind	WASTE LAND
2	UNITED STATES OF AMERICA	400-00-00-006	2903.83	Charleston	6390 DORCHESTER RD	NORTH CHARLESTON	SC	29418	M-1	Ind	WASTE LAND
3	JAB I-77 SITE WEST	113-00-00-017-000; 113-00-00-044-000 080-00-00-092; 068-00-00-042; 058-00-00-024; 058-00-00-021; 068-00-00-030; 058-00-00-019; 058-00-00-018; 068-00-00-015;	1023.00	Chester	DULAP RODDEY ROAD	EDGEMOORE	SC	29712	ID-1	Ind	
4	CAROLINAS I-95 SUPER PARK	058-00-00-006; 058-00-00-004; 067-00-00-012; 058-00-00-001; 067-00-00-009; 068-00-00-007; 068-00-00-006; 080-00-00-017; 080-00-00-016; 068-00-00-002; 068-00-00-001	1130.00	Dillon		DILLON	SC	29536	RURAL		
5	NATIONAL AUDUBON SOCIETY INC	009-00-00-008	1540.70	Dorchester	INTERSTATE 26 W	HOLLY HILL	SC	29059			VACANT LAND (NEC)
6	I-77 International megasite	148-00-00-013-000	1544.00	Fairfield	VALENCIA ROAD	RIDGEWAY	SC	29130	ID	Ind	
7	SONOCO PROCUCTS CO	00301-01-001	6654.98	Florence	OFF ST HWY 24	Florence	SC	29506			FARMS
8	SOUTHERN DIVERSIFIED LLC	00303-01-001	3922.31	Florence	ST HWY 24	florence	SC	29506			AGRICULTURAL (NEC)
9	ANGEL TRACT LLC	188-00-00-030	1571.48	Hampton	YEMASSEE	YEMASSEE	SC	29945			AGRICULTURAL (NEC)
10	Yemassee timber llc	191-00-00-002	1971.23	Hampton	POCOTALIGO	YEMASSEE	SC	29945			AGRICULTURAL (NEC)
11	CHILTON TIMBER \& LAND CO LLC	191-00-00-001	7551.84	Hampton		YEMASSEE	SC	29945			AGRICULTURAL (NEC)
12	OKEETEE CLUB	$\begin{aligned} & \text { 023-00-02-020; 027-00-02-034; } \\ & 045-00-01-035 \end{aligned}$	39059.00	Jasper	BJWSA PLAT 26/249 159835 OUT	HARDEEVILLE	SC	29927	RA	Res	AGRICULTURAL (NEC)
13	BLACK, MARTHA C	088-00-01-001	1417.69	Jasper		Yemassee	SC	29945	RA	Res	AGRICULTURAL (NEC)
14	UNITED STATES OF AMERICA	033-00-00-001	5369.71	Jasper	765 ALLIGATOR ALLEY	HARDEEVILLE	SC	29927	RA	Res	PUBLIC (NEC)
15	C \& S NATIONAL BANK	087-00-03-002	1092.04	Jasper		RIDGELAND	SC	29936	RA	Res	AGRICULTURAL (NEC)
16	CYPRESS WOODS CORP	048-00-01-001; 048-00-03-019	4630.51	Jasper	4190 LOG HAUL RD	RIDGELAND	SC	29936	RA	Res	SFR
17	CLARK, JOCELYN \& CLARK, ANDREA W TRUST	086-00-01-002	1226.35	Jasper	506 SPRING HILL RD	RIDGELAND	SC	29936	RA	Res	AGRICULTURAL (NEC)
18	WA HOLDINGS SOUTH, LLC	042-00-06-045	2629.85	Jasper		HARDEEVILLE	Sc	29927	PDD	PUD	AGRICULTURAL (NEC)
19	SHERWOOD TRACT	$\begin{aligned} & \text { 030-00-01-007; 031-00-00-017; } \\ & \text { 030-00-01-019; 030-00-01-020; } \\ & \text { 030-00-01-021; 030-00-01-022 } \end{aligned}$	1437.00	Jasper	US HIGHWAY 17	HARDEEVILLE	SC	29927	PDD	Ind	AGRICULTURAL (NEC)
20	CENTRAL SC MEGASITE	323-00-00-011; 323-00-00-014; 309-00-00-031; 309-00-00-032; 309-00-00-070; 310-00-00-080; 324-00-00-001; 323-00-00-006	1426.00	Kershaw	1291 COMMERCE DRIVE	LUGOFF	SC	29078	ID	Ind	
21	TYGER OAK INC	745-00-00-009	1907.53	Laurens		KINARDS	SC	29355			AGRICULTURAL PLANT
22	LEE STATE PARK	038-00-00-011-000	2360.17	Lee		BISHOPVILLE	SC	29010			TAX EXEMPT
23	RICHLAND-LEXINGTON AIRPORT DIS	006797-01-006	1042.47	Lexington	AVIATION WAY	WEST COLUMBIA	SC	29170	ID	Mixed	AIRPORT
24	SC DEPARTMENT OF PARKS /RECREATION/T	0306-00-01-001	2640.36	Orangeburg	OFF HWY 6/S-38-105	SANTEE	SC	29142			COUNTY PROPERTY
25	NATIONAL AUDUBON SOCIETY	0316-00-00-005	1292.33	Orangeburg	NEAR DORCHESTER CNTY LINE	HOLLY HILL	SC	29059			COUNTY PROPERTY
26	SOUTH CAROLINA GATEWAY	$\begin{aligned} & 0323-00-06-012 ; 0323-00-06- \\ & 001 ; 0322-00-01-001 \end{aligned}$	1257.50	Orangeburg	HIGHWAY 301	SANTEE	SC	29142		Ind	
27	S C STATE COMM OF FORESTRY	05000-02-15	1230.20	Richland	BROAD RIVER RD	COLUMBIA	SC	29212	C-1	Bus/Comm	COMMERCIAL ACREAGE
28	SC DEPT OF PARKS RECREATION \& TOURISM	19900-01-03	1390.90	Richland	800 POLO RD	COLUMBIA	SC	29223	GC	Bus/Comm	COMMERCIAL (NEC)

R12500-02-06; R12500-03-01;
R12600-03-20; R12600-03-23; R15000-01-01; R15000-02-27; R15004-01-01; R15004-01-02; R15005-01-01; R15006-01-01; R15007-01-01; R15008-01-01; R15100-01-04; R15100-01-06; R15100-01-07; R15100-02-01; R15100-03-01; R15100-03-02; R15100-03-03; R15100-03-04; R15100-03-03; R15100-03-04;
R15100-03-05; R15100-03-06; R15100-03-05; R15100-03-06;
R15100-03-07; R15100-03-08; R15101-01-01; R15101-01-02; R15106-01-01.

5-23-00-008.00
2097.06

Richland
081.80

Exhibit G to Project Connect

 Revised Alternatives Analysis(AOI Properties; 1,000 acres; w/in 1 Mile of Interstate; Onsite or Adjacent Rail; Undeveloped)

Applicant:

South Carolina Department of Commerce
Richland County

	Owner Name	Parcel Number	Calculated Acres	County	Address	City	State	Zip Code	Zoning Code	Zoning Type	Land Use
		R12500-02-06; R12500-03-01;									
		R12600-03-20; R12600-03-23;									
		R15000-01-01; R15000-02-27;									
		R15004-01-01; R15004-01-02;									
		R15005-01-01; R15006-01-01;									
		R15007-01-01; R15008-01-01;									
1		R15100-01-04; R15100-01-06;									
1	BLYTHEWOOD INDUSTRIALPARK	R15100-01-07; R15100-02-01;	2097.06	Richland		RICHLAND	SC	29016	ID	Ind	
		R15100-03-01; R15100-03-02;									
		R15100-03-03; R15100-03-04;									
		R15100-03-05; R15100-03-06;									
		R15100-03-07; R15100-03-08;									
		R15101-01-01; R15101-01-02;									
		R15106-01-01.									
2		113-00-00-017-000; 113-00-00-									
2	JAB $1-77$ SITE WEST	044-000	1023.00	Chester	dulap roddey road	EDGEMOORE	SC	29712	ID-1	Ind	
		080-00-00-092; 068-00-00-042;									
		058-00-00-024; 058-00-00-021;									
		068-00-00-030; 058-00-00-019;									
		058-00-00-018; 068-00-00-015;									
3	CAROLINASI-95 SUPER PARK	058-00-00-006; 058-00-00-004;	30.00	Dillon		DILSN	SC	29536			
3	CAROLINASI-gS Super Park	067-00-00-012; 058-00-00-001;	,	Dillo		DILLON	SC	29536	RURAL		
		067-00-00-009; 068-00-00-007;									
		068-00-00-006; 080-00-00-017;									
		080-00-00-016; 068-00-00-002;									
		068-00-00-001									
4	I-77 INTERNATIONAL MEGASITE	148-00-00-013-000	1544.00	Fairfield	VALENCIA ROAD	RIDGEWAY	SC	29130	ID	Ind	
5	ANGEL TRACT LLC	188-00-00-030	1571.48	Hampton	YEMASSEE	YEMASSEE	SC	29945			AGRICULTURAL (NEC)
6	YEMASSEE TIMBER LLC	191-00-00-002	1971.23	Hampton	POCOTALIGO	YEMASSEE	SC	29945			AGRICULTURAL (NEC)
7	CHILTON TIMBER \& LAND CO LLC	191-00-00-001	7551.84	Hampton		YEMASSEE	SC	29945			AGRICULTURAL (NEC)
8	OKEETEE CLUB	023-00-02-020; 027-00-02-034;	39059.00	Jasper	BJWSA PLAT 26/249 159	HARDEEVILLE	SC	29927	RA	Res	AGRICULTURAL (NEC)
	OKETEECLUB	045-00-01-035	39059.00		835 OUT	HARDEEVILE					AGricultural (nec)
9	BLACK, MARTHA C	088-00-01-001	1417.69	Jasper		YEMASSEE	SC	29945	RA	Res	AGRICULTURAL (NEC)
10	C \& S NATIONAL BANK	087-00-03-002	1092.04	Jasper		RIDGELAND	SC	29936	RA	Res	AGRICULTURAL (NEC)
11	CYPRESS WOODS CORP	048-00-01-001; 048-00-03-019	4630.51	Jasper	4190 LOG HAUL RD	RIDGELAND	SC	29936	RA	Res	SFR
12	CLARK, JOCELYN \& CLARK, ANDREA W TRUST	086-00-01-002	1226.35	Jasper	506 SPRING HILL RD	RIDGELAND	SC	29936	RA	Res	AGRICULTURAL (NEC)
13	WA HOLDINGS SOUTH, LLC	042-00-06-045	2629.85	Jasper		HARDEEVILLE	SC	29927	PDD	PUD	AGRICULTURAL (NEC)
		030-00-01-007; 031-00-00-017;									
14	SHERWOOD TRACT	030-00-01-019; 030-00-01-020;	1437.00	Jasper	US HIGHWAY 17	HARDEEVILLE	SC	29927	PDD	Ind	AGRICULTURAL (NEC)
		030-00-01-021; 030-00-01-022									
		323-00-00-011; 323-00-00-014;									
15	CENTRAL SC MEGASITE	309-00-00-031; 309-00-00-032;	1426.00	Kershaw	1291 COMMERCE DRIVE	LUGOFF	SC	29078	ID	Ind	
	central sc megasite	309-00-00-070; 310-00-00-080;	1426.00	Kershaw	1291 Commerce drive	LUGOF		29078	ID	Ind	
		324-00-00-001; 323-00-00-006									
16	TYGER OAK INC	745-00-00-009	1907.53	Laurens		KINARDS	SC	29355			AGRICULTURAL PLANT

Exhibit H to
 Project Connect Revised Alternatives Analysis
 (Blythewood Industrial Site Alternative Site 1)

Applicant:
South Carolina Department of Commerce
Richland County

Exhibit I to Project Connect
 Revised Alternatives Analysis (JAB Site West Alternative Site 2)

Applicant:
South Carolina Department of Commerce
Richland County

Exhibit J to
 Project Connect
 Revised Alternatives Analysis
 (Carolinas I-95 Super Park Alternative Site 3)

Applicant:
South Carolina Department of Commerce
Richland County

Exhibit K to Project Connect Revised Alternatives Analysis (I-77 International Megasite Alternative Site 4)

Applicant:
South Carolina Department of Commerce
Richland County

Exhibit L to
 Project Connect
 Revised Alternatives Analysis
 (Central South Carolina Megasite Alternative Site 15)

Applicant:
South Carolina Department of Commerce
Richland County

Exhibit M to Project Connect Revised Alternatives Analysis (Tyger Oak Inc. Alternative Site 16)

Applicant:
South Carolina Department of Commerce
Richland County

Exhibit N to
 Project Connect
 Revised Alternatives Analysis
 (South Carolina Gateway Alternative Site 17)

Applicant:
South Carolina Department of Commerce
Richland County

Exhibit O to Project Connect Revised Alternatives Analysis (Site Layout Alternative 2)

Applicant:
South Carolina Department of Commerce
Richland County

Exhibit P to Project Connect Revised Alternatives Analysis (Site Layout Alternative 3)

Applicant:
South Carolina Department of Commerce
Richland County

[^0]: ${ }^{1}$ This document has been updated to address comments received during the public comment period. Additionally, this document is supplemented, as described below, by additional memoranda specific to the interchange and roadway components of the project, enclosed as Exhibits A, B, and C, respectively.
 ${ }^{2}$ Client is an advanced manufacturer in the automotive sector interested in constructing and operating the proposed project set forth herein and in the accompanying application. As frequently occurs in recruiting economic development projects to the State, and consistent with the Cooperative Agreement between Commerce and the Corps, date October 1, 2016, as amended, Commerce and the County will serve as coapplicants on the application. Upon the issuance of a Section 404 Permit, it is anticipated that the Permit and its attendant responsibilities will be transferred to the Client.

[^1]: ${ }^{4}$ South Carolina has a robust TDL cluster infrastructure providing a base for reliant advanced manufacturing facilities, as evidenced by the active involvement and support of public and private institutions of these industry sectors. In particular, the South Carolina Automotive Council, a division of the South Carolina Manufacturers Alliance, acts as a leading organization dedicated to enhancing the state's automotive manufacturing sector's position, including fostering collaboration, promoting innovation, and maintaining a business environment conducive to growth and success in a global marketplace. South Carolina further boasts successful public-private partnerships within the industry, including between the South Carolina Council on Competitiveness (SCCC) and Commerce in the form of the TDL Council, a division of the SCCC that aims at improving the TDL cluster in South Carolina to ensure adequate infrastructure support all industry clusters in South Carolina.

[^2]: Project Connect
 Supporting Information for Proposed Project
 51770267 v1

[^3]: ${ }^{5}$ The remaining acreage of the Property consists of additional SCDOT rights-of-way associated with the roadway improvements.

[^4]: ${ }^{6}$ Special aquatic sites are geographic areas, large or small, possessing special ecological characteristics of productivity, habitat, wildlife protection, or other important and easily disrupted ecological values. These areas are generally recognized as significantly influencing or positively contributing to the general overall environmental health or vitality of the entire ecosystem of a region. 40 C.F.R. $\int 230.3$. These include sanctuaries and refuges ($\$ 230.40$), wetlands $(\$ 230.41)$, mudflats $(\$ 230.42)$, vegetated shallows ($\$ 230.43)$, coral reefs ($\$ 230.44$), and riffle and pool complexes ($\$ 230.45$). Because the Proposed Project involves the discharge into and fill of wetlands, these more restrictive provisions apply to the Proposed Project.

[^5]: Project Connect
 Supporting Information for Proposed Project
 $51772267 \mathrm{v1}$

[^6]: ${ }^{7}$ The Midlands region of South Carolina is considered to include Aiken, Barnwell, Chester, Edgefield, Fairfield, Kershaw, Lancaster, Lexington, Newberry, Richland, Saluda, and York Counties. https://sc.gov/government/midlands (accessed July 31, 2022).

[^7]: ${ }^{8}$ The NEPA alternatives analysis required consideration of all alternatives for a project has its roots in the fact that NEPA is a procedural statute, rather than one dictating substantive analysis or mandating a particular outcome. At its core, NEPA is a "stop, look, and listen" statute that is intended to result in an informed agency decision making process. The Guidelines impose a stricter, substantive standard to the range of reasonable alternatives identified under NEPA that is designed to arrive at a practicable alternative that has the least adverse impact on the aquatic ecosystem.
 ${ }^{9}$ This analysis considers a range of alternatives which might enhance environmental quality or have a less detrimental effect on the environment than the proposed activity and demonstrates that there is no feasible and prudent alternative that will have a less environmentally damaging effect. An alternative is feasible if it is available and consistent with sound engineering principles, such that the alternative can be successfully constructed or implemented. An alternative is prudent if it is economically reasonable in light of the benefits the activity would provide, but cost alone does not render an alternative imprudent.

[^8]: Project Connect
 Supporting Information for Proposed Project
 51772267 v 1

[^9]: ${ }^{10}$ See 40 C.F.R. $\$ 230.10(\mathrm{a})(2)$ ("If it is otherwise a practicable alternative, an area not presently owned by the applicant which could reasonably be obtained, utilized, expanded, or managed in order to fulfill the basic purpose of the proposed activity may be considered."). By contrast, a NEPA analysis often requires consideration of alternatives that are not available to the applicant. See USACE SOP. The alternatives analysis undertaken by the Applicant satisfies the requirements of both the Guidelines and NEPA alternatives analyses.

[^10]: Project Connect
 Supporting Information for Proposed Project
 51772267 v 1

[^11]: ${ }^{11}$ As set forth above, the construction limits of the planned development of the Proposed Project would comprise approximately 1,633 acres of the overall Property. Notwithstanding, and to ensure that it was evaluating the complete list of properties that could arguably be practicable for the Proposed Project, the Applicant determined that a minimum acreage of 1,000 acres would pull the largest subset of properties for

[^12]: Project Connect
 Supporting Information for Proposed Project
 51770267 v1

[^13]: ${ }^{18}$ It is expected that certain of the component parts for production and assembly at the Proposed Project, as well as a certain percentage of the completed automobiles, will arrive from and be exported through international shipments portals of the Port of Charleston. Accordingly, a site that is equidistant from the Port of Charleston (Hugh Leatherman Terminal, located at Bainbridge Avenue, North Charleston, South Carolina 29405) and each of the State's Inland Port facilities (Inland Port Greer, located at 100 International Commerce Blvd, Greer, South Carolina 29651, and Inland Port Dillon, located at 111 W. Fairfield Road, Dillon, South Carolina 29536) is optimally located for the efficient just-in-time delivery of component parts for production, as well as further delivery of assembled automobiles to end-users.
 ${ }^{19}$ Immediate access to utility infrastructure is key both from an operations perspective, as without adequate access to power, water, gas, and sewer with sufficient capacity, no development is possible, as well as from a timing perspective, as the length of time it would take to get utility easements/rights-of-way to the site would compromise the Applicant's ability to meet the expected construction and operation deadlines for the Proposed Project.

[^14]: Project Connect
 Supporting Information for Proposed Project
 5177267 v 1

[^15]: Project Connect
 Supporting Information for Proposed Project
 51772267 v 1

[^16]: ${ }^{20}$ For the purpose of this alternative, the MSA is designated as the Interstate 77 (Exit 16)/Interstate 20 (Exit 76) interchange of Columbia, South Carolina.

[^17]: Project Connect
 Supporting Information for Proposed Project
 51772267 v 1

[^18]: ${ }^{21}$ For the purpose of this alternative, the MSA is designated as Rock Hill, South Carolina.

[^19]: Project Connect
 Supporting Information for Proposed Project
 51772267 v 1

[^20]: ${ }^{22}$ For the purpose of this alternative, the MSA is designated as Florence, South Carolina.
 ${ }^{23}$ For the purpose of this alternative, the MSA is designated as the Interstate 77 (Exit 16)/Interstate 20 (Exit 76) interchange of Columbia, South Carolina.

[^21]: Project Connect
 Supporting Information for Proposed Project
 51772267 v 1

[^22]: ${ }^{24}$ For the purpose of this alternative, the MSA is designated as the Savannah, Georgia.

[^23]: ${ }^{25}$ For the purpose of this alternative, the MSA is designated as the Savannah, Georgia.
 ${ }^{26}$ For the purpose of this alternative, the MSA is designated as the Savannah, Georgia.

[^24]: Project Connect
 Supporting Information for Proposed Project
 $51772267 \mathrm{v1}$

[^25]: Project Connect
 Supporting Information for Proposed Project
 51772267 v 1

[^26]: ${ }^{29}$ For the purpose of this alternative, the MSA is designated as the Savannah, Georgia.
 ${ }^{30}$ For the purpose of this alternative, the MSA is designated as the Savannah, Georgia.

[^27]: ${ }^{31}$ For the purpose of this alternative, the MSA is designated as the Savannah, Georgia.

[^28]: Project Connect
 Supporting Information for Proposed Project
 51772267 v 1

[^29]: ${ }^{32}$ For the purpose of this alternative, the MSA is designated as the Savannah, Georgia.

[^30]: Project Connect
 Supporting Information for Proposed Project
 $51770267 \mathrm{v1}$

[^31]: ${ }^{33}$ For the purpose of this alternative, the MSA is designated as the Savannah, Georgia.

[^32]: ${ }^{34}$ For the purpose of this alternative, the MSA is designated as the Interstate 77 (Exit 16)/Interstate 20 (Exit 76) interchange of Columbia, South Carolina.

[^33]: Project Connect
 Supporting Information for Proposed Project
 51772267 v 1

[^34]: ${ }^{35}$ For the purpose of this alternative, the MSA is designated as the Greenville, South Carolina.
 ${ }^{36}$ For the purpose of this alternative, the MSA is designated as Orangeburg, South Carolina.

[^35]: ${ }^{37}$ Additional detailed information for each of the alternatives carried forward to Level 2 of this analysis is included below.

[^36]: Project Connect
 Supporting Information for Proposed Project
 51770267 v1

[^37]: Project Connect
 Supporting Information for Proposed Project
 51772267 v 1

[^38]: Project Connect

[^39]: Project Connect
 Supporting Information for Proposed Project
 51772267 v 1

[^40]: Project Connect
 Supporting Information for Proposed Project
 $51772267 \mathrm{v1}$

[^41]: Project Connect
 Supporting Information for Proposed Project
 51772267 v 1

[^42]: Project Connect

[^43]: ${ }^{38}$ E.g. Joe Miller, Electric car costs to remain bigher than traditional engines, Financial Times (August 2020) ("Electric cars will remain significantly more expensive for European carmakers to produce than combustion engine models for at least a decade, according to new research."); https://www.ft.com/content/a7e58ce7-4fab-424a-b1fa-f833ce948cb7

[^44]: Project Connect
 Supporting Information for Proposed Project
 51770267 v1

[^45]: ${ }^{39}$ As noted above, an additional parcel, TMS No. 058-00-00-001 (337.57 acres), is available as a part of the marketed Carolinas I-95 Super Park site; however, this additional acreage is located approximately one (1) mile away from the primary acreage of the site on the Northwest (opposite) site of I-95. Utilizing this acreage for the Proposed Project is therefore not conducive, at it would require the segmentation of the desired layout of the facility, contrary to the established automotive processes for the Proposed Project, and the usable acreage is appropriately constrained to the $1,509.35$ continuous acres of the site.

 40 See n. 38, supra.

[^46]: Project Connect
 Supporting Information for Proposed Project
 51770267 v 1

[^47]: Project Connect
 Supporting Information for Proposed Project
 51770267 v1

[^48]: ${ }^{42}$ E.g. Joe Miller, Electric car costs to remain bigher than traditional engines, Financial Times (August 2020) ("Electric cars will remain significantly more expensive for European carmakers to produce than combustion engine models for at least a decade, according to new research."); https://www.ft.com/content/a7e58ce7-4fab-424a-b1fa-f833ce948cb7

[^49]: ${ }^{43}$ See n.38, supra.

[^50]: Project Connect
 Supporting Information for Proposed Project
 51770267 v1

[^51]: Project Connect
 Supporting Information for Proposed Project
 51772267 v 1

[^52]: Project Connect
 Supporting Information for Proposed Project
 51770267 v1

[^53]: Project Connect
 Supporting Information for Proposed Project
 51770267 v1

[^54]: Project Connect
 Supporting Information for Proposed Project
 51772267 v 1

[^55]: Project Connect
 Supporting Information for Proposed Project
 51770267 v1

[^56]: 44 See n. 38, supra.

[^57]: Project Connect
 Supporting Information for Proposed Project
 51770267 v1

[^58]: Project Connect
 Supporting Information for Proposed Project
 51770267 v1

[^59]: ${ }^{45}$ E.g. Joe Miller, Electric car costs to remain bigher than traditional engines, Financial Times (August 2020) ("Electric cars will remain significantly more expensive for European carmakers to produce than combustion engine models for at least a decade, according to new research."); https://www.ft.com/content/a7e58ce7-4fab-424a-b1fa-f833ce948cb7

[^60]: ${ }^{46}$ Impacts to Wetland 104 was incrementally increased by 0.53 acres due to the proposed shift in alignment; however, the overall wetland impact associated with the shift resulted in a net reduction of impacts to onsite wetlands.
 ${ }^{47}$ Impacts to Streams 58 and 59 were incrementally increased by 17.06 linear feet and 214.82 linear feet, respectively, due to the proposed shift in alignment.

[^61]: Project Connect
 Supporting Information for Proposed Project
 51770267 v1

[^62]: Project Connect
 Supporting Information for Proposed Project
 51770267 v 1

[^63]: Project Connect
 Supporting Information for Proposed Project
 51772267 v 1

[^64]: ${ }^{1}$ Ramp length was measured from the stop bar to the painted gore.
 ${ }^{2}$ Ramp movement is free-flow with a dedicated receiving lane

[^65]: *Assumed as 10% of highest peak

